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Tests about SM

How many elementary particles are there?

What are the stable particles?

What are the most unstable particles?

What is the theory used for high energy physics?

How many fundamental interactions?

What are symmetries used to describle fundamental
interactions?
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The Standard Model in three hours

Gauge couplings

anomaly
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Lecture 2
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The SM gauge group

Describing three fundamental interactions: electromagnetic, weak
and strong

Using the gauge group

SU(3)C︸ ︷︷ ︸
strong

⊗ SU(2)L ⊗ U(1)Y︸ ︷︷ ︸
electroweak

Gauge fields of SU(3)C are gluons G a
µ: 3

2 − 1 = 8 gluons,
a = 1, · · · , 8. Gluons are massless, this group is exact symmetry
group → no need for gauge symmetry breaking. Quantum
Chromodynamics (QCD)

Gauge fields of SU(2)L ⊗ U(1)Y are W i
µ,Bµ: 2

2 − 1 + 1 = 4 fields.

From W i
µ,Bµ, (i = 1, 2, 3) how can we create massive Z ,W± and

one massless photon. This symmetry must be broken

SU(2)L ⊗ U(1)Y → U(1)Q
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SU(3)C : strong interaction

Quarks can participate strong interaction → quarks carry color
charge. Each type of quarks belong to the fundamental
representation of SU(3)C

q =

qr
qb
qg

 (1)

q = u, d , c , s, b, t

QCD Lagrangian

LQCD =
∑

q=u,d,c,s,b,t

q̄(iγµDµ +mq)q − 1

4
G aµνG a

µν (2)

where Dµ = ∂µ − igsT
aG a

µ

T a are generators of the SU(3)C : Gell-Mann matrices
G a
µ are gluon fields

G a
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

abcG b
µG

c
ν

SU(3)C invariance → three colors of a quark (red, blue, green)
must have the same mass.
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SU(2)L ⊗ U(1)Y : electroweak interaction

Group structure:

SU(2): 22 − 1 generators

T i = σi

2
σi (i=1,23): Pauli matrices

[T i ,T j ] = iϵijkT k

ϵijk : Levi-Civita tensor with ϵ123 = 1

U(1)Y : 1 generator Y = Y ×1 → commutative with all SU(2) generators

This symmetry must be broken down to

SU(2)L ⊗ U(1)Y → U(1)Q

T i ,Y → Q = aT 3 + bY =

(
a/2 + bY 0

0 −a/2 + bY

)
Similar to the Gell-Mann-Nishijima formula [Nishijima ’53, Gell-Mann ’56]

Q = I3 +
1

2
(B + S)

I3: isospin of quarks and hadrons (I3 = 1/2 up quark, I3 = −1/2 down
quark)

Suggestion: Q = T 3 + Y
2
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SU(2)L ⊗ U(1)Y : electroweak interaction

How to arrange fermionic fields in the representations of the gauge group?
Look back at the weak interaction

Weak interaction (3)

Not only charged current interaction

Lint =
g2

2
√
2
ū(x)γµ(1− γ5)d(x)Wµ(x) +

g2

2
√
2
ē(x)γµ(1− γ5)ν(x)Wµ(x)

But also neutral current interaction

Lint =
g2

2 cos θW
f̄ (x)γµ(g f

V − g f

Aγ5)f (x)Zµ(x)

f : quark, charged leptons, neutrinos
g f

V
, g f

A
are coefficients depending on electric charge and isospin of

fermion f
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SU(2)L ⊗ U(1)Y : electroweak interaction

How to arrange fields in the representations of the gauge group?
Suggestion: Q = T 3 + Y

2

Only left-handed fermions belong to the fundamental representations of
SU(2)L

l1L =

(
νe,L
eL

)
, l2L =

(
νµ,L
µL

)
, l3L =

(
ντ,L
τL

)
∼ Y = −1

Q1
L =

(
uL
dL

)
, Q2

L =

(
cL
sL

)
, Q3

L =

(
tL
bL

)
∼ Y =

1

3

No right handed fermions interacts with W boson → they must be
singlet representation of SU(2)L

eR , µR , τR , ∼ Y = −2

uR , cR , tR , ∼ Y =
4

3

dR , sR , bR , ∼ Y = −2

3

Three gauge fields W i
µ go with three generators T i of SU(2)L, 1 gauge

field Bµ goes with one generator Y of U(1)Y

Dao (Phenikaa) SM 8th VSON 9 / 42



SU(2)L ⊗ U(1)Y : Glashow-Weinberg-Salam
model [’61, ’67, ’68]

