Overview of **High Energy Experiments**

2024.7.17-18 @ VSON2024, Quy Nhon

Tsuyoshi NAKAYA (Kyoto U.)

Who am I? Professor in Kyoto University, Japan

- 1995: Ph.D.
- 1995-1997: JSPS Fellow at Fermilab, US
 - working for the Kaon experiments.
- 1997-1999: Fermi Fellow at U. Chicago, US.
 - working for the Collider experiment at Fermilab (CDF)
- 1999-now: Faculty members in Kyoto U.
 - working for neutrino experiments: K2K, Super-K, SciBooNE, T2K, NINJA, Hyper-K, AXEL

High Energy Physics

• Study the ultimate building blocks of the universe and matter.

- components? How do they interact?
- phenomena.
- Theoretical guidance: supersymmetric particles, extra dimensions
- Studies that question the meaning of time and even space (spacetime).
 - Origin of mass, space-reversal symmetry, time-reversal symmetry breaking.
- (Personal view) Differences with other disciplines and fields
 - Eliminates the complexity (diversity) of many-body systems and explores the underlying physical laws and views of physics.

VSON2024 - T. Nakaya -

• What is matter made of? What exists in the universe? What are the properties of those

• Standard Model of Particle Physics: quarks, leptons, gauge particles, Higgs boson. • Unknown entities: dark matter, dark energy, other unknown particles, unexpected

Explore frontiers!

After the birth of the universe (after the Big Bang), to a world of 10⁻¹⁰ (0.1 nano) seconds.

LHC/ATLAS Experiment

Particle Physics

100,000,000,0000,

Quark and Lepton ×2 (Antiparticles) Quark

Lepton

 \bigcirc

Standard Model of Elementary Particles

Fundamental Questions!

- What is dark matter?
- Where are antimatter? How did they disappear?
- The accelerating universe?
- Why is neutrino mass so small?
- How are the forces are unified?
- Generation structure. Why are the masses of particles are so different?

not solved yet

High Energy Physics and Experiments

Three categories

- Energy Frontier
 - Study particles at high energy (~TeV)
- Intensity Frontier
 - Study particles with high precision and look for rare processes
- Cosmic Frontier
 - Observe our universe and look for footprints made by past particles.

High Energy Experiments

Intensity Frontier **B-Factory** Neutrino (T2K, SK, KamLAND, etc.) Kaon (K°TO, etc.) μ, neutron, proton decay, •

τ • charm Factory

Energy Frontier

LHC/ATLAS and CMS (ILC)

Cosmic Frontier

Neutrino **Dark Matter Dark Energy** CMB

VSON2024 - T. Nakaya -

What experiments are there?

- CERN (Europe)
 - LHC/ATLAS, CMS, LHCb, FASAR, milliQan, NA62, DsTau, (CEPE)
- PSI (Switzerland)
 - MEG II
- Fermilab (US)
 - Muon g-2, Mu2e, Neutrino experiments: DUNE, NOvA, SBN, ICARUS, etc.
- KEK/J-PARC (Japan)
 - KamLAND, (ILC)
- IHEP (China)
 - BESSIII, JUNO, (CEPC)
- Cosmology and Astro-particle experiments

• Super-KEKB/Belle II, J-PARC/T2K, KoTO, COMET, muon g-2, JSNS², Super-K, Hyper-K, KAGLA,

Contraction Collider Contraction Collider Contraction Collider Contraction Collider Contraction Collider Collid

CERN and LHC

• **Proton Synchrotron**

- Protons go round and round
 - Inject proton beam periodically
- Acceleration mode : Increasing energy with every lap
 - LHC: $450 \text{ GeV} \rightarrow 6,800 \text{ GeV} (6.8 \text{ TeV})$
 - Increasing magnetic field synchronized with energy
- Colliding mode : constant energy
 - How many turns per second?
 - Circumference 27km

Circular accelerator

Collider experiment

 (E_i, \vec{p}_i)

• Effective use of beam energy

N **Fixed target experiment**

• Effective use of beam flux

Collider experiment

How heavy subatomic particles can be made?

16 years ago (2008/9/10)

9 days after (2008/9/19)

ducting collapse liquid helium boiling and explosion

- 14 TeV proton-proton collider
- 27 km circumference
- 14 years construction
- US 5B dollar for construction

LHC/ATLAS experiments

ATLAS detector

ATLAS detector

 Multi-purpose detector – Hight 25 m, Length 44m, Weight 7,000 ton – 1M signal channels

Why is multi-purpose detector?

- Particles observed
 - Electron
 - Photon
 - Proton (uud), π +(ud), K+(us)
 - Neutron (udd)
 - Muon
 - ?? Neutrino ??

