

Research and Daily life in Quy Nhon

Phan To Quyen

Vietnam neutrino group
IFIRSE - ICISE

VSON8, 15 – 26 July, 2024

About me

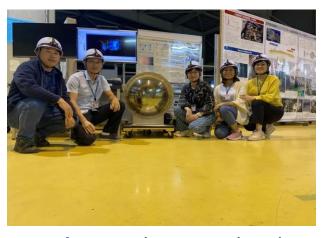
S icise

2022 - present

➤ Hometown: Binh Dinh province

➤ 2nd year PhD student at GUST, VAST.

2015 - 2019



Bachelor: Physics Teacher at Quy Nhon University

Master: Theoretical and Mathematical Physics at GUST, VAST.

PhD student in Theoretical and Mathematical Physics, at GUST, VAST

Member of VN neutrino group, IFRISE, ICISE.

T2K collaborator since 2019

My hometown

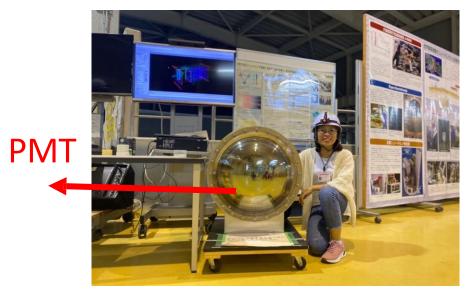
Martial art

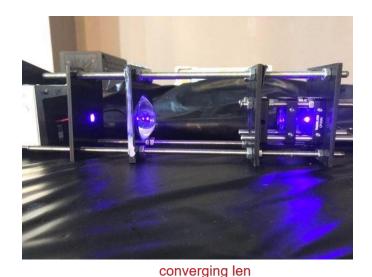
Binh Dinh province Food

ancient architecture (ChamPa)

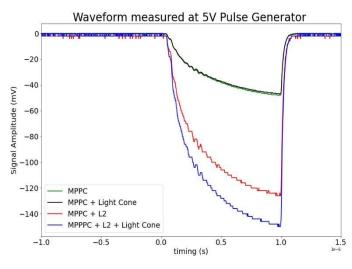
- Simons Astrophysics group (SAGI)
- Environment group
- Neutrino physics group

Neutrino lab

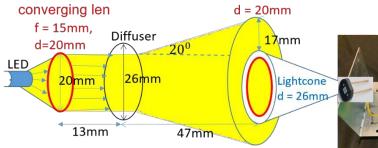



Group meeting room

S icise

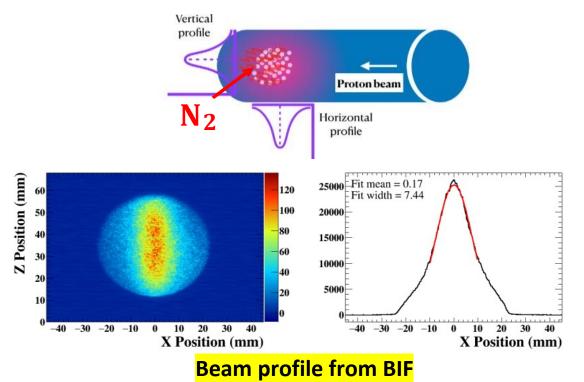

❖ Hardware work at IFIRSE:

- MPPC and some equipments at the neutrino lab.
- Data readout and analysis
- Develop the light cone for SiPM photosensor



f = 15mm

Initial result

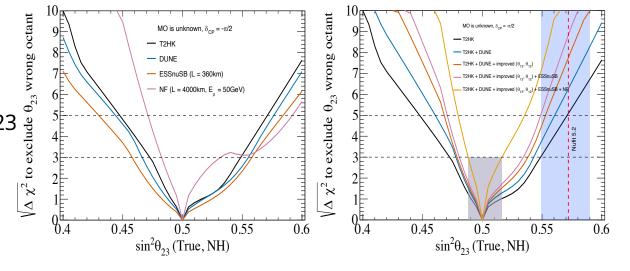

❖ Hardware work at J-PARC:

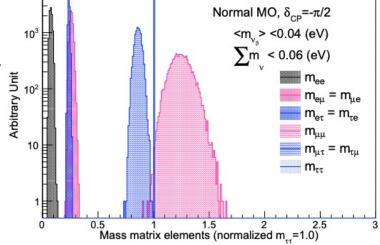
- Take beamshift at J-PARC.
- Beamloss monitor during beamline operation.
- Investigate beamline profile by beam inducing fluorescence (BIF).

❖ Software work: ROOT, GLoBES, GEANT4, NEUT,...

Neutrino phenomenology: CPviolation, Mass hierarchy, CPTviolation, θ_{23} octant,

 m_{v} spectrum


✓ Master thesis:


Resolving the octant of leptonic mixing angle θ_{23} with Hyper-K experiment and the impact to the CP violation measurement.

