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What is the most successful physics model?
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The standard model gives us an
. accuracy of ten decimal digits, thisis
~ an amazing success that has never

- been achieved before in science.

Nathan Seiberg




THE STANDARD MODEL IN THREE HOURS

- i Discovery
HISTORY




REFERENCES

@ Particle Data Group
https://pdg.1bl.gov/

@ Books:
Mathew D. Schwartz " Quantum Field Theory and the Standard
Model”
Michael E. Peskin " Concepts of Elementary Particle Physics”
Michael E. Peskin and Daniel V. Schroeder " An Introduction to
Quantum Field Theory”

@ Online Lectures:
Prof. Leonard Susskind's lectures on the SM
Prof. Michael E. Peskin's lectures on youtube

@ Discussions with teachers, researchers and friends
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https://pdg.lbl.gov/
https://cosmolearning.org/courses/particle-physics-the-standard-model-416/video-lectures/
https://www.youtube.com/watch?v=0LWYXkeuy-Q

Lecture 1
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WHAT ARE ELEMENTARY PARTICLES 7

Atom and subatomic particles

— electron

<10""*m

R T S o
@ quarks

10-5m <107""m
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WHAT ARE ELEMENTARY PARTICLES 7

Atom and subatomic particles

| \ electron
\
\ <10 "m

107" )
@ quarks

10-5m <107"m

In natural unit: h=c=kg = ¢ =1,
[E] = [p] = eV, [Length] = [Time] = eV~!

Atom nucleon quark (u,d) electron
size | 500 MeV ™' [ 5 GeV ! <5 TeV! <5 TeV !
mass n GeV 1 GeV | u(d)~2(5) MeV | 0.5-MeV

7/39



WHAT ARE ELEMENTARY PARTICLES 7

An elementary particle is a particle with no internal structure. It is
considered as a point-like object.

Here are properties of elementary particles

@ Electric charge (quantized, ne n =0, £1, 42, :t%, j:%)
1

§ ’
Mass (large range: 0 — eV — GeV)

Spin (scalar s = 0, Fermion s = 5 , vector boson s = 1)

© 00

life-time (7, s): stable (7,,4,e — 00), unstable
TW,Z,t,H ™~ 10~%°s

anti particle: carry opposite quantum number e, e™

© 0

Fundamental Interactions (electromagnetic, weak,strong)

(<)

Some other quantum numbers (color charge, lepton, baryon,
strange, CP)
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PARTICLE CONTENT OF THE SM

mass —
charge —+

spin —

LEPTONS

QUARKS

=2.3 MeVic* =1,275 GeVic* =173.07 GeV/c* o
23 ' n 2 n 0 0
12 12 12 1 0
u charmJ to J luon
P J e | e P b\ 9 y
=48 MeVic* =95 MeV/c? =418 GeV/c® ] .
A | i ET:S ) 0
12 12 142 1
down J ~ strange j bottom J L photon )
0.511 MeV/e® 105.7 MeVic* 1.777 GeVic? 91.2 GeVie?
-1 -1 -1 - 0
112 uz w 0z a 1 wn
electron muon | tau | Z boson
o A 7 J\ J \n
<220Vict <0.17 MeVict <15.5 Mevict 80.4 GeVle? b 8
0 3 0 3 [ 3 +1 w
172 W2 12 1 (9
electron muon tau i 3
: I - | : W boson
neutrino /' neutrino ' neutrino (G)

| =126 Gevict

H

Higgs
boson
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MASS vS DECAYWIDTH

life-time and decay width

=l =

8 uon
GeV 1

dluon.s

o

| @ Neutrinos
Photon, Gluon

)
o<

10-1%v 10-3ev
Decay width
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WHERE DO WE OBSERVE ELEMENTARY PARTICLES?

o Natural sources: Sun, explosion, cosmic rays — v,7, e, it

o Laboratory:
e Reactor: e, v,y
o Accelerator: all elementary particles can be produced as long
as it has enough energy — High Energy Physics
Tevatron (Ecy = 2 TeV), Large Electron-Positron Collider
(LEP, Ecpm = 209 GeV)

Large Hadron Collider (LHC) Ecpmy =7,8,13,14 TeV
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HiGH ENERGY PHYSICS

ENERGY MASS RELATION:

1

Y= 1—v2
LEP: E. = 104.5 GeV LHC: E, =7 TeV
me = 0.5 MeV m, = 938 MeV

ve ~ 0.9999999999885 vp ~ 0.99999999102
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HiGH ENERGY PHYSICS