A detector cross-section, showing particle paths

Principle of Particle measurements

- Tracking the particle trajectories under a magnetic field, and measuring their position and momentum.
- Next, photons and electrons are stopped and their energy and position are measured.
- Hadrons (mainly protons and pions) are then stopped and their energy and position measured.
- Finally, charged particles not stopped are muons.
- Non-observed particles are neutrinos, which are identified by missing energy.

Candidate for $ZZ \rightarrow \mu\mu\nu\nu$

• $m_{\mu\mu}$ 94 GeV, E_T^{miss} = 161 GeV

Candidate Event with a $Z \rightarrow \mu\mu$ and missing E_{τ} 29

Standard Model Production Cross Section Measurements

Section Cross

cm $= 10^{-12} \text{ cm x } 10^{-12}$ 0^{-24} cm^2 barn [b] 10^{-20} m

10-20 m X

 cm^2

10-36

0-12b

(pico-barn)

dq

Status: February 2022

Physics by LHC at the TeV energy region

- Discovering the Higgs boson to understand the origin of mass due to spontaneous symmetry breaking.
- Search for supersymmetry particles
 - Linking space-time symmetry and internal symmetry of particles.
- Look for any new phenomena.

Higgs boson

- Particles (Higgs field condensate) as the source of the phase transition in the vacuum
 - Phase transition: the energy of the vacuum changes.
 - Particle is given (inertial) mass.
 - Coupling with the Higgs boson is related to the mass of the coupling particle

Coupling with the Higgs boson with the mass of the coupling particle

How to detect Higgs bosons

https://atlas.cern/updates/atlas-feature/higgs-boson

Proton - Proton Collisions guark gluon

Detecting Higgs bosons

$H \rightarrow ee \mu \mu, \mu \mu \mu \mu, eeee$

Precise mass measurement using $H \rightarrow 4I$

Event-by-event resolution, DNN for S/B separation, precise muon and electron momentum calibration

mH =124.94±0.17(stat.)±0.03(syst.)GeV

What next with Higgs bosons

- Higgs potential

$$V(\phi) = \frac{1}{2}m_{\rm H}^2\phi^2 + \sqrt{\lambda/2}m_{\rm H}\phi^3 + \frac{1}{4}\lambda\phi^4$$

detecting a pair production of two Higgs bosons

Supersymmetry (SUSY)

- Symmetry between Bose particles (spin integers) and Fermi particles (spin half-integers)
- Example of Bose particle: photon
- Fermi particles e.g. electrons
- Are dark matter particles SUSY particles?
- <u>New Physics</u>
 - Extra dimensions (>4)
 - How many dimensions is space, are dimensions beyond 4 compactified?
 - Leptoquarks, Heavy majorana neutrinos, etc..

SUSY

- SUSY searches covering vast regions of SUSY phase space
- Typical main signals in final states are
 - Strong SUSY: 2 same-sign or 3 Leptons
 - Electroweakino: with taus
 - Higgsinos: with b-jets and photons
- **Forces** ⇔ **Matter** \bigcirc

