2. Intensity Frontier

US Intensity Frontier Experiments

by H. Murayama @ 13th ICFA seminar

Fermilab Accelerator Complex

NOvA at Fermilab and Ash River

Office of Science

ICARUS at Fermilab

Mu2E at Fermilab

Muon g-2 at Fermilab

Belle II at KEK, Japan

COHERENT at ORNL

19

05/22/2023 DOE-HEP Report

Energy.gov/science

What experiments are there?

- CERN (Europe)
 - LHC/ATLAS, CMS, LHCb, FASAR, SND, milliQan, NA62, DsTau, (CEPE)
- PSI (Switzerland)
 - MEG II
- Fermilab (US)
 - Muon g-2, Mu2e, Neutrino experiments: DUNE, NOvA, SBN, ICARUS, etc.
- KEK/J-PARC (Japan)
 - KamLAND, (ILC)
- IHEP (China)
 - BESSIII, JUNO, (CEPC)
- Cosmology and Astro-particle experiments

• Super-KEKB/Belle II, J-PARC/T2K, KoTO, COMET, muon g-2, JSNS², Super-K, Hyper-K, KAGLA,

Basic ideas

- Quantum effects generate high-energy phenomena with a certain probability as intermediate states
- The intermediate state is indirectly probed by precise measurements because the probability including high-energy phenomena is rare.

Belle II Detector

Electromagnetic calorimeter

CsI(TI), waveform sampling

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

Silicon vertex detector

- $1 \rightarrow 2$ layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

by K. Matsuoka@Kyoto seminar

Superconducting solenoid (1.5 T)

K_L and μ detector

- Resistive plate chamber (outer barrel)
 - Scintillator + MPPC

(inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel) Aerogel RICH (forward end-cap)

> Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

GRID computing CPU 1 MHEPSpec (10⁵ core; ~ATLAS run1) and 100 PB storage at 50 ab⁻¹

12

The same event with simulated background at 8 x 10³⁵ cm⁻²s⁻¹

Super-KEKB/Belle II Basic

 $\checkmark e^+e^-$ collistions at (or around) $\Upsilon(4S)$

- Well-known initial state kinematics
- $B\overline{B}$ production from $\Upsilon(4S)$ without extra energy
- No event pile-up
- Hermetic Belle II detector capable of detecting charged particles and reconstructing neutrals (γ, π^0, K_L^0 , etc) with high efficiencies.
- \succ Tagging one of the B's to infer the other B flavor and momentum.
 - Powerful S/N separation

by K. Matsuoka@Kyoto seminar

CP Violation in B decays

Belle II: $S = 0.720 \pm 0.062 \pm 0.016$ Belle: $S = 0.667 \pm 0.023 \pm 0.012$ $(S \approx \sin 2\phi_1 \text{ in this mode})$ by K. Matsuoka@Kyoto seminar

Belleの約60%のデータで凌駕する精度 Belle II: $S = 0.75 \stackrel{+0.20}{-0.23} \pm 0.04$ Belle: $S = 0.67 \pm 0.31 \pm 0.08$ 25

Precision measurements

Before Belle II (2018)

The Standard Model has been tested with ~10% precision. \rightarrow Search for non-standard effects that can only appear as small corrections to the Standard Model.

Access higher energy scales via quantum effects than are directly reachable at current or future colliders. e.g. $\Lambda < \sim 1000$ TeV in B^0 mixir by K. Matsuoka@Kyoto seminar

Fig. 226 of Prog. Theor. Exp. Phys. 2019, 123C01

Belle II 50 ab^{-1} + LHCb 23 fb^{-1} + LQCD

$$\log (\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{O}_{\Delta F=2}) \, [arXiv:1302.0661]$$

Search for Dark particles

 e^{\neg}

е

• Z' or LFV Z' to invisible

PRL 124, 141801 (2020) ··· 1st Belle II physics paper <u>arXiv:2212.03066</u> ··· update, 2022

• Axion Like Particle

NV PRL 125, 161806 (2020) 2nd Belle II physics paper

- Visible dark photon
- $Z' \rightarrow \mu\mu$
- Inelastic dark matter
- Dark scalar

by K. Matsuoka@Kyoto seminar

- Forward detector specialised in measuring properties of b and c hadrons
- Run 1 [2011-2012]: 7-8 TeV and 3 fb^{-1}
- Run 2 [2015-2018]: 13 TeV and 6 fb^{-1}

Lepton Photon 2023

Biljana Mitreska 19 July 2023 LFU and LFV at LHCb

LHCb

Access to tiny BRs All *b*-hadrons types LHC complex environment

► JINST 3 (2008) S08005

by Y. Xie @31st Lepton Photon Conf.