How to construct Lagrangian

L = LF + LG

The fermionic part of the Lagrangian:

LF = i l̄iLγ
µDµliL + i ēiRγ

µDµeiR

+ i Q̄iLγ
µDµQiL + i ūiRγ

µDµuiR + i d̄iRγ
µDµdiR ,

covariant derivatives:

Dµ =


∂µ − ig2T

iW i
µ − ig1YBµ, for liL

∂µ − ig1YBµ, for liR

∂µ − ig2T
iW i

µ − ig1YBµ, for QiL

∂µ − ig1YBµ, for uiR , diR .

The gauge part of the Lagrangian:

LG = −1

4
F i
µνF

iµν − 1

4
BµνB

µν ,

F i
µν = ∂µW

i
µ − ∂µW

i
ν + g2ϵ

ijkW j
µW

k
ν , Bµν = ∂µBµ − ∂µBν ,
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How to generate mass for the SM
particles???

Mass terms: Q̄ i
LuiR , Q̄ i

LdiR , l̄iLeiR , BµBµ, W iµW i
µ → violate

SU(2)L ⊗ U(1)Y gauge symmetry

Dao (Phenikaa) SM 8th VSON 11 / 42



Symmetry breaking mechanism

Gauge symmetry must be broken for at least weak interaction.

explicit breaking: add different mass terms for different
fermions and for different gauge fields. This loose the
predictive feature of the theory.

spontaneous symmetry breaking?
Lagrangian is invariant under the symmetry, but the ground
state of the theory is not.
→ attractive idea
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Spontaneous symmetry breaking

Spontaneous symmetry breaking in phase transition [L.D. Landau 1937]
Spontaneous symmetry breaking in field theory [Y. Nambu 1960]

Spontaneous symmetry breaking in the Standard Model [F. Englert, R.

Brout 1964, P.W. Higgs 1964]

taken from the Nobel lecture by Francois Englert in 2013 

Symmetric phase: M=0 Broken phase: M ≠ 0
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Spontaneous symmetry breaking in SM

Require at least one Higgs doublet: simplest case

Φ =

(
ϕ+

ϕ0

)
∼ Y = 1

The Higgs Lagrangian:

LH = (DµΦ)
†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2,

with µ2 and λ constants.

Conditions: for a non-zero expectation value (⟨Φ⟩ ≠ 0) to break
SU(2)L×U(1)Y → U(1)Q

the potential has to be bounded from below, therefore λ > 0,

the potential has an unstable maximum at zero, hence µ2 > 0,

the potential has stable minima which are degenerate.
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Spontaneous symmetry breaking

Combining all above requirements, one can show that the vev of the
Higgs doublet is

⟨Φ⟩ =
(
|⟨ϕ+⟩|
|⟨ϕ0⟩|

)
=

(
0
v√
2

)
, v =

√
µ2

λ

The upper component carrying electric charge Q = +1 cannot have a
non-zero expectation value

i|⟨ϕ0⟩| = v/
√
2 corresponds to a

circle on a complex plane
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Higgs and gauge boson masses

Φ(x) =

(
ϕ+(x)
ϕ0(x)

)
=

(
G+(x)(

v + H(x)− iG 0(x)
)
/
√
2

)
.