Missing energy with 2 same-sign or 3 leptons

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2023

	Model	Signature	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	Mass limit		Reference
Se	$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} & E_T^{ m m} \\ { m mono-jet} & 1-3 \ { m jets} & E_T^{ m m} \end{array}$	niss 139 niss 139		1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2010.14293 2102.10874
sive Searche	$\tilde{g}\tilde{g},\tilde{g}\! ightarrow\!q\bar{q}\tilde{\chi}_{1}^{0}$	0 e, μ 2-6 jets E_T^m	^{niss} 139	ğ ğ Forbidden	2.3 m($\tilde{\chi}_1^0$)=0 GeV m($\tilde{\chi}_1^0$)=1000 GeV	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e,μ 2-6 jets	139	ξ ~	2.2 m($\tilde{\chi}_1^0$)<600 GeV	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\chi_1^\circ$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow aqWZ\tilde{\chi}_1^0$	$ee, \mu\mu$ 2 jets E_T^m 0 e, μ 7-11 jets E_T^m	¹³⁵ 139 ¹³⁸ 139	g ğ	2.2 $m(\chi_1^0) < 700 \text{ GeV}$ 1.97 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2204.13072 2008.06032
nclu	~~~~.=~0	SS e, μ 6 jets	139	ĝ z	.15 $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	1909.08457
1	$gg, g \rightarrow tt \chi_1$	$E_T = \frac{1}{2} \sum_{r=1}^{n} \frac{1}{2} \sum_{r=1}^{n$	139	s šg	1.25 $m(\tilde{\chi}_1) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	1909.08457
3 rd gen. squarks direct production	$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b E_T^m$	^{niss} 139		1.255 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_2^0 {\rightarrow} b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_T^{\mathrm{m}} \\ 2 \ \tau & 2 \ b & E_T^{\mathrm{m}} \end{array}$	niss 139 niss 139		23-1.35 $ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} $	Reference 2010.14293 2010.14293 2010.14293 2010.14293 2010.14293 2010.14293 2010.14293 2010.1629 2204.13072 2008.06032 1909.08457 2211.08028 1909.08457 2101.12527 2101.12527 2103.08189 2004.14060, 2012.03799 2012.03799 2012.03799 2012.03799 2012.0874 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.05880 2006.10876, 2108.07586 1908.08215 1911.0266 1908.08215 1911.12606 1806.04030 2103.11684 2108.07586 2201.02472
	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow t \tilde{\chi}_1^0$	$0-1 \ e, \mu \ge 1 \ \text{jet} E_T^m$	niss 139	Ĩ, Ĩ	1.25 $m(\tilde{\chi}_1^0) = 1 \text{ GeV}$	2004.14060, 2012.03799
	$t_1 t_1, t_1 \to W b \chi_1^{-}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \to \tau \tilde{G}$	$1-2\tau$ 2 jets/1 b E_T	niss 139	 Forbidaen Forbidaen Forbidaen 	m(X ₁)=500 GeV m(τ ₁)=800 GeV	2108.07665
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2 \ c & E_T^m \\ 0 \ e, \mu & \text{mono-jet} & E_T^m \end{array}$	niss 36.1 niss 139	$\tilde{ ilde{t}}_1^{ ilde{c}}$ 0.85 0.55	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{t}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1805.01649 2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, μ 1-4 b E_T^{m}	niss 139	<i>ĩ</i> ₁ 0.067-	1.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$	2006.05880
	$t_2 t_2, t_2 \rightarrow t_1 + Z$	$3 e, \mu$ $1 b E_T^m$	139	t ₂ Forbidden 0.86	$m(\mathcal{X}_{1}^{\circ})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\mathcal{X}_{1}^{\circ})=40 \text{ GeV}$	2006.05880
	$\chi_1^+\chi_2^{\prime\prime}$ via WZ	Multiple ℓ /jets E_T^{m} $ee, \mu\mu \ge 1$ jet E_T^{m}	¹³³ 139 ¹³⁵ 139	$\begin{array}{ccc} \chi_{1}^{+}/\chi_{2}^{+} & & 0.96 \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & & 0.205 \end{array}$	$m(\tilde{\chi}_1^{\pm})=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	$2 e, \mu$ E_T^m	niss 139	$\tilde{\chi}_{1}^{\pm}$ 0.42	$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_1^+ \tilde{\chi}_2^0$ via Wh $\tilde{\chi}_2^+ \tilde{\chi}_2^+$ via $\tilde{\ell}_2$ (2)	Multiple ℓ /jets $E_T^{\rm m}$	niss 139 niss 130		6 $m(\tilde{\chi}_1^0) = 70 \text{ GeV}, \text{ wino-bino}$	2004.10894, 2108.07586