✓ PhD thesis:

Neutrino mass spectrum:

hints from neutrino oscillation, cosmology, betadecay



Interestingly, if θ₂₃ is maximal (θ₂₃ = π/4), it indicates some unknow

 $\mu = \tau$ exchange symmetry. • At present, we don't know if θ_{23} is exactly equal to $\pi/4$, or in the lower parameters like

Hyper-K, DUNE can elucidate this ambiguity

 \clubsuit Some topics: CPviolation, Mass hierarchy, CPTviolation, θ_{23} octant, m_{ν} spectrum

VCTP45

Resolving the octant of leptonic mixing angle θ_{23} with Hyper-Kamiokande experiment

P. T. Quyen¹, S. Cao², N. T. Hong Van³, A. Nath⁴, T. V. Ngoc¹

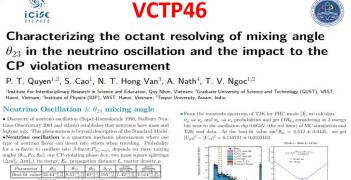
Institute For Interdisciplinary Research in Science and Education, Quy Nhon, Vietnam; High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Institute of Physics (IOP), VAST, Hanoi, Vietnam; Tezpur University, Assam, India;

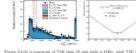
Neutrino & Neutrino Oscillation

Neutrinos are elementary particles; spin=1/2, have no electric charge; interact only via the weak force; come into three flavors. That neutrinos have mass is the only palpable evidence beyond the Standard Model. Neutrino oscillations is a quantum mechanical phenomenon where neutrino can switch its identities when traveling. Probability for a α -flavor to oscillate into β -flavor, $P_{(\nu_c \rightarrow \nu_c)}$, depends on three mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$, one CP-violating phase δ_{CP} , two mass square splittings $(\Delta m_{21}^2, \Delta m_{21}^2)$, its energy, E_{ν} , propagation distance L, and matter density which neutrino passed through, ρ :

 $P_{(\nu_{\nu} \to \nu_{1})} = f\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}; \Delta m_{21}^{2}, \Delta m_{21}^{2}; E_{\nu}, L, \rho\right)$

The $\mu - \tau$ symmetry & θ_{23} mixing angle


If θ_{23} is maximal $(\theta_{23} = \pi/4)$ it indicates some unknown $\mu - \tau$ exchange symmetry since the mass matrix can be rewritten as


• We assume both two possibilities of neutrino mass hierarchy (MH) include normal hierarchy (NH) and inverted hierarchy (IH). We use both $\nu_{\mu} \rightarrow$ ν_c appearance and $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance samples in this simulation. The true values of oscillation parameters are assumed:

 $(\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}, \delta_{CP}) = (0.310, 0.02241, 0.5, -\pi/2)$ $(\Delta m_{21}^2, \Delta m_{21}^2) = (7.39 \times 10^{-5} eV^2/c^4, 2.523 \times 10^{-3} eV^2/c^4)$ Given a true sin² θ₂₃ (octant is known), we calculate the statistical significance $\sqrt{\Delta \chi^2}$ to exclude the wrong octant.

- Figure 3:Left is spectrum of T2K data [3] and right is ORs., with T2K real data 2. Impacts of θ_{23} octant resolving to CP violation measurement
- ctant $\theta_{23} < \pi/4$ or higher octant $\theta_{23} > \pi/4$. The future experiments like • The statistical significant of CPV measurement (SS_{CPV}) depends on the ratio of R_{CP} and the statistic uncertainty $\sigma_{stat} \sim \sqrt{P(\nu_{\mu} \rightarrow \nu_{e})}$ (Figure. 4) θ_{23} octant resolving in Hyper-Kamiokande Hyper-Kamiokande (Hyper-K) [1], effectively 8 times larger than Super-K, started reconstruction in 2021 and aims for operation from 2027 with the $R_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}, SS_{CPV} = \frac{R_{CP}}{\sqrt{P(\nu_{\mu} \rightarrow \nu_{e})}}$ (2)

Neutrino mass spectrum with the present neutrino data P. T. Quyen^{1,2}, S. Cao¹, N. T. Hong Van³, T. V. VgoCTP47 neutrino data

¹Institute For Interdisciplinary Research in Science and Education, Quy Nhon, Vietnam; ²Graduate

Neutrinos (ν_e, ν_μ, ν_τ) are elementary parti y via the weak force

- amiokande 1998, Sudbury Neutrino Obser-ory 2001, and others resulted in the exister neutrino mass and this is beyond the Sta
- . Unknown answers are the precise m

Neutrino mass constraints

1. Cosmology Plank + BAO, 2018

 $\sum m_{\nu i} < 0.12 \text{eV} \text{ (at 95\% C.L.)}$

2. Beta decay KATRIN, 2021

 $\langle m_{\nu_S} \rangle = \sqrt{|U_{ci}|^2 m_{\nu_I}^2} < 0.8 \text{eV (at 90\% C.L.)}$

amLAND-Zen, 2016:

