Overview of High Energy Experiments

Tsuyoshi NAKAYA (Kyoto U.)

2024.7.17-18 @ VSON2024, Quy Nhon

- 1995: Ph.D.
- 1995-1997: JSPS Fellow at Fermilab, US
	- working for the Kaon experiments.
- 1997-1999: Fermi Fellow at U. Chicago, US.
	- working for the Collider experiment at Fermilab (CDF)
- 1999-now: Faculty members in Kyoto U.
	- working for neutrino experiments: K2K, Super-K, SciBooNE, T2K, NINJA, Hyper-K, AXEL

Who am I? Professor in Kyoto University, Japan

VSON2024 - T. Nakaya -

• What is matter made of? What exists in the universe? What are the properties of those

High Energy Physics

• **Study the ultimate building blocks of the universe and matter.**

• Standard Model of Particle Physics: quarks, leptons, gauge particles, Higgs boson. • Unknown entities: dark matter, dark energy, other unknown particles, unexpected

- components? How do they interact?
-
- phenomena.
- Theoretical guidance: supersymmetric particles, extra dimensions
- Studies that question the meaning of time and even space (spacetime).
	- Origin of mass, space-reversal symmetry, time-reversal symmetry breaking.
- (Personal view) Differences with other disciplines and fields
	- Eliminates the complexity (diversity) of many-body systems and explores the underlying physical laws and views of physics.

Explore frontiers!

After the birth of the universe (after the Big Bang), to a world of 10-10 (0.1 nano) seconds.

Now
13.8 billion years

LHC/ATLAS Experiment

iscovery of Higgs p 00e NX 1

3 8 5 5 5 5 6 6 7 8 9 9 10 11 12 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 18 19 19 10 11 11 11 11 11

Particle Physics

100,000,000,0000,

 \bigcirc

Lepton

 \bigcirc

Quark and Lepton Quark ×2 (Antiparticles)

Standard Model of Elementary Particles

Fundamental Questions!

- What is dark matter?
- Where are antimatter? How did they disappear?
- The accelerating universe?
- Why is neutrino mass so small?
- How are the forces are unified?
- Generation structure. Why are the masses of particles are so different?

not solved yet

High Energy Physics and Experiments

- Energy Frontier
	- Study particles at high energy (~TeV)
- Intensity Frontier
	- Study particles with high precision and look for rare processes
- Cosmic Frontier
	- Observe our universe and look for footprints made by past particles.

Three categories

Intensity Frontier *B-Factory Neutrino*(*T2K, SK, KamLAND, etc.*) K*aon*(*K0TO, etc.*)

LHC/ATLAS and CMS (ILC)

Cosmic Frontier

μ, neutron, proton decay, ・・・

τ・*charm Factory*

Energy Frontier

Neutrino Dark MaIer Dark Energy CMB

VSON2024 - T. Nakaya - 13

High Energy Experiments

What experiments are there?

- CERN (Europe)
	- LHC/ATLAS, CMS, LHCb, FASAR, milliQan, NA62, DsTau, (CEPE)
- PSI (Switzerland)
	- MEG II
- Fermilab (US)
	- Muon g-2, Mu2e, Neutrino experiments: DUNE, NOvA, SBN, ICARUS, etc.
- KEK/J-PARC (Japan)
	- KamLAND, (ILC)
- **IHEP** (China)
	- BESSIII, JUNO, (CEPC)
- *• Cosmology and Astro-particle experiments*

• Super-KEKB/Belle II, J-PARC/T2K, KoTO, COMET, muon g-2, JSNS², Super-K, Hyper-K, KAGLA,

LHC Large Hadron Collider (Superconducting Accelerator)

E.CERN and LHG.

Circumference 27km

Magnetic field: 8T)

(Why does it require 27km?

 \mathbb{R}^2

Circular accelerator

• Proton Synchrotron

- Protons go round and round
	- Inject proton beam periodically
- Acceleration mode: Increasing energy with every lap
	- LHC: $450 \text{ GeV} \rightarrow 6,800 \text{ GeV}$ (6.8 TeV)
		- Increasing magnetic field synchronized with energy
- Colliding mode: constant energy
	- How many turns per second?
	- Circumference 27km

Collider experiment

How heavy subatomic particles can be made?

• Collider experiment

• Effective use of beam energy

 $(E_i, \overrightarrow{p}_i)$ (E_i, $-\overrightarrow{p}_i$) N

• Effective use of beam flux

• Fixed target experiment N

16 years ago (2008/9/10)

9 days after (2008/9/19)

→ liquid helium boiling and explosion

LEW Elektrone *LEIN ENCLUS 60*

- 14 TeV proton-proton collider
- 27 km circumference
- 14 years construction
- US 5B dollar for construction

- 1.9 K cooling by Helium
- 8.3 T magnetic field with 1232 magnets

LHC/ATLAS experiments

ATLAS detector

ATLAS detector

• Multi-purpose detector – Hight 25 m, Length 44m, Weight 7,000 ton – 1M signal channels

Why is multi-purpose detector?