≥ct	$\chi_1\chi_1$ via t_L/v $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2τ , μ L_T 2τ E_T^m	niss 139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3 0.12-0.39	$m(\tilde{\ell}, \nu) = 0.5(m(\chi_1) + m(\chi_1))$ $m(\tilde{\chi}_1^0) = 0$	1911.06660
dire	$\tilde{\ell}_{\mathrm{L},\mathrm{R}}\tilde{\ell}_{\mathrm{L},\mathrm{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	$\begin{array}{ccc} 2 \ e, \mu & 0 \ { m jets} & E_T^T \\ ee, \mu \mu & \geq 1 \ { m jet} & E_T^T \end{array}$	niss 139 niss 139	$\tilde{\ell}$ 0.256 0.7	$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1908.08215 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$\begin{array}{ccc} 0 \ e, \mu & \geq 3 \ b & E_T^m \\ A \ e \ \mu & 0 \ \text{iots} & E_T^m \end{array}$	niss 36.1	<i>H</i> 0.13-0.23 0.29-0.88	$BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$	1806.04030
		$0 \ e, \mu \ge 2 \text{ large jets } E_T$	niss 139	й 0.45-0.93	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$ $BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2108.07586
		$2 e, \mu \ge 2 \text{ jets} E_T^m$	^{niss} 139	<i>Ĩ</i> I 0.77	$BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 0.5$	2204.13072
p	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^m	^{niss} 139		Pure Wino Pure higgsino	2201.02472 2201.02472
-live cles	Stable \tilde{g} R-hadron	pixel dE/dx E_T^m	^{iiss} 139	\tilde{g}	2.05	2205.06013
arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep E_T^{m}	niss 139	$g [\tau(g) = 10 \text{ hs}]$ $\tilde{e}, \tilde{\mu}$ 0.7	$\mathbf{m}(\mathcal{X}_1) = 100 \text{ GeV}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2205.06013
PLC		nivel dE/dy E ^m	niss 120	τ̃ 0.34 ~ 0.36	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
			100		(1) = 10113	
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	$3 e, \mu$	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.09	5 Pure Wino	2011.10543
	$\chi_1 \chi_1 / \chi_2 \rightarrow W W / Z \ell \ell \ell \ell v v$ $\tilde{a} \tilde{a} \rightarrow a a \tilde{\chi}^0, \tilde{\chi}^0 \rightarrow a a a$	$4 e, \mu$ 0 jets E_T 4-5 large jets	36.1	$\begin{array}{ccc} \chi_1 / \chi_2 & [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{\varphi} & [m(\tilde{\chi}^0) = 200 \text{ GeV} \ 1100 \text{ GeV}] \end{array} $	1.3 1.9 $m(\chi_1)=200 \text{ GeV}$	1804.03568
>	$\widetilde{t}\widetilde{t}, \widetilde{t} \rightarrow t\widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow tbs$	Multiple	36.1	$\tilde{\ell}$ [λ''_{323} =2e-4, 1e-2] 0.55 1.09	$m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003
RP	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow bbs$	$\geq 4b$	139	ĩ Forbidden 0.95	$m(\tilde{\chi}_1^{\pm})$ =500 GeV	2010.01015
	$\begin{array}{l} t_1 t_1, t_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow a^{\ell} \end{array}$	2 jets + 2 b	36.7	$t_1 \ [qq, bs]$ 0.42 0.61	0.4-1.45 BB(t - ha/ha)>20%	1710.07171
	$\eta \eta, \eta \rightarrow qv$	1μ DV	136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9] 1.0	1.6 BR $(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$	1-2 e, μ ≥6 jets	139	<i>x</i> ₁ ⁰ 0.2-0.32	Pure higgsino	2106.09609
*Only	a selection of the available ma	ss limits on new states or	ا ۱۰	-1		
phon	a selection of the available fild	limite are based on			wass scale [leV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

