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Neutrinos in the Standard Model

▶ proposed in 1930, Pauli

▶ discovered in 1956, reactor
νe , Cowan and Reines

▶ Lee, Yang, Wu in
1956–1957: parity violation

▶ Goldhaber in 1957:
neutrinos are left-handed

▶ three light active neutrinos
νe , νµ, and ντ

▶ N = 2.9840± 0.0082 from
Z boson decay

▶ neutrinos were considered
massless in Standard Model

Number of active neutrino flavors
from Z decay in LEP experiments.
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Discovery of Neutrino Oscillations

▶ Super-Kamiokande: atmospheric νµ disappearance

▶ SNO: νe flux and total neutrino νe,µ,τ flux from the Sun

▶ neutrinos have non-zero mass, 2015 Nobel Prize

(a) Super-Kamiokande, 1998 [1] (b) SNO, 2002 [2]
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Neutrino Oscillation Measurements

▶ να: state with specific flavor (νe , νµ, ντ )

▶ νi : state with specific mass (m1, m2, m3)

▶ |να⟩ =
∑

i U
∗
αi |νi ⟩, matrix U is unitary, called PMNS matrix

U =

 1
c23 s23
−s23 c23

 c13 −s13e iδCP

1
−s13e iδCP c13

 c12 s12
−s12 c12

1


▶ θij , δCP , ∆m2

ij = m2
i −m2

j

▶ θ12, ∆m2
21 (solar, reactor)

▶ θ23,
∣∣∆m2

32

∣∣ (atmo., beam)

▶ θ13 (reactor)

▶
∣∣∆m2

32

∣∣ = 2.5× 10−3 eV2

∆m2
21 = 7.5× 10−5 eV2

▶ mass ordering and absolute
masses remain unknown
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Absolute Neutrino Masses

▶ KATRIN experiment [3]
▶ end point of tritium β decay at

18.574 keV
▶ m2

β =
∑

|Uei |2m2
i

▶ mβ < 1.1 eV, 2019 [3]
▶ mβ < 0.8 eV, 2021 [4]
▶ mβ < 0.45 eV, 2024, [5]

▶ cosmology, Planck data
▶ e.g.

∑
mi < 0.28 eV [6]

▶ cosmological model dependent
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New constraints from DESI

▶ Dark Energy Spectroscopic Instrument (DESI): spectra of > 6
million extragalactic objects, precision measurements of
large-scale distribution of matter in the Universe

▶ CMB + DESI BAO limit in 2024:
∑

mν < 0.072 eV [7]
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Where Do Neutrino Masses Come from? [13]

▶ neutrinos can be Dirac particles: mψRψL, need ψR

▶ why are neutrino masses so small?

▶ a different possible source: seesaw mechanism [8–12]

▶ seesaw requires that neutrinos are Majorana particles
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Majorana Neutrinos
▶ Majorana in 1937: ν = ν [14]

(i γ̃µ∂µ −m)ψ̃ = 0,

where γ̃µ are purely imaginary satisfying Clifford Algebra, i γ̃µ

is real, ψ̃ is a real field [15]

“The theory, however, can be
obviously modified so that the
β-emission, both positive and
negative, is always accompanied
by the emission of a neutrino.”
— E. Majorana [14]

▶ besides neutrino mass, may also help explain baryon
asymmetry: leptogenesis [16], L violation induces B violation

▶ most promising probe: neutrinoless double-β decay
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Neutrinoless Double-β Decay
▶ double-β (2νββ) decay

▶ first calculated by Goeppert-Mayer in 1935
▶ first direct observation: 82Se → 82Kr+ 2e− + 2ν in a time

projection chamber (TPC), Elliott, Hahn, and Moe, 1987

▶ neutrinoless double-β (0νββ) decay, Furry, 1939, lepton
number violation process, Majorana ↔ 0νββ decay [17]

A
ZX → A

Z+2X+ 2e−

Feynman diagrams of 2νββ and 0νββ decays.
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Decay Half-Life
▶ decay half-life

1

T1/2
= G 0ν

∣∣M0ν
∣∣2m2

ββ

m2
e

.

▶ phase factor G 0ν , nuclear matrix element M0ν

▶ effective Majorana mass mββ =
∣∣∑

k U
2
ekmk

∣∣
▶ mββ vs. mass ordering and absolute neutrino mass
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Experimental Design
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Signal Signature

▶ mono-energetic peak at Qββ

▶ background free

T1/2 ∝ ϵMt

where M is mass, t is
running time, ϵ is efficiency

▶ with background

T1/2 ∝ ϵ

√
Mt

B∆E

▶ B: background index, in
keV−1 kg−1 yr−1

▶ ∆E : energy resolution

0 0.2 0.4 0.6 0.8 1

ββ / QeT

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (
a.

u.
) ββν2

ββν0

The two-electron energy spectrum
for the 2νββ and 0νββ decays. For
example, Qββ = 2039 keV for 76Ge,
and 2458 keV for 136Xe.
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Intrinsic 2νββ Background
▶ T 2ν

1/2 ≪ T 0ν
1/2, 2νββ decay is a potential ultimate background

▶ the fraction of the 2νββ counts in the peak region [18]