ENERGY MASS RELATION:

1

LHC: E, =7 TeV
mp = 938 MeV
vp ~ 0.99999999102

Y= 1—v2
LEP: E. = 104.5 GeV
me = 0.5 MeV
Ve ~ 0.9999999999885
[——
Far less than Comparable to
310 m/s 3x10* mjs
c(0) Spead '
Far larger than o
10%m O Classical Relativistic
Mechanics Mechanics
Size
A Quantum Quantum
Near or less than ;E;S Mechanics Field Theory

10%m

HEP needs QFT
Uncertainty principle
AE.At > h/2
Ap.Ax > h/2
consequence:

virtual particle

E2 4 m? 4 p?
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QUANTUM MECHANICS VS QUANTUM FIELD THEORY

@ Space and time are
separated variables

° Hamiltg)nian:
H= 2”—’” + V(x)

° Schoedlnger equation:
ih?5%) = Ho(x)

° Wave function: ¢(x) =
>, ci(Eiy x)eEt/ M n;)

o Conserved quantity:

—ihd2 =[H,A] =0

The Legende transformation
Lagranglan L(x(t )

x(t))

QFT

@ Minkowski space and Lorentz
invariance: u,v =0,1,2,3
xtx, = xtgux¥ = t? — X2
xt = (t,X) = (t,x,y,z),
guw = diag(1,—-1,-1,-1)
pt = (E, px, py, pz)

O = (55 5> 3y %)

e Lagrangian: L(¢(x), 0" ¢(x))

° EuIer—Lagrande equation:
e

o Conserved current:
¢(x) = ¢(x) + Ad(x)
0"ju =0, ju = 5GigAd(x)
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LAGRANGIAN AND FIELD
LAGRANGIAN AT ZERO TEMPERATURE IN MINKOWSKI

SPACE (4 DIMENSIONAL SPACE):

o Classical Mechanics: £L=T — V = L(x(t), x(t))
e QFT: Lagrangian is a function of free fields and their
derivatives, L£(¢(x), 0" ¢(x)), satisfing several requirements:
o Lorentz invariant, 9" ¢(x)0,¢(x), A*(x)Au(x), F* Fo.
o Mass dimension is 4 since S = [ dx*L is dimensionless
e Your wished symmetries

it is a operator function of space time and belongs to a
representation of Lorentz group (scalar, vector, left (right) handed
Weyl spinor, Dirac spinor)

0(x) = [ G (alp)e™ " 4 bi(p)etx)

a(p), b(p): annihilation operators, af(p), bf(p) creation operators

™7 mid = =
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PARTICLE CLASSIFICATION: BOSON VS FERMION

BosonN

o H, [Fermion |
@ Spin: integer (0,1) o Leptons, quarks
e commutative: @ Spin: half-integer (%)
d(x)p(y) — o(y)o(x) = @ anti-commutative:
[p(x), (y)] =0 P()U(y) = —o(y)v(x)
o real field: {¥(x),¥(y)} =0
particle = anti-particle @ only complex field:
o complex field: particle # anti-particle
particle # anti-particle

Higher spin elementary particle: graviton (s=2), gravitino (s=3/2)
they have not yet been observed.

15/39



BosonNic FIELD

Scalar field: spin =0, H
o Free Lagrangian: ¢(x) with mass dimension [¢(x)] =1
= 30"60,0 + T 0
o Klein-Gordon equation (99, — m?)¢(x) =0
@ one component field = one degree of freedom (dof)
o [a(p),al(p")] = 2E83(p — p'), [a(p), a(p')] = O
¢(x) = /(27:)!;\[)/% (a(p)e*ipux“ + aT(p)e“"“X“)

one particle state: |p) = v/2Eaf(p)|0) a(p)[0) =0
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BosonNic FIELD

Vector field: spin=1, massless v, g, massive (Z, W¥)
o Free Lagrangian: A*(x) with mass dimension [A#] =1
L= —%F"”FW + ’"72A“AM where the field strength tensor
H = grAY — Q¥ AH
e Proca equation: 9,F* 4+ m?A* =0
e Four component field > 2 dof (massless), 3 dof (massive) —
need gauge fixing condition O*A,(x) =0

e (A, p): polarization vector A = +1 for massless,
A= —1,0,1 for massive

/ @ 3FZ( (A, p)alp, e Pk 4 7 (X, p)al (p, N)e TP )

kH kY
m2

> (A p)e’ (A p) = —g" +
A
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FERMIONIC FIELD

