Future Neutrino Experiments Atsumu Suzuki Kobe University

8th Vietnam School on Neutrino (VSoN8) 2024/July/25

Contents

- **1. Accelerator related experiments**
 - **1-1. Hyper-Kamiokande (HK)** → See Prof. Miura's lecture
 - **1-2. DUNE**
 - 1-3. ESSnuSB
 - **1-4. Neutrino Factory**
- 2. Reactor Neutrino Experiment (JUNO) → See Prof. Huang's lecture
- 3. Atmospheric & Astrophysical ν Measurements
- **4.** $0\nu\beta\beta$ **Decay Experiments** \rightarrow See Prof. Huang's lecture
- **5. Sterile Neutrino Experiments**
- 6. High statistic v_r Experiment (SHiP)

1-1. Hyper-Kamiokande (HK)

Physics goals

HK Long Baseline Experiment

- J-PARC v beam: 800 kW → 1.3 MW
 2.5° off-axis, peak energy @~600 MeV (oscillation maximum)
 → narrow band beam suppresses NC-π⁰ and CC-nQE contamination
- ND280 should continue its operation for HK.
- FD:SK \rightarrow HK will realize high statistic v data
- Intermediate Water Cherenkov Detector (IWCD) will be newly constructed at ~800 m from the neutrino source.

Intermediate Water Cherenkov Detector (IWCD)

- ${\sim}600$ t water Cherenkov detector located at ${\sim}800$ m from the neutrino source
- Moves es vertically to measure energy spectrum at different off-axis between 1° and 4° .
- $\sigma(\nu_e)/\sigma(\nu_\mu), \sigma(\nu_e)/\sigma(\nu_\mu)$
 - 3-4% accuracy at 600 MeV (work in progress)
- Multi-PMT units will be used. → good reconstruction despite small detector

Measurement of CP asymmetry

- Comparison between the probabilities: $P(v_{\mu} \rightarrow v_{e})$ vs $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$
- Up to $\sim \pm 30$ % variation at $\delta_{CP} = -90^{\circ}$ in NH (or 90° in IH) wrt $\sin \delta_{CP} = 0$

Expected events in HK LBL experiment

Expected signals & BG's : 10 years (1.3 MW × 10⁸ s), 1 tank, $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$, & $\nu : \overline{\nu} = 1 : 3$

for $\delta_{CP} = 0$	Signal v _µ →v _e CC	Wrong sign appearance	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	Beam $\nu_e / \overline{\nu}_e$ contamination	NC
u beam	1,643	15	7	259	134
$\overline{ u}$ beam	1,183	206	4	317	196
					17

Significance to exclude $\delta_{CP} = 0$ (CP conservation) For ~70 (50) % region, CP conservation is excluded at > $3\sigma(5\sigma)$

Accuracy on measurement for $\delta_{CP} = 0^{\circ}$ and -90°

Mass hierarchy determination

Neutrino astrophysics

SN burst

- ~9 13 events for M31 (Andromeda)
- 50 80 k events/SN @ 10 kpc
- Time & energy profiles with high statistics
 - → Dynamics of SN central engine, explosion mechanism, NS/BH formation
- 1° pointing for SN @ 10 kpc → Multi-messenger measurement with optical, GW, etc.

Neutrino astrophysics

BH 30 % :30% of the supernovae form black hole and emits higher energy Neutrinos.

Defused Supernova Neutrino Background (DSNB)

- 1st discovery by SK-Gd
- HK will measure the spectrum.

Solar v spectrum & possible differences in v_e/\overline{v}_e oscillation

- Confirmation of MSW effect by observing spectrum distortion "up-turn"
- Comparison of v_e/\overline{v}_e oscillation (currently ~1.5 σ tension in solar/reactor v)

~130 events/day

- > 3σ sensitivity for the spectrum up-turn in 10 yrs (E_{th}=4.5 MeV).
- ~2 σ day/night sensitivity expected for the difference in v_e/\overline{v}_e osc. in 20 yrs.