The Higgs Lagrangian:

LH = (DµΦ)
†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2,

Dµ = ∂µ − ig2T
iW i

µ − ig1YBµ

G+,G 0 are massless, H has a mass mH =
√
2λv2

Gauge boson masses

((g2T
iW i

µ + g1Bµ)

(
0

v/
√
2

)
)†((g2T

iW iµ + g1B
µ)

(
0

v/
√
2

)
))

=
v2

2

(
g2

W 1
µ−iW 2

µ

2 −g2W
3
µ + g1Bµ

)(
g2

W 1µ+iW 2µ

2
−g2W

3µ + g1B
µ

)
=

g2v
2

4
W+

µ W−µ +
v2

2

(
W 3

µ Bµ

)( g2
2 −g1g2

−g1g2 g2
1

)(
W 3µ

Bµ

)
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Higgs and gauge boson masses

g2v
2

4
W+

µ W−µ +
v2

2

(
W 3

µ Bµ

)( g2
2 −g1g2

−g1g2 g2
1

)(
W 3µ

Bµ

)

W±

µ =
W 1

µ∓iW 2
µ√

2
,

Zµ = cWW 3
µ − sWBµ,

Aµ = sWW 3
µ + cWBµ,

where cW = cos θW , sW = sin θW , θW is called the weak mixing angle
and

cW =
g2√

g2
2 + g2

1

, sW =
g1√

g2
2 + g2

1

The masses of W, Z and A bosons

MW =
g2v

2
, MZ =

g2v

2cW
, MA = 0

The photon remains massless → U(1)Q is the exact gauge symmetry.
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Fermion masses

Fermion masses are obtained from Yukawa interactions,

LY = −y e
ij L̄

i Φ̃e jR − yd
ij Q̄

i Φ̃d j
R − yu

ij Q̄
iΦujR + h.c.,

where y e,d,u
ij with i , j generation indices are Yukawa couplings, and

Φ̃ = iσ2Φ
∗.

Φ(x) =

(
ϕ+(x)
ϕ0(x)

)
=

(
G+(x)(

v + H(x)− iG 0(x)
)
/
√
2

)
.

Lf
mass = −

y e
ij v√
2
ē iLe

j
R −

yd
ij v√
2
d̄ i
Ld

j
R −

yu
ij v√
2
ūiLu

j
R + h.c.,

Neutrinos are massless since they are purely left-handed in the SM
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Interactions of the Higgs boson

Have tree-level couplings with only massive particle:

f

f̄

H H H

H
H

H

H

H

H

W−(Z)

W+(Z)

−imf
v

2i
M2

V
v −3iM

2
H
v

−3iM
2
H

v2

Have loop-induced couplings with photon and gluons:

f

f

f

γ

γ

H H

γ

γ

W

W

W

γ

γ

W

W

H
f

f

f

H

g

g

Donot interact with massless neutrino at all loop order
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The Standard Model: recap

Gauge group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Thee gauge couplings

gs , g2, g1

left-handed fermions belong to doublets, right-handed fermions belong to
singlets of SU(2)L(

νi,L
e iL

)
,

(
uiL
d i
L

)
, e iR , u

i
R , d

i
R , i = 1, 2, 3

Higgs doublet

Φ(x) =

(
G+(x)(

v + H(x)− iG 0(x)
)
/
√
2

)
8 gluons and a photon are massless, W ,Z have mass

MW =
g2v

2
, MZ =

g2v

2cW
,
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The Standard Model: recap

The SM Lagrangian:

L = LG + LF + LH + LY + Lfix + Lghost

LG = −1

4
G a
µνG

aµν − 1

4
F i
µνF

iµν − 1

4
BµνB

µν ,

LF = i l̄iLγ
µDµliL + i ēiRγ

µDµeiR

+ i Q̄iLγ
µDµQiL + i ūiRγ

µDµuiR + i d̄iRγ
µDµdiR ,

LH = (DµΦ)
†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2,

LY = −y e
ij L̄

i Φ̃e jR − yd
ij Q̄

i Φ̃d j
R − yu

ij Q̄
iΦujR + h.c.,
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The Standard Model: bonus

The SM Lagrangian:

L = LG + LF + LH + LY + Lfix + Lghost

Lfix =− 1

2ξG
(F a

G )
2 − 1

2ξA
F 2
A − 1

2ξZ
F 2
Z − 1

2ξW
F+
WF−

W ,

where

F a
G = ∂µG

aµ, FA = ∂µA
µ,

FZ = ∂µZ
µ −MZ ξZG

0, F+
W = ∂µW

+µ + iMW ξWG+,

Faddeev-Popov ghost terms [’67]

Lghost = c̄α
δFα

δθβ
cβ , α, β ∈ {G ,A,Z ,W±},
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CP violation in the Standard Model
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C transformation