Dirac field: spin:%, charged fermions e, u, 7, u, d,s,c, b, t
o Free Lagrangian: 1(x) with mass dimension [1/(x)] = 3
L = p(iy*9, — m)y where ¢ = 1170
Dirac matrix: v, are 4 X 4 matrices, in chiral representation:
=6 o) 9))=( %)
1 0/)’\cd O “\o* 0
o123 are three 2 x 2 Pauli matrices
e Dirac equation (iv*9, — m)y =0

o Dirac field: 1(x) = (Y1, v2, 13, %4) T

. 3 ) .
v = / ¢ L;;/E > (”O" p)a(p, Ne P v, p)bT (p, N)e P X#)
4 A=%1

u(A, p), v(A, p) are Dirac spinors satisfying (v*p, — m)u =0
and (v#p, +m)v =0
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LEFT- AND RIGHT-HANDED WEYL SPINOR

. 0
75 = in%y1y2y3 = ( 0 1) and [ys,7,] =0
Let's define left- and right-handed projectors

1- 10 1 0 0
PL= 2’75_<0 0)1 Pr = +275_(0 1>,

P P, = P.,PrPr = Pr,P PR =0

One can construct:
Y1

_ _ | ¥ _ _

=Py =141 ¥r=Pré=
0

1y is left-handed Weyl spinor and g is right-handed Weyl spinor.

They are two component spinors.

We define chirality from ys¢; = —;, Vvs¢r = ¥R

Dirac field Lagrangian:

L = (iv'0y — m)y = i Prh + ivrPYR + m(Yrbr + PrYL)

mass term does not respect chirality

0
1/?3 Y=y YR
s
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MASSLESS FERMIONIC FIELD

LAGRANGIAN
L = it PP + ivrPYr Left- and right-handed Weyl spinor are
independent. Chirality is Lorentz invariant and from Dirac
equation one gets (/,/, k = 1,2, 3)

o O i
(°lpl = 7P )ulp) =0 = (1 = L& )u(p) = 0
Using 'yo’y’;: VY whereﬂZ" = Lebkoy, o = L[vi, ] then
ysu(p) = %u(p) where % is the helicity operator.
For massless particle helicity is identical to chirality.

\

They are left-handed Weyl spinors and their anti-neutrinos are
right-handed Weyl spinors. There is no right-handed neutrinos. As
consequence neutrinos are massless in the SM.

A
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RECAP

LEPTONS

Standard Model of Elementary Particles
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FUNDAMENTAL INTERACTIONS: ELECTROMAGNETIC

@ between particles carring

electric charge

@ Quantum view: charged
particles interact by
exchanging a virtual
photon

Electric Magnetic
_ kg,q,
f*:T— f\r#.___
L' el L

¥ Ehares repel

F: qv_rﬁ
EM interaction can be
described by a point-like
interaction of charged particle
with photon. Lagrangian can
be written as

Lint = el/_J (P (x)Au(x)
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WEAK INTERACTION (1)

@ Nuclear beta decay :
n—pt+e +ure

see Prof. Oyama’s lecture & 3 @ J

@ Enrico Fermi proposed )
(1934) iLi iBe e
SE(P0)un(x))(E(x)7"v(x))

e Wu's experiment (1956) found parity violation in beta decay
see Prof. Agarwalla’s lecture

e Sudarshan and Marshak (1957), Feynman and Gell-Mann
(1958) suggested

SE(BO)7(L = 75)n(x))(E()7*(1 — 5)1(x))
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WEAK INTERACTION (2)

e Proton and neutron consist of quarks (1964, Gell-Mann and
Zweig): p = (uud) while n = (ddu)

GF _
(d(x)7u(1 = 75)u(x)) (@) (1 = 75)v(x))
V2
@ The beta decay can be described exchanged by W. It can be
written as
Line = 22 0(x)7" (1 — 75)d(x) W, () + 2 80" (1 — 7 ) (x) W ()
2V/2 2V/2 :
ar =% ~3x1072
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WEAK INTERACTION (3)

Not only charged current interaction

Lint = z%a(xw(l — 75)d(x) Wy, (x) + %é(xw(l — s (X)W (%)

But also neutral current interaction

E T (gl — ghs)()Zu(x)

Line =
" 2 cos Oy

f: quark, charged leptons, neutrinos

g\’;,gg are coefficients depending on electric charge and isospin of
fermion f

weak neutral current was confirmed in 1973, in a neutrino
experiment in the Gargamelle buble chamber at CERN
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STRONG INTERACTION

o Old: Strong interaction between nucleons to form nuclei

@ The quarks model of Gell-Mann and Zweig (1964) to explain
the classification of hadrons

o New: all particles carrying color charge participate strong
interaction (quarks, gluons)

o Lagrangian: simple guest based on Lorentz invariance
Line = 8G7'9G, + g:(9"G")G,G, +g2G,G,G"G”
G, (x): gluon field gs: strong coupling

U Js U

as= & ~12x 107 g

QL
o
W
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FUNDAMENTAL INTERACTIONS: RECAP

ELECTROMAGNETIC WEAK

2 b
ay=%~3x1077

GRAVITATION

gravitational force: F = G™52
G ~6.67x107 1 mdkgts!