Neutrino astrophysics

Neutrino fluxes at Kamioka as a function of neutrino energy. Precision measurements for solar, SN(R), and atmospheric neutrinos can be done with high statistics.

Indirect DM search:

Hyper-Kamiokande detects the neutrinos generated by the interaction of dark matters in the Sun or the earth.²³

Proton decay searches (note: FV ~8 x Super-K)

t/b [years]

Hyper-K 10 years operation assuming $T_{proton}=1.7 \times 10^{34}$ years (~Super-K limit)

HK 10 years

- $p \rightarrow e^{+}\pi^{0}$: ~6x10³⁴ yrs
- $p \rightarrow v K^+$: ~2x10³⁴ yrs

• • • •

Hyper-K will play a leading role in the next-generation proton decay search

Detector Location

*See Miura-san's lecture

- Under Mt. Nijugo(25)-yama (mountain)
- \sim 8km south from SK
- Overburden ~650m (~1755m w.e.)
- Identical baseline (295 km) and off-axis angle (2.5 $^\circ$) to T2K

Timeline

- 2022-2027: Construction, 2027-: Operation
 - No change of schedule since the approval of project in 2020

Excavating the world's largest human-made cavern

19

Oct. 3, 2023 Completion of the dome (dia. 69 m, height 21 m, ~1 Super-K)

PMT production ongoing, >10,000 delivered. Screening both at Hamamatsu and Kamioka Excavation of the HK cavern will be completed by the end of this year!

Photosensors and underwater electronics

Photosensors/elec. mockup

1-2. DUNE

(Deep Underground Neutrino Experiment)

Introducing DUNE

- 1,300 km beamline
- 70 kt LArTPC far detector 1.5 km underground
- Primary physics goals:
 - (1) v oscillations (δ_{CP} , θ_{23} , θ_{13} , mass ordering)
 - (2) SN burst v's and astrophysics
 - (3) Proton decay

ν source

Long Baseline Neutrino Facility (LBNF)

Near Detector Complex

- Main purpose: prediction of Far Detector reconstructed spectra
- Movable detector system: LArTPC (ND-LAr) with muon spectrometer (TMS)
- Off-axis data in different neutrino fluxes constrains energy dependence of neutrino cross sections
- Same target, same technology → inform predictions of reconstructed E_v in Far Detector On-axis magnetized detector (SAND) for beam monitoring and neutrino measurements

Far Detector Technologies

ICHEP24 – July 24 Inés Gil-Botella - The DUNE Program

Neutrino energy spectra at the Far Detector

• Sensitivity to δ_{CP}

- If $\delta_{CP} \sim -\pi/2$, DUNE will measure an enhancement in electron neutrino appearance, and a reduction in electron antineutrino appearance
- Sensitivity to mass ordering (MO)
 - If MO is normal, DUNE will measure a <u>much larger</u> enhancement in electron neutrino appearance, and a reduction in electron antineutrino appearance
- MO, δ_{CP} , and θ_{23} all affect spectra with different shape

DUNE sensitivity

- For <u>best-case</u> oscillation scenarios, DUNE has
 - $> 5\sigma$ mass ordering sensitivity in 1 year $> 3\sigma$ CPV sensitivity in 3.5 years
- For <u>worst-case</u> oscillation scenarios, DUNE has > 5σ mass ordering sensitivity in 3 years
- In <u>long term</u>, DUNE can establish
 CPV over 75% of δ_{CP} values at >3σ

Inés Gil-Botella - The DUNE Program

ICHEP24 – July 24

DUNE precise measurements

- <u>Ultimate</u> precision 6-16° in δ_{CP}
- World-leading precision (for long-baseline experiment) in $\theta_{13} \rightarrow$ comparisons with reactor measurements are sensitive to new physic