- Particles observed
	- ‒ Electron
	- ‒ Photon
	- $-$ Proton (uud), π +(ud), K+(us)
	- Neutron (udd)
	- ‒ Muon
	- ‒ ?? Neutrino ??

A detector cross-section, showing particle paths

Principle of Particle measurements

- Tracking the particle trajectories under a magnetic field, and measuring their position and momentum.
- Next, photons and electrons are stopped and their energy and position are measured.
- Hadrons (mainly protons and pions) are then stopped and their energy and position measured.
- Finally, charged particles not stopped are muons.
- Non-observed particles are neutrinos, which are identified by missing energy.

Candidate for ZZ→µµνν

• $m_{\mu\mu}$ 94 GeV, $E_T^{miss} = 161$ GeV

barn $[b] = 10^{-24}$ cm² = 10⁻¹² cm x 10⁻¹² cm 0^{-24} cm² = 10⁻¹² cm x 10⁻¹² cm \mathfrak{a} \mathfrak{b} \mathfrak{b} Cross barr \bullet

 \bullet

Status: February 2022

Standard Model Production Cross Section Measurements

Cross Section

Section

 10^{-20} m $= 10^{-12}b = 10^{-36}$ cm² = 10-20 m x 10-20 m 10^{-20} m x $cm²$ 10-36 $0 - 125$ $\overline{}$ (pico-barn pb \bullet

Physics by LHC at the TeV energy region

- Discovering the Higgs boson to understand the origin of mass due to spontaneous symmetry breaking.
- Search for supersymmetry particles
	- Linking space-time symmetry and internal symmetry of particles.
- Look for any new phenomena.

Higgs boson mechanism provided a way for symmetry to both exist and simultaneously be hidden from view. The symmetry is high symmetry is still the set

- Particles (Higgs field condensate) as the source of the phase transition in the vacuum $\overline{\mathcal{C}}$ at the time of time of time of time of time of the time of the Big Bang, all particles were massless were mass and all forces were underered in a single primordial force. This original force and the single α
	- Phase transition: the energy of the vacuum changes. \mathbf{f} is original equilibrium. How did that happens is original equilibrium. How did that happen?
	- Particle is given (inertial) mass.
	- Coupling with the Higgs boson is related to the mass of the coupling particle bowl, in its lowest energy state. With a push the ball state after a while it returns down the ball states roll
The ball states rolling, but after a while it returns down the ball starts rolling, but after a while it retur

Coupling with the Higgs boson with the mass of the coupling particle

How to detect Higgs bosons

https://atlas.cern/updates/atlas-feature/higgs-boson

 $Proton$ - Proton collisions

Detecting Higgs bosons

Precise mass measurement using H→4l

Event-by-event resolution, DNN for S/B separation, precise muon and electron momentum calibration

!" **=124.94±0.17(stat.)±0.03(syst.)GeV** *(combined with run 1 data)* $80⁵$ Data $-$ Fit **ATLAS New** *arXiv:2207.00320*

H→γγ H→eeμμ、μμμμ、eeee

What next with Higgs bosons

- Higgs potential
	-

$$
V(\phi) = \frac{1}{2}m_H^2 \phi^2 + \sqrt{\lambda/2}m_H \phi^3 + \frac{1}{4}\lambda \phi^4
$$

• detecting a pair production of two Higgs bosons

• Supersymmetry (SUSY)

- Symmetry between Bose particles (spin integers) and Fermi particles (spin half-integers)
- Example of Bose particle: photon
- Fermi particles e.g. electrons
- Are dark matter particles SUSY particles?
- **• New Physics**
	- Extra dimensions (>4)
		- How many dimensions is space, are dimensions beyond 4 compactified?
	- Leptoquarks, Heavy majorana neutrinos, etc..

- SUSY searches covering vast regions of SUSY phase space • SUSY s
	- Typical main signals in final states are
		- Strong SUSY: 2 same-sign or 3 Leptons
	- Electroweakino: with taus \bullet Electroweakino: with taus
		- Higgsinos: with b-jets and photons Digaring vith high and phatons
		- ** ©** Forces ⇔ Matter \circ \circ

SUSY

\mathbf{M}^2 erse momentum, \mathbf{M} is an instead require high jet multiplier \mathbf{M} momenta de la provincia de la
Entre de la provincia de la pr **Missing energy with 2 same-sign or 3 leptons**

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2023

"Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
simplified models, c.f. refs. for the assumptions made.