CMS

			CMS preliminary	
	String resonance	М		
	Zy resonance	М		
	Wy resonance	M		
	Color Octect Scalar. $k^2 = 1/2$	M		
	Scalar Diquark	М		
	$tt + \phi$, pseudoscalar (scalar), $g_{top}^2 \times BR(\phi \rightarrow 2l) > = 0.03(0.004)$	М		
	$tt + \phi$, pseudoscalar (scalar), $g_{top}^2 \times BR(\phi \rightarrow 2l) > = 0.03(0.04)$	M M		
	$X \rightarrow \phi \phi, M_{\phi} = 0.02 M_{\chi}, \phi \rightarrow (\gamma \gamma)$ merged diphoton pair	M _X		
	Wy Resonance leptonic	М		
	SUEP Offline, $T_D = 3 \text{ GeV}$, $m_{\phi} = 3 \text{ GeV}$, $\text{Br}(A' \rightarrow \pi\pi) = 100\%$	М		
	Split SUSY, HSCP gluino with infinite lifetime, $r_{gg} = 0.1$	M _ĝ M∞		
	Doubly-charged tau', HSCP infinite lifetime, DY production	M' ^{2e}		
	quark compositeness (ll), $\eta_{LL/RR} = 1$	$\Lambda^+_{LL/RR}$		
	Excited Lepton Contact Interaction	M M		
	Excited Lepton Contact Interaction	М		
	vector mediator (qq) , $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M M		
	(axial-)vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $g_{\chi} = 0.05$, $m_{\chi} > 1$ rev	M		
	(axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	М		
	(axial)-vector mediator ($\ell \ell$), $g_q = 0.1$, $g_{DM} = 1$, $g_t = 0.1$, $m_{\chi} > m_{med}/2$	М		
	scalar mediator (+ <i>t</i> / <i>t</i>), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV scalar mediator (+ <i>t</i> /t), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M M		
	scalar mediator (fermion portal), $\lambda_u = 1, m_{\chi} = 1$ GeV	М		
	pseudoscalar mediator (+j/V), $g_q = 1$, $g_{DM} = 1$, $m_\chi = 1$ GeV	М		
	pseudoscalar mediator $(+t/tt)$, $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	M		
	complex sc. med. (dark QCD), $m_{\pi_{TV}} = 5$ GeV, $c\tau_{X_{TV}} = 25$ mm	M		
	Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	М		
	Z' mediator (dark QCD), $m_{dark} = 20 \text{ GeV}$, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$	М		
	\mathcal{L} - \mathcal{L} HDM, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100$ GeV Leptoquark mediator $\beta = 1$, $\beta = 0.1$, $\Lambda_{\chi} = 0.1$, $800 < M_{\odot} < 1500$ GeV	М м		
	axion-like particle, $f^{-1} = 1.2 \text{ TeV}^{-1}$	м		
	inelastic dark matter model, $y = 10^{-6}$, $\alpha_D = 0.1$	М		
	inelastic dark matter model, $y = 10^{-7}$, $\alpha_D = 0.1$	M		
	dark higgs, $g_q = 0.25$, $g_{DM} = 1$, $\theta = 0.01$, $m_{\chi} = 200 \text{ GeV}$, $m_{Z'} = 700 \text{ GeV}$	M		
	RPV stop to 4 quarks	м		
	RPV squark to 4 quarks	М		
	RPV gluino to 4 quarks RPV stop scouting boosted	M M		
	RPV mass degenerated higgsinos to trijet boosted scouting	м		
	ADD (jj) HLZ, $n_{ED} = 3$	м		
	ADD ($\gamma\gamma$, m) HLZ, $n_{ED} = 3$ ADD G _{KK} emission. $n_{ED} = 2$	M		
	ADD QBH (jj), $n_{ED} = 6$	М		
	ADD QBH ($e\mu$), $n_{ED} = 4$	М		
	ADD QBH ($e\tau$), $n_{ED} = 4$	M M		
	ADD QBH (γ_i), $n_{ED} = 6$	M		
	RS $G_{KK}(\ell l), k/\overline{M}_{Pl} = 0.1$	М		
	$RS G_{KK}(q\bar{q}, gg), k/\overline{M}_{Pl} = 0.1$	М		
	RS QBH (yj), $n_{\rm ED} = 1$	M		
	non-rotating BH, $M_D = 4$ TeV, $n_{ED} = 6$	М		
	3-brane WED $g_{KK}(\phi + g \rightarrow ggg)$, $g_{grav} = 6$, $g_{g_{KK}} = 3$, $\varepsilon = 0.5$, $m(\phi)/m(g_{KK}) = 0.1$	т(g _{кк})		
	split-UED, $\mu \ge 2$ TeV ADD (102) HLZ n== 4	1/R M		
	$RS G_{KK}(\gamma\gamma), k/\overline{M}_{Pl} = 0.1$	м		
	excited light quark (qg), $\Lambda = m_q^*$	м		
	excited b quark, $f_S = f = f' = 1, \Lambda = m_q^*$ excited b quark, $f_S = f = f' = 1, \Lambda = m_q^*$	м М		
	excited electron, $f_s = f = f' = 1$, $\Lambda = m_e^*$	М		
	excited muon, $f_5 = f = f' = 1$, $\Lambda = m_{\mu}^*$	М		
Í	ν MSM, $ V_{cM} ^2 = 1.0$, $ V_{cM} ^2 = 1.0$	м		
	$\nu MSM, V_{eN} ^2 = 1.0, V_{\mu N} ^2 = 1.0$	М		
	vMSM, $ V_{eN}V_{\mu N}^* ^2/(V_{eN} ^2 + V_{\mu N} ^2) = 1.0$	М		
	Type-III seesaw heavy fermions, Flavor-democratic	M		
	Vector like taus, Singlet	M		
	Z_D , narrow resonance, $\varepsilon^2 = 8 \times 10^{-6}$ (90% C.L.)	М		
	Z_D , narrow resonance, $\varepsilon^2 = 4 \times 10^{-9}$ (90% C.L.) Z_D , narrow resonance, $\varepsilon^2 = 7 \times 10^{-7}$ (90% C.L.)	M	0.0011-0.0026 CMS-PAS-EXO-21-005 (2µ)	
	Z_D , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.)	М	0.0042-0.0079 CM	S-PAS-EXO-21-005 (2µ)
	SSM Z'(<i>ll</i>)	М		
	SSM Z'(qq) Z'(qā)	M M		
	Superstring Z'_{ψ}	M		
	LFV Z', $BR(e\mu) = 10\%$	М		
	LFV Z', BR(e_{T}) = 10%	M		
	LFV Δ', BR(μτ) = 10% SSM W'(ℓν)	М М		
	Leptophobic Z'	м		
	SSM W'(qq)	М		
	LRSM W _R (μ N _R), M _{N_R} = 0.5M _{W_R} SSM W'(τ ₁)	M		
	LRSM W _R (eN_R), $M_{N_o} = 0.5M_{W_o}$	м М		
	$Z'(B_3-L_2)$	М		
	LRSM W _R (τ N _R), M _{N_R} = 0.5M _{W_R}	М		
	Axiguon, Coloron, $cot \theta = 1$ Z', HSCP tau' 600 GeV mass with infinite lifetime	М м~		
		••-2		