ICHEP24 – July 24

Astrophysical neutrinos in DUNE

Unique sensitivity to MeV electron neutrinos: CC $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$ (main channel) ES $v_x + e^- \rightarrow v_x + e^-$ (pointing)

Neutrinos from core-collapse supernovae

Neutronization burst measurements \rightarrow mass ordering measurement Eur. Phys. J. C 81 (2021) 5, 423

Phys.Rev.D 107 (2023) 11, 112012

Pointing capabilities: ES channel ~5° pointing resolution (40 kt, 10 kpc)

Inés Gil-Botella - The DUNE Program

Neutrinos from the Sun

- DUNE has excellent sensitivity to ⁸B solar neutrinos above ~10 MeV, and discovery sensitivity to the hep solar flux
- ۲ DUNE can improve upon existing solar oscillation measurements via day-night asymmetry induced by matter effects \rightarrow comparison with JUNO

ICHEP24 – July 24

DUNE Phases

- DUNE Phase I (2026 start detector installation; 2029 physics; 2031 beam + ND)
 - Full near + far site facility and infrastructure
 - Two 17 kt LArTPC modules
 - Upgradeable 1.2 MW neutrino beamline
 - Movable LArTPC near detector with muon catcher
 - On-axis near detector
- DUNE Phase II:
 - Two additional FD modules (≥40 kt fiducial in total)
 - Beamline upgrade to >2 MW
 - More capable Near Detector (ND-GAr)

P5 report endorses FD3, ACE-MIRT, and MCND in the next decade, and R&D toward FD4

Inés Gil-Botella - The DUNE Program

Near Detector Site

Far Detector Site

(European Spallation Source neutrino super-beam)

Next-to-next CPV precision measurement experiment at the 2nd oscillation maximum

Why 2nd maximum ? (1)

Why 2nd maximum ? (2)

ESSnuSB neutrino baseline

Zinkgruvan mine, 360 km from the source partly covernig 1st and 2nd maximum

25

Layout of the ESSvSB components

- 5 MW average beam power
- 14 Hz \rightarrow 28 Hz
- 3 GeV \rightarrow 3.5 GeV
- $> 2.7 \times 10^{23}$ POT/year •

To Far Detector

Near Detector
Oscillation coverage

NINJA-like water-emulsion detector (1 t fiducial)

Near detectors

Far detectors

Design

- 2 x 270 kt fiducial volume (~2x HyperK)
- Readout: 2 x 38k 20" PMTs
- 30% optical coverage
 - design here for 40% with an option that ¹/₄ PMTs will not be installed

Can also be used for other purposes:

- Proton decay
- Astroparticles
- Galactic SN v
- Diffuse supernova neutrino background
- Solar Neutrinos
- Atmospheric Neutrinos

1-4. Neutrino Factory

Neutrino Factory serves high luminosity, in particular also at high energies, both muon and electron flavor content, well known neutrino energy spectra and very well determined beam intensity.

Composition of v Factory

Pion capture by high magnetic field solenoid.

Suppression of transverse momentum of pions

- Deceleration by absorbers
- Acceleration by RF

- Immediate acceleration by a muon accelerator with high repetition (~50 Hz)
- High intensity & energy ν_{μ} ($\overline{\nu}_{\mu}$) & $\overline{\nu}_{e}$ (ν_{e}) beams simultaneously from the straight part of the muon storage ring

Some future plans

NuMAX (Neutrino from Muon Accelerator complex) @FNAL site

BNL-205756-2018-JAAM

2. Reactor Neutrino Experiment (JUNO)

*See Huang-san's lecture

● 开平 ● 近门中微子察验 ● 運门中微子察验

) 江门

合山核电站

Jiangmen Underground Neutrino Observatory

深羽

。 限汇核电站 大亚湾核电站 大亚湾中微子实

JUNO Layout

• Source: 6+2 reactors

(Yangjiang and Taishan NPP)

