

Probing few-body dynamics via ³H and ³He (*e,e'p*)pn cross-section

Dien Nguyen

Nuclear Physics introduction

An essential goal of Nuclear physics:

1. Understanding the nature of the interaction between nucleon

2. How these interactions make up atomic nuclei and their property

... In Principle

Many-Body Hamiltonian:

$$H = \sum_{i=1}^{A} T + \sum_{i < j}^{A} V_{2N}(i,j) + \sum_{i < j < k}^{A} V_{3N(i,j,k)} + \dots$$

The Nuclear Challenge

Complex QCD interaction

Strong force, spin, isospin ...

The Nuclear Challenge

Complex QCD -> Effective interaction

There are many NN potential models...

- Hamada-Johnston Potential
- Yale-Group Potential
- Reid68 Potential
- Reid-Day Potential
- Partovi-Lomon Potential
- Paris-Group Potentials
- Stony-Brook Potential
- dTRS Super-Soft-Core Potentials
- Funabashi Potentials
- Urbana-Group Potentials
- Argonne-Group Potentials
 - Argonne V14
 - Argonne V28
 - Argonne V18
- Bonn-Group Potentials
 - Full-Bonn Potential
 - CD-Bonn Potential
- Padua-Group Potential
- Nijmegen-Group Potentials
 - Nijm78 Potential
 - Partial-Wave-Analysis
 - Nijm93
 - Nijml

- Nijmll
- Reid93 Potential
- Extended Soft-Core
- Nijmegen Optical Potentials
- Hamburg-Group Potentials
- Moscow-Group Potentials
- Budapest(IS)-Group Potential
- MIK-Group Potential
- Imaginary Potentials
- QCD-Inspired Potentials
- The Oxford Potential
- The First CHPT NN Potentials
- Sao Paulo-Group CHPT Potentials
- Munich-Group CHPT Potentials
- Idaho-Group CHPT Potentials
- Bochum-Julich-Group CHPT Potentials
 - LO Potentials
 - NLO Potentials
 - NNLO Potentials
 - NNNLO Potentials
- and more!

Overall consistent at long-r/ small-k

Probability to find two nucleons with relative distance r

Probability to find two nucleons with relative momentum q.

Large model dependence at small-r/high-k

Probability to find two nucleons with relative distance r

Probability to find two nucleons with relative momentum q.

Need to put these to test

Why Nucleon-nucleon interaction?

Crucial for:

- Ab-Initio structure & reaction calculations
- Dense astrophysical objects, e.g. neutron stars
- Any calculation related to nuclear interaction

Why light nuclei?

<u>3-Body system:</u>

- Exactly calculatable
- Test & benchmark theory

<u>Why Tritium</u>?

 \blacktriangleright Proton in ³He = Neutron in ³H

Constraint reaction mechanism

Tritium at Jefferson Lab

Electron Scattering

 $x_R = Q^2/2m(E - E')$ Dynamic scale

Plane-Wave Impulse Approximation (PWIA)

$$\vec{p}_{miss} = \vec{p}_{i}$$

Missing momentum

 $\vec{p}_{miss} \equiv \vec{p}_{f} - \vec{q}$

Assumptions:

Momentum transfer absorbed by a single nucleon

Knocked-out nucleon did not re-scatter as it left the nucleon

High Q²: PWIA factorized approximation

CD-Bonn NN potential

Previous studies and non-QE mechanisms

Data is useful to study reaction mechanism, not nucleon distributions.

Previous studies and non-QE mechanisms

□Non-QE mechanisms can be minimized using selected kinematic region

Minimizing non-QE mechanisms

M. M. Sargsian, Int. J. Mod. Phys. E10, 405 (2001) M. M. Sargsian et al., J. Phys. G29, R1 (2003)

$$Q^2 > 2 \text{ GeV}^2$$

 $x_B = Q^2/2m_p\omega > 1$

Minimizing non-QE mechanisms

Jefferson Lab

Jefferson Lab

Analysis process

Data taking

Calibration

Data Analysis

Extracting the absolute cross section

$$\frac{d^{6}\sigma(p_{miss}, E_{miss})}{dE_{e}dE_{p}d\Omega_{e}d\Omega_{p}} = \frac{Yield(p_{miss}, E_{miss})}{Q * \rho_{A} * \varepsilon * VB * C_{corr}}$$