LHCb method for TD study

- Flavour tagging: info from other *B* & fragmentation particles $\epsilon_{tag}(1-2\omega)^2 \sim 5\%$
- Large boost from pp collision $\beta \gamma \sim 10, L \sim 1 \text{ cm}$

OS Kaon **OS K. NNet**

• Silicon vertex system $\sigma_t \sim 45 \text{ fs}$

Int. J. Mod. Phys. A30 (2015) 1530022

15

Definition of *R* value

The **R** value is defined as the leading-order production cross section ratio of hadronic events and muon pairs in the e^+e^- annihilation:

$$\mathbf{R} \equiv \frac{\sigma^0(e^+e^- \to \text{hadrons})}{\sigma^0(e^+e^- \to \mu^+\mu^-)} \equiv \frac{\sigma^0_{\text{had}}}{\sigma^0_{\mu\mu}}$$
$$\sigma^0_{\mu\mu}(s) = \frac{4\pi\alpha^2\beta_{\mu}(3-\beta^2_{\mu}))}{3s}, \text{ with } \beta_{\mu} = \sqrt{1-4m^2_{\mu}/s}$$

Measurement of R value \iff Measurement of total cross section of hadron production

Measurements of the *R* value at BESIII

Hao Zhang (on behalf of the BESIII collaboration) zh4710jj@mail.ustc.edu.cn, University of Science and Technology of China

31st Lepton Photon Conference

& EXHIBITION CENTRE

Muon

Muon experiments

πE5 beam line @PSI

by H. Nishiguchi @13th ICFA seminar

J-PARC

(2) muon transport

(5) straw chamber

(5) electron calorimeter

COMET µ-e conversion

High i
Large spectre

d muon beam (10¹¹/sec) rve solenoidal electron

- Experim
 - 100,00

ivity: $BR = 10^{-17}$ tter than current limits

Energy scale comparable to LHC

μ +N(A,Z) \rightarrow e +N(A,Z)

µ-e conversion

μ- (1S orbit)

Nucleus

	muon transport	electron transport
Mu2e	s-shape curve	straight

Immediate Outlook (3) — Mu2e / COMET / Mu3e —

* Preparations for 3 experiments (Mu2e, COMET, Mu3e) are in the final stage

	JFY2023			JFY2024				JFY2025				JFY2026				JFY2027			
Detector for mu-e Search							-	r Re	ady										
Detector for beam measurement									7	Re	eady								
Beam line construction				Μ	lag	net]	Insta	ıllat	ion	Shi	ield	*							
Engineering & Physics Runs										E	ng			Pł	ysi	s Rı	ın		

- *
- •
- * Pion Capture and Detector Solenoids, will be installed in 2026
- *

Hajime NISHIGUCHI (KEK)

"Lepton Flavour Experiments"

Two detectors, for physics and BG, Ongoing and will be ready in 2025 **Beam-line commissioning w/ low-intensity proton beam, completed** Engineering/Physics Runs are expected to start in 2025-2026, after radiation shield construction which leaves uncertainty in schedule.

13th ICFA Seminar

Fermilab **BENERGY** Office of Science

Muon g-2 Experiment and SM

Esra Barlas-Yucel on behalf of the Muon g-2 Collaboration

Lepton Photon 2023 Melbourne 20 July 2023

FERMILAB-SLIDES-23-172-PPD

Muon Magnetic Moment and Defining the Anomaly

Magnetic Moment of Muon $\vec{\mu} = g_{\mu} \frac{e}{2m} \vec{s}$

g: Proportionality constant between spin and magnetic moment

Anomalous Magnetic Moment of Muon

$$r = \frac{g_{\mu} - 2}{2}$$
, $\vec{\mu} = (1 + a_{\mu})\frac{e}{m}\vec{s}$

Measuring this anomaly could tell us if there are new particles or even forces that contribute to a_{μ}

Shows how much g differs fractionally from 2!