- Baseline: 53 km
- Detection channel: inverse βdecay

$$\overline{v_{e}} + p \rightarrow e^{+} + n$$

- **Target:** single volume 20-kt liquid scintillator
- Detection technique: system of photomultiplier tubes (18k 20'' PMTs + 25k 3" PMTs)
- Overburden: 700 m

*a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth

Physics goals

$\overline{\nu}_{e} \text{ survival probability in vacuum}^{*}$ $P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} = 1 - \cos^{4} \theta_{13} \overline{\sin^{2} 2\theta_{12}} \sin^{2} \frac{\Delta m_{12}^{2} L}{4E}$ $- \frac{\sin^{2} 2\theta_{13}}{\cos^{2} \theta_{12}} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} + \sin^{2} \theta_{12} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$

Mass ordering (main goal)

- The energy resolution is one of the key factors for determining neutrino mass ordering.
- 3σ MO sensitivity within 6 years with only JUNO data

Oscillation parameters

• Sub-% accuracy for θ_{12} , Δm_{21}^2 , & Δm_{31}^2

* Oscillation in matter with effective oscillation parameters (j.physletb.2020.135354).

JUNO Detector

Calibration room LS Filling room Pure water room Precision muon tracking - 3 plastic scintillator layers Covering half of the top area Acrylic sphere: Ø35.4m Central detector Top Tracker SS latticed shell **Double calorimetry** Acrylic sphere PMT ~18,000 20" PMTs + Stainless steel latticed shell: Ф40.1m ~25,000 3" PMTs: Pool Liquid scintillator coverage :78 % 20 kton, high purity (> 20 m att. Length) Water Cherenkov 700m Water pool: Ф43.5m 35 kton pure water underground 2,000 20" veto PMTs

Δ*E*/*E* = 3% @ 1 MeV

Taishan Antineutrino Observatory (TAO)

Physics potential

- ✓ Precise measurement of antineutrino spectra
- ✓ Sterile neutrino searches
- Provide a reference spectrum for JUNO, nuclear databa

arXiv: 2005.08745
~30 m
4.6 GW
SiPM
>50%
<mark>-50 ℃</mark>
~100
~94%
<mark>4500</mark>
< 2% @ 1 MeV

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17

- ✓ 10 m² SiPM is used to achieve high light yield with ~94% coverage
 → 4500 PEs/MeV & energy resolution < 2% @ 1 MeV
- ✓ Gd-LS works at -50℃ to lower the dark noise of SiPM

25

19th neutrino workshop @ IFIRSE July 2023

Physics	Sensitivity
Neutrino Mass Ordering	3σ (~1 σ) in 6 yrs by reactor (atmospheric) \overline{v}_e
Neutrino Oscillation Parameters	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{32} < 0.5\%$ in 6 yrs
Supernova Burst (10 kpc)	${\sim}5000$ IBD, ${\sim}300$ eES and ${\sim}2000$ pES of all-flavor neutrinos
DSNB	3σ in 3 yrs
Solar neutrino	Measure Be7, pep, CNO simultaneously, measure B8 flux independently
Nucleon decays $(p \rightarrow \overline{v}K^+)$	8.3×10 ³³ years (90% C.L.) in 10 yrs
Geo-neutrino	~400 per year, 5% measurement in 10 yrs

3. Atmospheric & Astrophysical Neutrino Measurements

Future Plans

• Optical Detection of Cherenkov Radiation

- IceCube -Upgrade & Gen 2- @ South Pole
- P-ONE @ Pacific Ocean → late 2020s: full detector construction
- Trinity (candidate site:not decided vet)

• Radio Technique (Askaryan effect)

- RNO-G (Greenland)

IceCube – Upgrade & Gen 2 –

- Located in the South Pole
- Ice is used as a Cherenkov detector.
- IceCube provides astrophysical neutrino measurements.