Integrated Luminosity

Detected phase space corrected for acceptance

Efficiencies

- Detectors
- Trigger
- Live time
- Boiling

Correction factors

- Radiative correction
- Bin migration
- Bin centering
- Tritium Decay

Separating two-body-breakup

³He -> P + D (2 body break up) ³He -> P + N + P (3 body break up)

3H -> P + N + N (3body break up)

Extracted Absolute cross-section

Compare to different theory calculation

Cracow:

- Faddeev-formulationbased calculations
- Continuum
 interaction between
 two spectator
 nucleons (FSI₂₃)

Compare to different theory calculation

Cracow:

Faddeev-formulationbased calculations

Continuum interaction between two spectator nucleons (FSI₂₃)

<u>CK + CC1:</u>

³He spectral function of C. Cio degli Atti and L. P. Kaptari and electron off-shell nucleon cross-section

Including FSI₂₃

Compare to different theory calculation

Cracow:

Faddeev-formulationbased calculations

Continuum interaction between two spectator nucleons (FSI₂₃)

<u>CK + CC1:</u>

 ³He spectral function of C. Cio degli Atti and L. P. Kaptari and electron off-shell nucleon cross-section

Including FSI₂₃

M. Sargian (FSI):

FSI calculation based on generalized Eikonal approximation

Does not include FSI23

³H Exp/Cracow_{PWIA} agree to ~20%

³H Exp/CK+CC1_{PWIA} disagree by ~40%

³He Exp/Cracow

³He Exp/Cracow & CK+CC1

Much better than previous data!

Leading Nucleon FSI: Small but improve things!

Single charge exchange!

np-SCX (e,e'n) -> (e,e'p) increases σ(e,e'p)

pn-SCX (e,e'p) -> (e,e'n) decreases σ(e,e'p)

High-pmiss and np-doninant

Single charge exchange!

High-pmiss and np-doninant

Much Smaller Non-QE contribution compared to previous measurements

Much Smaller Non-QE contribution compared to previous measurements

Better agreement with Cracow than with CK+CC1

- Much Smaller Non-QE contribution compared to previous measuremer
- Better agreement with Cracow tha with CK+CC1
- □Better agreement with ³H than ³He

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He
- including of leading nucleon FSI improve the agreement

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- □ Better agreement with ³H than ³He
- Including of leading nucleon FSI improve the agreement
- The remaining disagreement could be explained by SCX

- Much Smaller Non-QE contribution compared to previous measurements
- Better agreement with Cracow than with CK+CC1
- Better agreement with ³H than ³He
- □ Including of leading nucleon FSI improve the agree
- □ The remaining disagreement could be explained by SCX

These data are a crucial benchmark for few-body nuclear theory

PRL. 124, 212501 (2020)

Thank you !

Support Slides

Short range interaction: Brief introduction

When two nucleons get close inside the nucleus, they fly apart with high momentum

When two nucleons get close inside the nucleus, they fly apart with high momentum

n(k) Mean Field Region This populates a high-momentum tail above the Fermi momentum

(e,e'p) scattering off shell orbitals

Independent particle shell model

Assumptions:

- Nucleon moves in a mean field created by surrounding nucleons
- No interaction at a short distance
- Nucleons fill up distinct energy levels defined by quantum number, highest energy level is called Fermi
 energy, corresponds to fermi momentum k_f

Pauli principle:

Forbids nucleon scattering to occupied shell.
 Suppresses the nucleon interaction.

IPSM is very successful in:

- Describing the shell structure of nuclei
- Explaining magic number, spin, angular momentum

IPSM's limitations

Due to mean field approximation

Missing strength of proton at valence shell

- Spectroscopic factor is only ~65 % for valence shell over big range of A
- Some strength was detected in the shell above fermi edge which is empty in ISPM

Lapikas, Nucl. Phys. A553 (1993)

Possible solution: Including Short range Correlations (SRCs)

Inclusive electron scattering

Kinematic variables:

e-p elastic scattering: x = 1, Quasi-elastic scattering x ≈ 1

Motion of nucleon in the nucleus broadens the peak to x~ 1.3

(e,e'p) scattering off shell orbitals

Missing energy spectrum shows shells occupancy