Charge conjugation: particle
C→ anti-particle

scalar field: ϕ
C→ ϕc = ηcϕ

∗

In general ηc = e iξc , ϕ∗ ̸= ϕ
If particle ≡ anti-particle: ηc = 1 → even C-parity, ηc = −1 → odd
C-parity,

fermion field: ψ
C→ ψc = e iξcCψ∗ with C = −iγ2

ψc
L = e iξcCψ∗

L = e iξcCPLψ
∗ = PR(−iγ2ψ

∗) = PRψ
c

→ change chirality

execises: prove that ψ̄1ψ2
C→ ψ̄2ψ1, ψ̄1γ

µψ2
C→ −ψ̄2γ

µψ1

ψ̄1γ
µγ5ψ2

C→ ψ̄2γ
µγ5ψ1

ψ̄1γ
µPLψ2

C→ −ψ̄2γ
µPRψ1
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P transformation

Parity transformation: (t, x⃗)
P→ (t,−x⃗)

scalar field: ϕ(t, x⃗)
P→ ηpϕ(t,−x⃗)

In general ηp = e iξp . if ηp = 1 scalar particle has even parity,
ηp = −1 scalar particle has odd parity. Otherwise its parity is not
well defined.

fermion field: ψ(t, x⃗)
P→ e iξPPψ(t,−x⃗), P = γ0

ψP
L = e iξPγ0ψL(t,−x⃗) = e iξPγ0PLψ(t,−x⃗) = PR(e

iξPγ0ψ(t,−x⃗)) =
PRψ

P

→ change chirality

execises: prove that ψ̄1ψ2
P→ ψ̄1ψ2,

ψ̄1γ
µψ2

P→ (−1)µψ̄1γ
µψ2,

ψ̄1γ
µγ5ψ2

P→ −(−1)µψ̄1γ
µγ5ψ2,

ψ̄1γ
µPLψ2

P→ (−1)µψ̄1γ
µPRψ2,

µ = 0: (−1)µ ≡ 1
µ = 1, 2, 3: (−1)µ ≡ −1
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CP transformation

scalar field: ϕ(t, x⃗)
CP→ ηCPϕ

∗(t,−x⃗)
particle ≡ anti-particle
CP even: ηCP = 1, ϕ∗(t,−x⃗) = ϕ(t,−x⃗)
CP odd: ηCP = −1, ϕ∗(t,−x⃗) = −ϕ(t,−x⃗)

fermion field: ψ(t, x⃗)
CP→ −ie iξCPγ2γ0ψ

∗(t,−x⃗)

ψCP
L = −ie iξCPγ2γ0ψ

∗
L(t,−x⃗) = −ie iξCPγ2γ0PLψ

∗(t,−x⃗) =
PL(−ie iξCPγ2γ0ψ

∗(t,−x⃗)) = PLψ
CP

→ donot change chirality

ψ̄1γ
µPLψ2

CP→ (−1)µψ̄2γ
µPLψ1

If a gauge field transform under CP as: Aµ CP→ (−1)µA∗µ then

ψ̄1γ
µPLψ2Aµ + h.c.

CP→ ψ̄2γ
µPLψ1A

∗
µ + h.c.

→ conserved CP
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Interactions and C,P symmetries

QCD and QED are invariant under C and P transformations
separately → C,P symmetry

LQCD =
∑

q=u,d ,c,s,b,t

q̄(iγµDµ +mq)q − 1

4
G aµνG a

µν

LQED =
∑
f=q,l

f̄ (iγµDµ +mf )f −
1

4
FµνFµν

Weak interaction

LCC =
g2

2
√
2

(
ūγµ(1− γ5)dW

+
µ + ν̄γµ(1− γ5)eW

+
µ + h.c.