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

			March 20
		0.5-7.91911.0	3947 (2j)
		0.35-4.0 ^{1712.03143} (2µ + 1γ; 2e	+ 1 γ; 2 j + 1 γ) 0509 (1 i + 1 γ)
		0.72-3.251808.01257 (1j + 1 γ)	(-, -,)
		0,5-3,71911,03947 (2j)	
		0.5-7.51911.039	047 (2j)
0.015-0.075 1911.04968 (3ℓ , ≥ 4 ℓ)).108-0.341911.04968 (3/. > 4/)		
	,100 0.54 ISTRO (500 (51) - 41)	0.6-1.6 ^{CMS-PAS-EXO-19-009} (pp + <i>ll</i> , pp + γ)	
	0.0	1,2 <mark>CMS-PAS-EXO-22-022 (2(үү))</mark>	
		$0.3-2.0$ CMS-PAS-EXO-21-017 (($\ell + p_T^{miss} + \gamma$))	
		0.2-2.0CMS-PAS-EXO-23-002 ((SUEPOTTINE))	
	0.0-0.69CMS-PAS-EX	(0-18-002 (dE/dx)	
		0.0-1.46CMS-PAS-EXO-18-002 (dE/dx)	
			0.0.24.02102.02709 (24)
			0.0-24.0/2105.02708 (22)
		0.2-5.6 <mark>2001.04521 (2e</mark>	+ 2j)
		0.2-5.7 <mark>2001.04521 (2µ</mark>	+ 2j)
	0.35-0.71911.03761	L (≥ 3j)	
		0.2-1.922103.02708 (2e, 2μ)	
		0.5-2.8 ^{1911.03947} (2j)	
		0.0-1.952107.13021 (≥ 1j + p ^{mss})	
0.0	0-0.29 1901.01553 (0, 1ℓ + ≥ 2j + p ^{miss})	0.2-4.04 2±05.02700 (2θ, 2μ)	
	0.05-0.42107.10892 (0, 1ℓ + ≥ 2j +	p ^{miss})	
		0.0-1.52107.13021 (≥ 1j + p _T ^{miss})	
	$0.0-0.472107.13021 (\ge 1j + p_1^{-1})$ 0.0-0.31901.01553 (0.17 + > 2i + p^{miss}))	
	$0.05 - 0.42 2107.10892 (0, 1l + \geq 2j$	+ p _T ^{miss})	
		0.0-1.54 <mark>1810.10069 (4j</mark>)	
		0.0-1.61908.01713 (h + p _T ^{miss})	niss
		1.5-5.12112.11125 (2j + p 0.5-3.11908.01713 (h + n ^{miss})	······)
	0.3-0.6 <mark>1811.10151 (1µ</mark>	$\mathbf{i} + \mathbf{j} + \mathbf{p}_{T}^{\text{miss}}$	
	prime	0.5-2.0 <mark>CMS-PAS-EXO-21-007 (рр + үү)</mark>	
0.003-0.08 CMS-PAS-EXO-20-010 (2 displ	laced $\mu + p_T^{miss}$)		
	0.16-0.352CMS-PAS-EXO-21-012 (1ℓ + 2i	+ p _T ^{miss} , 2 <i>l</i> + p _T ^{miss})	
	0.08-0.521808.03124 (2j; 4j)		
	0.1-0.721808.0105	8 (2) 0.1-1.411806.01058 (2i)	
0.07-0.2 ^{CMS-}	-PAS-EXO-21-004 (scouting boosted dijet)		
0.07-0.075 & 0 <mark>.0</mark> 95-0.1 <mark>05</mark> CMS-PAS-EXO-21-004 ((scouting boosted trijet)		
		0.0-	12.01803.08030 (2i)
		0.0-9.1181	2.10443 (2y, 2 <i>l</i>)
		0.0-10.	82107.13021 (≥ 1j + p_T^{miss})
		0,0-8,21803. 0.0-5.62205.06709 (eu)	20000 (2 J)
		0,0-5,22205.06709 (er)	
		0.0-5.0 <mark>2205.06709 (μτ</mark>)	EVO 20.012 (cc + 1)
		2.0-7.5CMS-PAS 0.0-4.782103.02708.(2/)	-ελυ-2υ-υτ2 (γ + j)
		0.5-2.6 ¹ 911.03947 (2j)	
		0,0-5,9 ^{1803,08030} (2 j)
		2.0-5.2CMS-PAS-EXO-20-0	$\frac{12}{(\gamma + J)}$ $\frac{305,06013}{(\geq 7i(\ell, \gamma))}$
		2.0-4.32201.02140 (2j)	
		0.4-2.82202,06075 (ℓ + p _T ^{miss})	
		0.0-9.1CM	5-PAS-EXO-22-024 (γγ)
		0.0-4.8CMS-PAS-EXO-22-024	(44)
		0.5-6.31911.03947 (2j)
		1.0-6.0CMS-PAS-EXO-	20-012 (y + j)
		1.0-2.2 CMS-PAS-EXO-20-012 (γ + j)	
		0.25-3.91811.03052 (γ + 2e) 0.25-3.81811.03052 (ν + 2u)	
	0.001-	1.241802.02965; 1806.10905 (3μ; ≥ 1j + 2μ)	
	0.	0.02 - 1.61806.10905 (> 1i + u + e)	
	0,1-0,9822	$202.08676 (3l, \ge 4l, 1\tau + 3l, 2\tau + 2l, 3\tau + 1l, 1\tau + 2l, 2\tau + 1l)$	
	0.1-1.045	2202.08676 (3 ℓ , \geq 4 ℓ , 1 τ + 3 ℓ , 2 τ + 2 ℓ , 3 τ + 1 ℓ , 1 τ + 2 ℓ , 2 τ + 1	()