Gentoo penguin

IceCube : Upgrade & Gen2

IceCubeGen 2 (design phase)

- Optical array ~8 × Gen 1
 New sensor (Gen 2 LOM) will be used.
- Increase statistics around the PeVregion

Gen 2 LOM (= D-Egg+mDOM)

IceCubeUpgrade

2025: Construction start

Testbed for new sensor types \rightarrow

D-Egg

mDOM

 Improved detector calibration/ ice model characterization

4. $0\nu\beta\beta$ Decay Experiments

*See Huang-san's lecture in detail

Double beta decay

Forbidden in SM (Lepton number violation) **Possible if** v **is Majonara**

How to detect

• Catch 1 electron pair emitted !

5. Sterile Neutrino Experiments

- PROSPECT-II
- IsoDAR

Why sterile neutrino ?

PROSPECT-II

Original PROSPECT Design

https://arxiv.org/abs/2107.03934

- High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
- Segmented ⁶Li-doped liquid scintillator
- IBD detection of protons on LS, 1.8 MeV threshold
- Prompt (positron annihilation, 1-8 MeV) + delayed (n + $^{6}Li \rightarrow \alpha$ + t + 4.8 MeV)
- Slightly higher ⁶Li loading (0.08 % → 0.1% by mass)
- Larger segment length 118 cm
 → 145 cm → IBD rate increases to roughly 1150/day

ISODAR (Isotope Decay At Rest)

Beam Line

- Underground facility at Mt. Yemi in Korea
- > 1000 m overburden (cosmic ray shielding)

Target

- 60 MeV proton cyclotron
- p^+ + Be \rightarrow spallation neutrons
- $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li}^* \rightarrow {}^{8}\text{Be} + e^- + \bar{\nu}_e$

6. High statistic v_{τ} Experiment (SHiP)

SHiP

(Search for Hidden Particles)

- to explore the domain of hidden particles, such as Heavy Neutral Leptons (HNL), dark photons, light scalars, supersymmetric particles, axions etc., with masses below O(10) GeV
- Large amount of v's, especially v_{τ} 's with three orders of magnitude more statistics than available in previous experiments combined.

SHiP: experimental site

Fixed target facility @ CERN SPS
400 GeV protons
4 × 10¹³ POT/spill in every 7 sec → 2 × 10²⁰ POT in 5 years

https://doi.org/10.1007/JHEP04(2021)199

Basic unit of the SND & the ECC brick

Emulsion Film

Nuclear emulsion

- Kind of photo film.
- Contains small grains of AgBr.
- Ag grains are remained after charged particle pass.
- We can detect the track after the development.
- Position resolution is $\sim 1\mu$ m (still the best in all detectors).

Discovery of V_{τ} **DONUT experiment, 2000** (Direct Observation of NeUtrino Tau ,Fermilab. E872) Nagoya Univ., Kobe Univ., et al

DONUT Detector

Creating a Tau Neutrino Beam

Of one million million tau neutrinos crossing the DONUT detector, scientists expect about one to interact with an iron nucleus.

v physics @ SHiP

- Production of large amounts of neutrinos
- Study v_τ and <u>v_τ</u> properties (ex. Cross sections, etc)
 Test lepton flavor universality by comparing v_μ to v_τ interactions
- *v_e* study in high energy range.
 Start in 2031 ?

	CC DIS interactions
N _{ve}	8.6×10^{5}
$N_{\nu_{\mu}}$	2.4×10^{6}
$N_{\nu_{\tau}}$	2.8×10^{4}
$N_{\overline{\nu_e}}$	1.9×10^{5}
$N_{\overline{\nu}_{\mu}}$	5.5×10^{5}
$N_{\overline{\nu}_{\tau}}$	1.9×10^{4}

Expected CC DIS interactions in the SND assuming 2×10^{20} protons on target

Summary

- There are many interesting and fascinating future v experiments.
- Introduced today are

HK, DUNE, ESSnuSB, v-factory, (JUNO,) IceCube Gen 2 & atmospheric v experiments, $(0v\beta\beta$ experiments,) sterile v experiments, and SHiP.

Thank you !

01-10

n Dùng Ngo