Construct a dimensionless

coupling
; — Ome 1.7 x107%
a(Mz) =4 ~1.2x 107" ) QG = Fe A X y

ag K a< oy < g
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SYMMETRY

@ makes a theory more @ makes computation simpler

predictable @ easier to convince stubborn
o leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may
be broken.
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SYMMETRY

@ makes a theory more @ makes computation simpler

predictable @ easier to convince stubborn

o leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may

be broken.

A symmetry is mathematically represented by a group of
transformations. If the Lagrangian is invariant under these
transformation, one says the theory processes the symmetry.
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SYMMETRY

@ makes a theory more @ makes computation simpler

predictable @ easier to convince stubborn

o leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may

be broken.
A symmetry is mathematically represented by a group of
transformations. If the Lagrangian is invariant under these
transformation, one says the theory processes the symmetry.
Familiar examples:
@ Space is isotropic — SO(3) rotation group — conservation of
angular momentum
@ Space-time is homogeneous — translation group —
conservation of energy and momentum
o U(1)g: ¥r — €/®)r, gr is electric charge — conservation of
electric charge
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(QUESTION?

Can we use symmetry to build interactions between elementary
particles?
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UNITARY TRANSFORMATIONS

Important in physics, geometry, informatics
@ Preserve probability in quantum mechanics

[(2U|Upn)[* = (02| UTUJp1) [ = | (2]tf1)|?

Unitary: (| UTU|11) = (h]ab1)
Anti-unitary: (1a|UTUJtb1)* = (1aah1)
o Unitary

Ulu=1
@ Special Unitary
detU =1
e Matrix representation SU(N): N x N matrices with
UlU=1 detU=1

U=eTo,  T,4+Ti=1 T[T =0,
T,: generators, Hermitian and traceless matrices.

a=1,...,D where D is the number degree of freedom
D=N>-1
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ABELIAN GAUGE SYMMETRY (1)

e U(1)q transformation: given a quantum field 1)(x)
Y (x) = 8% (x)
« is a continuous parameter € R, g is parameter

characterizing the group, Q is the quantum number carried by
the field ¢(x). It acts on field, donot change space-time.

@ Abelian/ commutative group:
eiangeianQ — ei(a1+a2)gQ — eiagngiang
o Global transformation: « is independent of space-time
L =Y(iv*0, — m)y
where 1) = )0

31/39



ABELIAN GAUGE SYMMETRY (1)

e U(1)q transformation: given a quantum field 1)(x)
Y (x) = 8% (x)
« is a continuous parameter € R, g is parameter

characterizing the group, Q is the quantum number carried by
the field ¢(x). It acts on field, donot change space-time.

@ Abelian/ commutative group:
eioqngianQ — ei(cn—l—oq)gQ — eiozgngioqgQ
o Global transformation: « is independent of space-time
L =P(inh0y — m)y

where 1) = )0
— invariant under U(1)g — Dirac Lagrangian has U(1)q
symmetry
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ABELIAN GAUGE SYMMETRY (1)

(]

U(1)q transformation: given a quantum field (x)

W/(x) = €59(x)
« is a continuous parameter € R, g is parameter
characterizing the group, Q is the quantum number carried by
the field ¢(x). It acts on field, donot change space-time.