)
,

LZ
NC =

g2
2 cos θW

(ūγµ(gV − gAγ5)u)Zµ.

violate C, P separately, but conserve CP (one generation here)
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Weak Interactions in the SM and CP
symmetry

In the flavor basis, three generations mix, (i,j=1,2,3)

Lf
mass = −

y eij v√
2
ē iLe

j
R −

ydij v√
2
d̄ i
Ld

j
R −

yuij v√
2
ūiLu

j
R + h.c.,

From flavor basis to mass basis: V unitary matrix

e iR = V eR
ij ê jR , e iL = V eL

ij ê jL, diag(me ,mµ,mτ ) = V eL y
ev√
2
(V eR)†

uiR = V uR
ij ûjR , uiL = V uL

ij ûjL, diag(mu,mc ,mt) = V uL y
uv√
2
(V uR)†

d i
R = V dR

ij d̂ j
R , d i

L = V dL
ij d̂ j

L, diag(md ,ms ,mb) = V dL y
dv√
2
(V dR)†
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Weak Interactions in the SM and CP
symmetry

From flavor basis

LCC =
g2√
2

(
ūLγ

µdLW
+
µ + ν̄Lγ

µeLW
+
µ + h.c.

)
,

LZ
NC =

g2
cos θW

(ūiγ
µ(aLPL + aRPR)u)Zµ.

to mass basis

LCC =
g2

2
√
2

(
¯̂uL(V

uL)†V dLγµd̂LW
+
µ + ¯̂νL(V

νL)†V eLγµêLW
+
µ + h.c.

)
,

LZ
NC =

g2
2 cos θW

(
¯̂uγµ(aLPL(V

uL)†V uL + aRPR(V
uR)†V uR)û

)
Zµ.

We set (V uL)†V dL = VCKM , (V uL)†V uL = (V uR)†V uR = 1
Since neutrinos are massless in the SM, we can set (V νL) = V eL, then
(V νL)†V eL = 1

Finally LCC = g2
2
√
2

(
¯̂uLVCKMγ

µd̂LW
+
µ + ¯̂νLγ

µêLW
+
µ + h.c.

)
,

LZ
NC =

g2
2 cos θW

(
¯̂uγµ(aLPL + aRPR)û

)
Zµ.

Dao (Phenikaa) SM 8th VSON 29 / 42



The Cabibbo-Kobayashi-Maskawa matrix (1)

VCKM = (V uL)†V dL : Unitary matrix

LCC =
g2

2
√
2

(
¯̂uLVCKMγ

µd̂LW
+
µ + ¯̂dLV

†
CKMγ

µûLW
−
µ

)
,

CP→
LCP
CC =

g2

2
√
2

(
¯̂dLV

T
CKMγ

µûLW
−
µ + ¯̂uL(V

†
CKM)

Tγµd̂LW
+
µ

)
,

Weak interaction is CP invariant if VCKM is real

VCKM = V ∗
CKM
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The Cabibbo-Kobayashi-Maskawa matrix 1973
(2)

VCKM = (V uL)†V dL : N × N unitary matrix, N: number of generations

N × N unitary matrix is parameterized by N2 independent parameter

number of angles: N(N−1)
2

, number of phases: N(N+1)
2

One can remove phases by redefining fields

d̂ i
L → eα

i
d d̂ i

L, ûi
L → eα

i
u ûi

L

→ V ij
CKM → e i(α

j
d
−αi

u)V ij
CKM

there are 2N − 1 independent relative phases which can be used to
remove phases of the CKM matrix

Therefore, number of remaining phases of CKM matrix

NCP-phases =
N(N + 1)

2
− (2N − 1) =

(N − 1)(N − 2)

2

N=2 then NCP-phases = 0 → no CP violation, (Cabibbo)
N=3 then NCP-phases = 1 → CP violation

→ [Nobel price in 2008 for Kobayashi and Maskawa]
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The Unitary triangle

Wolfenstein parameterization exploiting observed hierarchy of matrix elements

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ∼

 1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

 + O(λ4)

Unitary: ∑
j

(VCKM)ji (V
∗
CKM)jk = δik

Rows (3) are orthogonal, as are the columns (3) → six unitary triangles

VudV
∗
ub︸ ︷︷ ︸

Aλ3(ρ̄+i η̄)

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

Aλ3(1−ρ̄−i η̄)

= 0

→ VudV
∗
ub

VcdV ∗
cb︸ ︷︷ ︸

−(ρ̄+i η̄)

+1 +
VtdV

∗
tb

VcdV ∗
cb︸ ︷︷ ︸

−(1−ρ̄−i η̄)