 $a_{\mu} = a_{\mu}(QED) + a_{\mu}(EW) + a_{\mu}(hadronic)$

• Calorimeters

- Detects energy and arrival time of e^+ decayed from muons: $\mu^+ \rightarrow e^+ \bar{\nu_{\mu}} \nu_e$

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$
$$n_\mu = \left(\frac{g_e}{2}\right) \left(\frac{\omega_a}{\langle \omega_p \rangle}\right) \left(\frac{\mu_p}{\mu_e}\right) \left(\frac{m_\mu}{m_e}\right)$$

 $a_{\mu} \times 10^9 - 1165900$ FIG. 3. Experimental values of a_{μ} from BNL E821 [8], our Run-1 result [1], this measurement, the combined Fermilab result, and the new experimental average. The inner tick marks indicate the statistical contribution to the total uncertainties.

- errors
 - Use ultra-slow muon sources

K rare decay at J-PARC

Standard Model

CERN NA62: Search for $K^+ \rightarrow \pi^+ vv$

Dark boson searches at CERN's North Area

With their latest dark-matter searches, both the NA62 and NA64 experiments start probing several well motivated light dark-matter models

21 AUGUST, 2023 | By Kristiane Bernhard-Novotny

The NA62 (left) and NA64 (right) experiments at CERN's North Area.

Located at CERN's North Area and receiving beams from the <u>Super Proton Synchrotron</u> (SPS), the <u>NA64</u> and <u>NA62</u> experiments search for dark matter, complementing searches at the LHC, as they cover a different energy range. Both experiments recently published new results.

Related Articles

NA62 sees first significant evidence of rare

> Physics | News 12 August, 2020

NA62 spots two potential

instances of rare

Physics | News | 23 September, 2019

pa...

FASER experiment

FASER is a new forward experiment of LHC, located 480 m downstream from the ATLAS IP. **Successfully** started data taking in Run 3 from July 2022 for:

- Search for new weakly-coupled particles in the MeV-GeV range
 - proposed to CERN in 2018, approved by CERN in 2019
- Study of all flavors of neutrinos at the TeV-energy frontier
 - proposed to CERN in 2019, approved by CERN in 2020

Favorable location, except that refurbishment is needed to be an experimental site.

- Radiation level from LHC is quite low, around 4×10^{-3} Gy/year (= 4×10^{7} 1-MeV neutron/cm²/year)

by H. Otono @ Kyoto seminar 2023

 v_e , v_μ , v_τ , A', a, mCPs, DM, ... **TI12 tunnel**

• Background from collision point is only high-energy muon at about 1 /cm²/sec, thanks to ~100-m rock

by H. Otono @ Kyoto seminar 2023

The birth of Collider Neutrinos (at the LHC)

Ettore Zaffaroni

by H. Otono @ Kyoto seminar 2023

Brian Petersen

5. Cosmic Frontier

by H. Murayama @ 13th ICFA seminar

Cosmic Frontier Experiments

- **Cosmic Frontier experiments** address four of five science drivers
- energy, space and time.

Dark Energy

They use naturally occurring sources to determine the fundamental nature of matter,

Energy.gov/science

Evidence of Dark Matter

[statement valid <u>now</u>, and on <u>very large scales</u>]

by G. Bertone @ICHEP2022

Where are the dark matters?

by G. Bertone @ICHEP2022

What are the dark matters?

- Primordial Black Holes
- Weakly Interacting Massive Particles (WIMP)
- Sterile Neutrinos
- Axions
- others

How to find dark matters

- produce them by accelerators
- look for them by underground experiments
- search for their annihilation signal by satellite and observatory

by G. Bertone @ICHEP2022

How to find dark matters

- produce them by accelerators
- look for them by underground experiments
- search for their annihilation signal by satellite and observatory

- There are many types of high energy experiments with various phases.
 - Large-scale international collaboration to small (medium?) size collaboration
 - Often long term projects with different phases
 - Ideas are generated
 - Construction phase
 - Initial data commissioning
 - Stable data taking
 - Analysis phase
 - Upgrade phase
- Please consider
 - What type of physics are you most interested in?
 - What kind of experiences would you like to havt? 2.
 - What problem will you want to tackle? 3.
 - Enjoy the experiment with your friends.

Message to you

Trust your own senses as a scientist!

Summary of High Energy Experiments

I did not cover

- neutrino experiments
- future projects
- Specific Cosmic Frontier experiments
- new types of experiments using quantum technology

Bias towards experiments involving the Japanese HEP community

Intensity Frontier **B-Factory** Neutrino (T2K, SK, KamLAND, etc.) Kaon (K°TO, etc.), Dark particles μ, neutron, proton decay, •••• **τ** • charm Factory

Energy Frontier

LHC/ATLAS and CMS (ILC)

Cosmic Frontier

Neutrino **Dark Matter Dark Energy** CMB

VSON2024 - T. Nakaya -

86