Abelian/ commutative group:
eioqngianQ — ei(a1+a2)gQ — eiozgngiang
Global transformation: « is independent of space-time
L =Y(in" 0y — m)y
where 1) = )0
— invariant under U(1)g — Dirac Lagrangian has U(1)q
symmetry

Assume if there exists a term as 1,1/ then we have
— @y, + Qp + Qy, = 0. It means that Q quantum number is
conserved.
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ABELIAN GAUGE SYMMETRY (2)

e If o is a function of space-time «(x) — local transformation.
£ = §(ir" 9, — my
is not invariant anymore.
What should we do to restore symmetry?
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ABELIAN GAUGE SYMMETRY (2)

e If o is a function of space-time «(x) — local transformation.
£ = §(ir"8, — m)y
is not invariant anymore.
What should we do to restore symmetry?
o Under e/(*)&Q transformation
L— @Z(i’y“@u —m)y — de_WM/)aua(X)

o If we add one more term in the original Lagrangian
L= &(iy“@u —m)y + gQ@/_}’y“A#Qb (1)
and require that the new field A, transform as
Au — Ay + 0ua(x)
(1) is invariant under local transformation.
@ Rewrite (1) as

L= 1/_1(i’y“D,,, —m)y
with D, = 0, — igQA, :  covariant derivative
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ’gQAM)l/} - m¢¢ - ZF'LWF;W

Fiv = grAY — 8 Al = _5[D,, D, ]
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ngAu)i/J - md”/} - ZFMVFNV

Fi = grAY — 8 Al = _5[D,, D, ]

Identifying g to elementary charge e, Q to electric charge
quantum number, Q@ = —1 for electron, Q@ = 2/3 for up-type
quark, @ = —1/3 for down-type quark, A, as photon field, we
obtain a theory called Quantum Electrodynamics (QED)
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ’gQAM)w - m?/”/f - ZFMVFNV

Fi = grAY — 8 Al = _5[D,, D, ]
Identifying g to elementary charge e, Q to electric charge
quantum number, Q@ = —1 for electron, Q@ = 2/3 for up-type
quark, @ = —1/3 for down-type quark, A, as photon field, we
obtain a theory called Quantum Electrodynamics (QED)

@ Photon is massless since the term myA*A,, is not gauge
invariant.

@ Photon is a real vector

fle|d [
@ There is no self-coupling

of photons
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NON-ABELIAN GAUGE SYMMETRY (1): YANG-MILLS
THEORY (1954)

It is not enough to describe all interactions by only Abelian gauge
symmetry, we want to have multiple vector particles appears in the
theory.
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NON-ABELIAN GAUGE SYMMETRY (1): YANG-MILLS
THEORY (1954)

It is not enough to describe all interactions by only Abelian gauge
symmetry, we want to have multiple vector particles appears in the
theory.
e SU(N), N > 2: a set of fermionic fields belong to a
fundamental represenntation of SU(N).

Y1 1
Y = 1/? BNaa(x)T? 1”.2
YN YN
a=1,---,N?>—1, T? are N x N Hermitian matrices,

generators of SU(N) which obey the group algebra
[T, Tb] — jfabeTc  fabc group structure constant
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NON-ABELIAN GAUGE SYMMETRY (2)

o Lagrangian of the set of fermionic fields
L=ity"D, Y — LMX

M is N x N mass matrix.

e Under SU(N) local transformation
L — iTUWD, UL — LUTMUX
It is invariant if
D, = UD,U!
Uumu = M

M = m1 means that all fields in the multiplet must have the
same mass.
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NON-ABELIAN GAUGE SYMMETRY (3)

@ Using the similarity with Abelian case, we set
Dy=0,—ignT°A3, a=1,--- N> -1

The requirement D/, = UD, U means that

=
i
TA, = UTAU + g—Nuaﬂ Ut
= T.A,+T.0u0+i[T.0up, T.A)+---
@ How to construct field strength tensor?
[Du; D] = —ignFi, T2

then F2, = 0,A3 — 0,A3 + gn o AL AS

%
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NON-ABELIAN GAUGE SYMMETRY (4)

@ Lagrangian of the set of fermionic fields and new vector fields
(gauge fields)

L= i5yD,5 —mSx - ]
= 0,A3 — 0,A% + gnfoP°ALAS D, =0, — ignTA;
o all fields in the multiplet must have the same mass, gauge
fields are massless
e number of new gauge fields N> — 1, they belong to the adjoin
representation of the SU(N)
o trilinear and quartic gauge couplings exist

b
A
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Di1scussioNs ON GAUGE SYMMETRY

o Gauge fields are real vector fields and massless

38 /39



Di1scussioNs ON GAUGE SYMMETRY

o Gauge fields are real vector fields and massless

@ Interaction terms appear naturally with a common coupling
for each group
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Di1scussioNs ON GAUGE SYMMETRY

o Gauge fields are real vector fields and massless

@ Interaction terms appear naturally with a common coupling
for each group

@ All fields in the multiplet must have the same mass

Is that enough to describe the electromagnetic, weak and strong
interactions?
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SUMMARY OF LECTURE 1
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