0.125 <mark>-0.15</mark> 2202.08676	$(3\ell, \ge 4\ell, 1\tau + 3\ell, 2\tau + 2\ell, 3\tau + 1\ell, 1\tau + 2\ell)$	2ℓ, 2 τ + 1ℓ)	
0.0115-0.075 1912.04776 (2μ)			
0.11-0.21912	2.04776 (2µ)		
		0.2-5,15 ^{2103.02708} (2e, 2	4)
		0.2-5,152103.02708 (2e, 2 0.5-2,9 <mark>1911.03947 (2j)</mark>	•)
0.01-0,125 1905.10331 (1j, 1	ι γ)	0.2-5.152103.02708 (2e, 2) 0.5-2.91911.03947 (2)	4)
0,01-0,125 <mark>1905,10331 (1j, 1</mark>	Ly)	0,2-5,152103.02708 (2e, 2 0.5-2,91911.03947 (2j) 0,2-4,62103.02708 (2e, 2μ)	•/
0.01-0.125 1905.10331 (1j, 1	ιγ)	0,2-5,152103.02708 (2e, 2 0,5-2,91911.03947 (2j) 0,2-4,62103.02708 (2e, 2μ) 0,2-5.0 2205.06709 (e μ) 0,2-4,32205.06709 (e τ)	4)
0.01-0,125 1905.10331 (1j, 1	ί γ)	0.2-5,152103.02708 (2e, 2) 0.5-2,91911.03947 (2) 0.2-4,62103.02708 (2e, 2μ) 0.2-5.02205.06709 (e μ) 0.2-4,32205.06709 (e τ) 0.2-4,12205.06709 (μ τ)	4 /
0,01-0,125 <mark>1905,10331 (1j, 1</mark>	ίγ) ο σε ο τεί οσο ο τη 1 τ (στ)	0,2-5,152103.02708 (2e, 2) 0,5-2,91911.03947 (2) 0,2-4,62103.02708 (2e, 2μ) 0,2-5,02205.06709 (eμ) 0,2-4,32205.06709 (e τ) 0,2-4,12205.06709 (μ τ) 0,4-5,72202.06075 (<i>ℓ</i> +	p _T ^{miss})
0.01-0,125 1905.10331 (1j, 1	ιγ) 0.05-0.45 <mark>1909.04114 (2j</mark>)	0,2-5,152103.02708 (2e, 2 0,5-2,91911.03947 (2j) 0,2-4,62103.02708 (2e, 2μ) 0,2-5,02205.06709 (eμ) 0,2-4,32205.06709 (eτ) 0,2-4,12205.06709 (μτ) 0,4-5,72202.06075 (ℓ + 0,5-3,61911.03947 (2i)	p _T ^{miss})
0.01-0,125 1905.10331 (1j, 1	ιγ) 0.05-0.451909.04114 (2j)	0,2-5,152103.02708 (2e, 2 0,5-2,91911.03947 (2j) 0,2-4,62103.02708 (2e, 2μ) 0,2-5,02205.06709 (eμ) 0,2-4,32205.06709 (eτ) 0,2-4,12205.06709 (μτ) 0,4-5,72202.06075 (ℓ + 0,5-3,61911.03947 (2j) 0,0-5,02112.03949 (2μ + 2	p _T ^{miss}) i)
0.01-0,125 1905.10331 (1j, 1	ιγ) 0.05-0.451909.04114 (2j)	0.2-5,152103.02708 (2e, 2 0.5-2,91911.03947 (2j) 0.2-4,62103.02708 (2e, 2μ) 0.2-5.02205.06709 (eμ) 0.2-4.32205.06709 (eτ) 0.2-4.12205.06709 (μτ) 0.4-5.72202.06075 (ℓ + 0.5-3.61911.03947 (2j) 0.0-5.02112.03949 (2μ + 2 0.6-4.82212.12604 (τ + μ ^{mis})	p _T ^{miss}) i)
0,01-0.125 1905.10331 (1j, 1	ιγ) 0.05-0.451909.04114 (2j)	0,2-5,152103.02708 (2e, 2 0,5-2,91911.03947 (2j) 0,2-4,62103.02708 (2e, 2μ) 0,2-4,32205.06709 (eμ) 0,2-4,32205.06709 (eτ) 0,2-4,12205.06709 (μτ) 0,4-5,72202.06075 (ℓ + 0,5-3,61911.03947 (2j) 0,0-5,02112.03949 (2μ + 2 0,6-4,82212,12604 (τ + p ^{mis} ₁ 0,0-4,72112.03949 (2e + 2j) + > 1b)	p _T ^{miss}))))
0.01-0,125 1905.10331 (1j, 1	Lγ) 0.05-0.45 1909.04114 (2j) 0.35-0.52307.08708 (Ζ'→μμ	0.2-5.152103.02708 (2e, 2) 0.5-2.91911.03947 (2j) 0.2-4.62103.02708 (2e, 2μ) 0.2-5.02205.06709 (eμ) 0.2-4.32205.06709 (eτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.2-4.32205.06709 (μτ) 0.4-5.72202.06075 (ℓ + 4) 0.4-5.72202.06075 (ℓ + 4)	p _T ^{miss}) j)
0.01-0,125 1905.10331 (1j, 1	ιγ) 0.05-0.451909.04114 (2 j) 0.35-0.52307.08708 (Ζ'→μμ	$\begin{array}{c} 0.2-5.15 \\ 2103.02708 \ (2e, 2) \\ 0.5-2.9 \\ 1911.03947 \ (2j) \end{array}$	p ^{miss}) j) ;) (2j)