= 0

Six unitary triangles have different shapes but the same area

JJarlskog ≡ 2(area) = Im(VudV
∗
ubV

∗
tdVtb) ∼ Aλ3η̄
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The CKMfitter global fit results ’19

Observables A λ ρ̄ η̄

Central ±1σ 0.8235+0.0056
−0.0145 0.224837+0.000251

−0.000060 0.1569+0.0102
−0.0061 0.3499+0.0079

−0.0065

JJarlskog = 3.06+0.071
−0.079 × 10−5
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Other parameterization of the CKM matrix

VCKM =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


Relation to the Wolfenstein parameterization

s12 = λ, s23 = Aλ2, s13e
iδ = Aλ3(ρ+ iη)

One can estimate: θ12 ∼ 13o , θ23 ∼ 2.36o , θ13 ∼ 0.2o and δ ∼ 69o
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CP violation in the lepton sector

In the SM, neutrino are massless → no CP violation in the lepton sector.
BUT!!! Neutrino oscillation indicates that at least two neutrinos are massive.

→ Neutrinos as signature of physics beyond the SM
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CP violation in the lepton sector

We can not set (V νL) = V eL, and (V νL)†V eL ̸= 1

V νL ≡ UPMNS and V eL = 1νeLνµL
ντL

 = UPMNS

ν̂1Lν̂2L
ν̂3L


ν̂1, ν̂2, ν̂3 are mass eigenstates, νe , νµ, ντ flavor eigenstates (or
interaction eigenstates)

The charged current for the lepton sector

LCC =
g2

2
√
2

(
¯̂νLU

†
PMNSγ

µêLW
+
µ + h.c.

)
,

How many independent parameters to determine the UPMNS unitary

matrix?
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The Pontecorvo-Maki-Nakagawa-Sakata
matrix 1962

If neutrino has Dirac mass, right-handed neutrino νR exists but it is
singlet and donot interact with other particles → donot observe
them

ν̄ iL
hνij v√
2
ν jR

The UPMNS is similar to the VCKM matrix. It is defined by three angles and one complex phase

If neutrino donot have Dirac mass, but Majorana mass

Example: d = 5 Weinberg operator: cd=5
ij

(
LciLΦ̃

∗
)(

Φ̃†LjL
)

where LjL =

(
ν jL
e jL

)
and Φ =

(
ϕ+

ϕ0

)
, Φ̃ = iσ2Φ

→ νciL
cd=5
ij v2

2
νjL

→ cannot rephase neutrino fields, but only 3 charged lepton fields
→ number of complex phases= 6 -3 = 3.

The UPMNS is defined by three angles and 3 complex phase (1 Dirac phase and two Majorana phases)
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Standard parameterization of the UPMNS

matrix

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

e iη1 0 0

0 e iη2 0
0 0 1


This matrix can be determined from neutrino oscillation measurements.

Nufit 2020 results
NuFIT 5.3 (2024)

wi
th
ou

tS
K

at
m
os
ph

er
ic

da
ta

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 2.3)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.307+0.012
−0.011 0.275 → 0.344 0.307+0.012

−0.011 0.275 → 0.344

θ12/
◦ 33.66+0.73

−0.70 31.60 → 35.94 33.67+0.73
−0.71 31.61 → 35.94

sin2 θ23 0.572+0.018
−0.023 0.407 → 0.620 0.578+0.016

−0.021 0.412 → 0.623

θ23/
◦ 49.1+1.0

−1.3 39.6 → 51.9 49.5+0.9
−1.2 39.9 → 52.1

sin2 θ13 0.02203+0.00056
−0.00058 0.02029 → 0.02391 0.02219+0.00059

−0.00057 0.02047 → 0.02396

θ13/
◦ 8.54+0.11

−0.11 8.19 → 8.89 8.57+0.11
−0.11 8.23 → 8.90

δCP/
◦ 197+41

−25 108 → 404 286+27
−32 192 → 360

∆m2
21

10−5 eV2 7.41+0.21
−0.20 6.81 → 8.03 7.41+0.21

−0.20 6.81 → 8.03

∆m2
3ℓ

10−3 eV2 +2.511+0.027
−0.027 +2.428 → +2.597 −2.498+0.032

−0.024 −2.581 → −2.409

wi
th

SK
at
m
os
ph

er
ic

da
ta

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 9.1)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.307+0.012
−0.011 0.275 → 0.344 0.307+0.012