University of Science and Technology, Hanoi, Vietnam, ³Institute of Physics, Hanoi, Vietnam; Mass hierarchy sensitivity to neutrino mass spectr \bullet Figure 1 describes distributions of the elements' amplitude of the Majorana neutrino i ormal neutrino MO and the right is with inverted neutrino MO. The neutrino mass ma 0.144 ± 0.041 0.908 ± 0.044 0.494 ± 0.137 0.185 ± 0.038 0.494 ± 0.137 1 0.125 ± 0.013 0.109 ± 0.010 $\begin{pmatrix} 0.125 \pm 0.013 & 0.526 \pm 0.055 & 0.438 \pm 0.044 \\ 0.109 \pm 0.010 & 0.438 \pm 0.044 & 0.650 \pm 0.044 \end{pmatrix}$

in neutrino compared to quarks \mathcal{Y}_{u-type} , \mathcal{Y}_{d-type} in which hierarchy pattern is clear [3]. Impacts of θ_{23} & δ_{CP} on neutrino mass spectrum

• Use the future expected constraints on $\sum_i m_{\nu i} < 0.06$ eV [4], $\langle m_{\nu g} \rangle < 0.04$ eV [5] and Normal MO is assumed, we provide the patterns of the neutrino mass matrix elements for two extreme cases in Fig. 2 with $\delta_{CP} = 0$ (left) and $\delta_{CP} = -\pi/2$ (right). The sensitivity of θ_{23} to neutrino is shown in Fig.3 for non-maximal $\theta_{23} \neq \pi/4$ (left) and $\theta_{23} = \pi/4$ (right).

For both cases of the neutrino MO, the matrix elements are in O(1). No hierarchy pattern is foun.

PHYSICAL REVIEW D 103, 112010 (2021)

Physics potential of the combined sensitivity of T2K-II, NOvA extension, and JUNO

S. Caoo, 1,2,*,† A. Natho, 3,* T. V. Ngoco, 1,4† Ng. K. Franciso, 3 N. T. Hong Van, 5 and P. T. Quyen 1,4 ¹Institute for Interdisciplinary Research in Science and Education, ICISE, Quy Nhon 55121, Vietnam ²High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ³Department of Physics, Tezpur University, Assam 784028, India ⁴Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam ⁵Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam

PHYSICAL REVIEW D 107, 016013 (2023)

Stringent constraint on CPT violation with the synergy of T2K-II, NOvA extension, and JUNO

T. V. Ngoco, 1,2, S. Caoo, N. T. Hong Vano, and P. T. Quyen ¹Institute for Interdisciplinary Research in Science and Education, ICISE, Quy Nhon 55121, Vietnam ²Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam

³Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam

(Received 24 October 2022; accepted 3 January 2023; published 24 January 2023)

Revisit the octant ambiguity and resolvability of the leptonic mixing angle θ_{22}

P. T. Quven^{1,2}, S. Cao^{2,†} N. T. Hong Van³, T. V. Ngoc^{1,2}, and Ankur Nath⁴

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.

²Institute for interdisciplinary research in science and education, ICISE, Quy Nhon, Vietnam.

³Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam. ⁴Department of Physics, Tezpur University, Assam, India

(Dated: July 18, 2023)

Among three leptonic mixing angles, θ_{23} angle, which characterize the fractional contribution of two flavor eigenstates ν_{μ} and ν_{τ} in the mass eigenstate ν_{3} , is known to be the largest (close to $\pi/4$) but the less precisely measured. Up-to-date data from neutrino oscillation experiments can not tell whether θ_{23} is exactly equal to $\pi/4$, or lies in the lower octant $\theta_{23} < \pi/4$ or higher octant $\theta_{23} > \pi/4$.

Daily life in Quy Nhon

- ➤ Interfere between mountain and sea: go swimming, hiking, fishing,....
- > Friendly and kindly local people
- > Free fresh air
- > Fresh and cheap sea foods

Daily life in IFIRSE

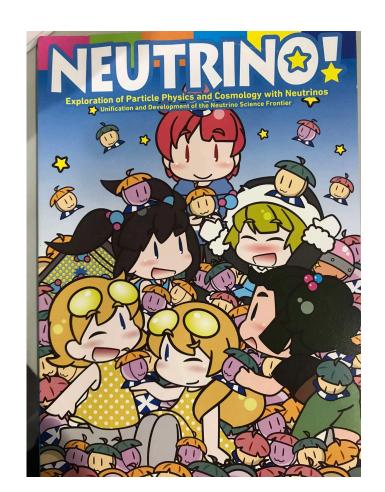
Afternoon (sometimes)

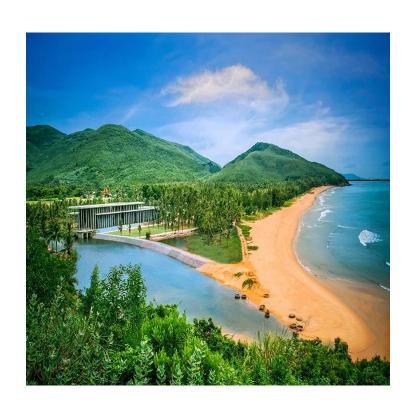
Evening (sometimes)

Some words to say about life of PhD student at IFIRSE????

Happy

COmfortable


Peaceful



Scientific

An ideal place for living and doing research

If you want to enjoy neutrino physics, beach life in ICISE, sashimi in Japan. Come with us, your dreams become true.

Thank you for your attention

Welcome to Quy Nhon