Overview of CMS EXO results

Mass Scale [TeV]

2. Intensity Frontier

What experiments are there?

- CERN (Europe)
 - LHC/ATLAS, CMS, LHCb, FASAR, milliQan, NA62, DsTau, (CEPE)
- PSI (Switzerland)
 - MEG II
- Fermilab (US)
 - Muon g-2, Mu2e, Neutrino experiments: DUNE, NOvA, SBN, ICARUS, etc.
- KEK/J-PARC (Japan)
 - KamLAND, (ILC)
- IHEP (China)
 - BESSIII, JUNO, (CEPC)
- Cosmology and Astro-particle experiments

• Super-KEKB/Belle II, J-PARC/T2K, KoTO, COMET, muon g-2, JSNS², Super-K, Hyper-K, KAGLA,

Basic ideas

- Quantum effects generate high-energy phenomena with a certain probability as intermediate states
- The intermediate state is indirectly probed by precise measurements because the probability including high-energy phenomena is rare.

Belle II Detector

Electromagnetic calorimeter

CsI(TI), waveform sampling

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

Silicon vertex detector

- $1 \rightarrow 2$ layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

by K. Matsuoka@Kyoto seminar

Superconducting solenoid (1.5 T)

K_L and μ detector

- Resistive plate chamber (outer barrel)
 - Scintillator + MPPC

(inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel) Aerogel RICH (forward end-cap)

> Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

GRID computing CPU 1 MHEPSpec (10⁵ core; ~ATLAS run1) and 100 PB storage at 50 ab⁻¹

12

The same event with simulated background at 8 x 10³⁵ cm⁻²s⁻¹

Super-KEKB/Belle II Basic

 $\checkmark e^+e^-$ collistions at (or around) $\Upsilon(4S)$

- Well-known initial state kinematics
- $B\overline{B}$ production from $\Upsilon(4S)$ without extra energy
- No event pile-up
- Hermetic Belle II detector capable of detecting charged particles and reconstructing neutrals (γ, π^0, K_L^0 , etc) with high efficiencies.
- \succ Tagging one of the B's to infer the other B flavor and momentum.
 - Powerful S/N separation

by K. Matsuoka@Kyoto seminar

CP Violation in B decays

Belle II: $S = 0.720 \pm 0.062 \pm 0.016$ Belle: $S = 0.667 \pm 0.023 \pm 0.012$ $(S \approx \sin 2\phi_1 \text{ in this mode})$ by K. Matsuoka@Kyoto seminar

Belleの約60%のデータで凌駕する精度 Belle II: $S = 0.75 \stackrel{+0.20}{-0.23} \pm 0.04$ Belle: $S = 0.67 \pm 0.31 \pm 0.08$ 25

Precision measurements

Before Belle II (2018)

The Standard Model has been tested with ~10% precision. \rightarrow Search for non-standard effects that can only appear as small corrections to the Standard Model.

Access higher energy scales via quantum effects than are directly reachable at current or future colliders. e.g. $\Lambda < \sim 1000$ TeV in B^0 mixir by K. Matsuoka@Kyoto seminar

Fig. 226 of Prog. Theor. Exp. Phys. 2019, 123C01

Belle II 50 ab^{-1} + LHCb 23 fb^{-1} + LQCD

$$\log (\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{O}_{\Delta F=2}) \, [arXiv:1302.0661]$$

Search for Dark particles

 e^{\neg}

е

• Z' or LFV Z' to invisible

PRL 124, 141801 (2020) ··· 1st Belle II physics paper arXiv:2212.03066 ··· update, 2022

• Axion Like Particle

NV PRL 125, 161806 (2020) 2nd Belle II physics paper

- Visible dark photon
- $Z' \rightarrow \mu\mu$
- Inelastic dark matter
- Dark scalar

by K. Matsuoka@Kyoto seminar