−0.011 0.275 → 0.344

θ12/
◦ 33.67+0.73

−0.71 31.61 → 35.94 33.67+0.73
−0.71 31.61 → 35.94

sin2 θ23 0.454+0.019
−0.016 0.411 → 0.606 0.568+0.016

−0.021 0.412 → 0.611

θ23/
◦ 42.3+1.1

−0.9 39.9 → 51.1 48.9+0.9
−1.2 39.9 → 51.4

sin2 θ13 0.02224+0.00056
−0.00057 0.02047 → 0.02397 0.02222+0.00069

−0.00057 0.02049 → 0.02420

θ13/
◦ 8.58+0.11

−0.11 8.23 → 8.91 8.57+0.13
−0.11 8.23 → 8.95

δCP/
◦ 232+39

−25 139 → 350 273+24
−26 195 → 342

∆m2
21

10−5 eV2 7.41+0.21
−0.20 6.81 → 8.03 7.41+0.21

−0.20 6.81 → 8.03

∆m2
3ℓ

10−3 eV2 +2.505+0.024
−0.026 +2.426 → +2.586 −2.487+0.027

−0.024 −2.566 → −2.407
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CP violation in the SM: recap

CP is violated in the weak interaction both for the quark and lepton
sector as consequence of flavor basis ̸= mass basis and three generations.

The charged current for the quark sector

LCC =
g2

2
√
2

(
¯̂uLVCKMγ

µd̂LW
+
µ + h.c.

)
,

VCKM (3 angles, 1 CP phase) is well determined from weak
interacion in hardon physics. θ12 ∼ 13 , θ23 ∼ 2.36, θ13 ∼ 0.2 and
δ ∼ 69

The charged current for the lepton sector

LCC =
g2

2
√
2

(
¯̂νLU

†
PMNSγ

µêLW
+
µ + h.c.

)
,

U†
PMNS (3 angles, 1 or 3 complex phases) can only determined from

neutrino oscillation measurements. θ12 ∼ 33.44 , θ23 ∼ 49.2,
θ13 ∼ 8.15 and δCP ∼ 197+27

−24

→ maximal mixing ??? many unsolved problems in the neutrino
sector
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Why neutrino mass is tiny

Majorana mass: d = 5 Weinberg operator

cd=5
ij

(
LciLΦ̃

∗
)(

Φ̃†LjL

)
cd=5
ij =

cij
Λ : If Λ ≫ v , Λ can be mass of new particle outside the

SM spectrum, then the mass of the neutrinos is suppressed by a
large scale → Seesaw mechanism

mν ∼ v2

2Λ < 1 eV
v = 246 GeV,
Λ ∼ 1014 GeV
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Why neutrino mass is tiny

Majorana mass: d = 5 Weinberg operator

cd=5
ij

(
LciLΦ̃

∗
)(

Φ̃†LjL

)
cd=5
ij =

cij
Λ : If Λ ≫ v , Λ can be mass of new particle outside the

SM spectrum, then the mass of the neutrinos is suppressed by a
large scale → Seesaw mechanism

mν ∼ v2

2Λ < 1 eV
v = 246 GeV,
Λ ∼ 1014 GeV
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Three seesaw models
How to generate Weinberg operator from tree-level diagrams?

cd=5
ij

(
LciLΦ̃

∗
)(

Φ̃†LjL

)
New field must be added to the SM.

Mass of new field must be large

Its couplings to the neutrino should be small

Type I Type II Type III

〈Φ〉〈Φ〉

νL

νL

〈Φ〉〈Φ〉

νL νL
νL

νL

ΣR

〈Φ〉

〈Φ〉

∆

νR

MR

M∆ MΣyν yν

y∆

µ∆

yTΣ

yΣ

Fermion Singlet Scalar Triplet Fermion Triplet

mν = yTν
1

MR
yνv

2 mν = yT∆
µ∆

M2
∆
yνv

2 mν = yTΣ
1

MΣ
yΣv

2
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Standard Model Lecture 1+2: summary

Gauge couplings

anomaly
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