 $\overline{1}$

ATLAS Preliminary
 $\sqrt{s} = 13 \text{ TeV}$

CMS

0.001
Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Overview of CMS EXO results

Mass Scale [TeV]

1.000

 0.100

2. Intensity Frontier

What experiments are there?

- CERN (Europe)
	- LHC/ATLAS, CMS, LHCb, FASAR, milliQan, NA62, DsTau, (CEPE)
- PSI (Switzerland)
	- MEG II
- Fermilab (US)
	- Muon g-2, Mu2e, Neutrino experiments: DUNE, NOvA, SBN, ICARUS, etc.
- KEK/J-PARC (Japan)
	- KamLAND, (ILC)
- **IHEP** (China)
	- BESSIII, JUNO, (CEPC)
- *• Cosmology and Astro-particle experiments*

• Super-KEKB/Belle II, J-PARC/T2K, KoTO, COMET, muon g-2, JSNS², Super-K, Hyper-K, KAGLA,

Basic ideas

- Quantum effects generate high-energy phenomena with a certain probability as intermediate states
- The intermediate state is indirectly probed by precise measurements because the probability including high-energy phenomena is rare. including high energy

- Resistive plate chamber (outer barrel)
	- Scintillator + MPPC

(inner 2 barrel layers, end-caps)

rticle ID detectors

TOP (Time-of-Propagation) counter (barrel) Aerogel RICH (forward end-cap)

Belle II Detector

Electromagnetic calorimeter

CsI(Tl), waveform sampling

Superconducting solenoid (1.5 T)

K_l and μ detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD

GRID computing CPU 1 MHEPSpec $(10^5 \text{ core}; \sim$ ATLAS run1) and 100 PB storage at 50 ab⁻¹

Tracking detector

Silicon vertex detector

Trigger and DAQ Max L1 rate: $0.5 \rightarrow 30$ kHz Pipeline readout

Better performance even at the higher trigger rate and beam background

15

by K. Matsuoka@Kyoto seminar

The same event with simulated 48 background at 8 x 10^{35} cm⁻²s⁻¹

- Well-known initial state kinematics
- BB production from $Y(4S)$ without extra energy
- No event pile-up
- \checkmark Hermetic Belle II detector capable of detecting charged particles and reconstructing neutrals (γ , π^0 , K_L^0 0 , etc) with high efficiencies.
- \triangleright Tagging one of the B's to infer the other B flavor and momentum.
	- Powerful S/N separation

KEKR/Belle **Super-KEKB/Belle II Basic**

 \checkmark e⁺e⁻ collistions at (or around) $\Upsilon(4S)$

$$
- m_{\text{miss}}^2 = (p_{e^+e^-} - p_{\text{tag}} - p_{\text{sig}}^{\text{detect}} - p_{\text{sig}}^{\text{detect}} - \frac{e^+}{P^0}
$$

$$
= \frac{e^-}{P^0}
$$

$$
= \frac{e^+}{P^0}
$$

$$
= \frac{e^+}{P^0
$$

by K. Matsuoka@Kyoto seminar

-
-

25

Belleの約60%のデータで凌駕する精度 Belle II: $S = 0.75^{+0.20}_{-0.23} \pm 0.04$ Belle: $S = 0.67 \pm 0.31 \pm 0.08$ $VSON2024$ 50

CP Violation in B decays

Belle II: $S = 0.720 \pm 0.062 \pm 0.016$ Belle: $S = 0.667 \pm 0.023 \pm 0.012$ $(S \approx \sin 2\phi_1$ in this mode) by K. Matsuoka@Kyoto seminar

Precision measurements

The Standard Model has been tested with \sim 10% precision. \rightarrow Search for non-standard effects that can only appear as small corrections to the Standard Model.

Access higher energy scales via quantum effects than are directly reachable at current or future colliders. e.g. $\Lambda < \sim 1000$ TeV in B^0 mixing by K. Matsuoka@Kyoto seminar

$$
\log \left(\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \mathcal{O}_{\Delta F = 2} \right) \frac{\text{[arXiv:1302.0661]}}{\text{[arXiv:1302.0661]}}
$$

Fig. 226 of Prog. Theor. Exp. Phys. 2019, 123C01

Before Belle II (2018) $Belle II 50 ab^{-1} + LHCb 23 fb^{-1} + LQCD$

-
-

Search for Dark particles

 $e^{\text{-}}$

 $e^{-\gamma x}$

• Z' or LFV Z' to invisible

PRL 124, 141801 (2020) ... 1st Belle II physics paper arXiv:2212.03066 … update, 2022

• Axion Like Particle

 \boldsymbol{a} γ γ n_{ν} PRL 125, 161806 (2020) 2nd Belle II physics paper

- Visible dark photon
- $Z' \rightarrow \mu\mu$
- Inelastic dark matter
- Dark scalar

by K. Matsuoka@Kyoto seminar