F ∝ (∆E/Qββ)
6

Signature of 0νββ decay in the observed spectrum of electron energy
normalized by the Q value (Qββ) [18].
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Choice of Isotopes

▶ high abundance: lower cost in enrichment, or without
enrichment, e.g. 130Te

▶ high Qββ : low intrinsic 2νββ background, low background of
radioactivity

isotope natural abundance (%) Qββ(MeV)
48Ca 0.187 4.263
76Ge 7.8 2.039
82Se 8.7 2.998
96Zr 2.8 3.348

100Mo 9.8 3.035
116Cd 7.5 2.813
130Te 34.08 2.527
136Xe 8.9 2.459
150Nd 5.6 3.371
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Nuclear Matrix Element and Phase Space Factor

▶ larger
∣∣M0ν

∣∣2 and G 0ν , easier for 0νββ decay to happen

1/T1/2 = G 0ν
∣∣M0ν

∣∣2m2
ββ/m

2
e

▶ uncertainty in
∣∣M0ν

∣∣2 due to nuclear models

Phase factors [19] and nuclear matrix elements [20].
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Background Challenges
▶ cosmic rays and cosmogenic activation, e.g. 77Ge, 137Xe
▶ radioactivity of detector materials, e.g. 235U, 238U, 232Th
▶ anthropogenic, e.g. 60Co, 137Cs, 110mAg
▶ neutrinos: ν + e− → ν + e−

World underground laboratories [21].
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Experimental Programs
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Main Approaches

▶ source ̸= detector
▶ source on a foil
▶ event energy and topology
▶ low resolution and

efficiency

▶ source = calorimeter
▶ measure double-β energy
▶ high resolution and

efficiency
▶ no event topology

▶ source = calorimeter =
tracker
▶ high pressure gas TPC
▶ high efficiency and

resolution, event topology
▶ large volume, weak

self-shielding

Bottom figure taken from [22] based
on simulation.
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Detector Signals
▶ signals come in form of heat (bolometer), light (scintillator),

and charge (semiconductor, etc.)

▶ non-exhaustive list, selectively introduce them clockwise

Heat

Charge Light

CUORE

GERDA
MAJORANA
LEGEND

CUPID
AMoRE

KamLAND-Zen
SNO+
ZICOS
CANDLES
future JUNO

EXO-200
nEXO
DARWIN
NEXT
PandaX-III
SuperNEMO
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CUORE Experiment

▶ Cryogenic Underground Observatory for Rare Events, at LNGS

▶ bolometers, ultra-cold 130TeO2

▶ 988 TeO2 crystals, 206 kg of 130Te, 11.8mK

▶ 7 keV FWHM at Qββ , taking data since 2019
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CUORE 2024 Results
▶ 2024 new result: T1/2 > 2.2× 1025 yr at 90% C.L. [23]
▶ about 2 t yr TeO2 exposure (plan to stop at 3 t yr),

background 1.42× 10−2 keV−1 kg−1 yr−1

▶ 90% background near Qββ from α, 60Co peak at 2505.7 keV
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CUPID Experiment

▶ CUPID: CUORE Upgrade with Particle Identification

▶ separate α from β/γ with the same energy

▶ CUPID-0: scintillating bolometers Zn82Se crystals

▶ CUPID-Mo: Li2
100MoO4, chosen for CUPID ton-scale

▶ PRL 126, 181802 (2021), 1.17 kg yr, 7.6 keV FWHM [24]
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KamLAND-Zen

▶ multi-ton scale experiment,
light from liquid scintillator

▶ liquid scintillator loaded with
3.1% Xe, 745 kg, 91% enriched

▶ 110mAg from Fukushima (2011)

▶ 270 keV FWHM

1879 17-inch and 20-inch PMTs

24 / 44



Kamland-Zen 2024 Results [25]

▶ Zen 400: T1/2 > 0.9× 1026 yr

▶ Zen 800: T1/2 > 3.4× 1026 yr

▶ combined: T1/2 > 3.8× 1026 yr

▶ most stringent in the inverted
mass ordering region!

▶ future: KamLAND2, more light
yield, new electronics, etc.
cover inverted region
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SNO+

▶ SNOLAB, 5890mwe

▶ 780 tons liquid scintillator is
in, will be loaded with 0.5%
natural Te, 1300 kg 130Te

▶ 7000 tons water for shielding,
∼ 9300 PMTs

Expected spectrum [26].
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EXO-200, nEXO

▶ liquid Xe TPC, single phase, enriched
▶ EXO-200 (Enriched Xenon Observatory)

▶ 110 kg of Xe, enriched to 80.6% in 136Xe
▶ PRL 123, 161802 (2019), 67 keV FWHM (σ/E = 1.15%)

▶ nEXO (next EXO), plann to use 5 ton of Xe, barium tagging
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DARWIN, XLZD, PandaX-xT

▶ liquid Xe duel phase TPC for dark matter WIMP searches

▶ σ/E = 0.8% resolution at Qββ achieved in XENON1T [27]

▶ DARWIN: 50t Xe for dark matter searches, 3.6t of 136Xe [28]

▶ PandaX-xT, expect sensitivity below inverted ordering [29]
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NEXT, AXEL, PandaX-III
▶ high pressure gas Xe TPC: high resolution (< 1% FWHM

[30], σ/E < 0.4%), topology to reject α, β and γ

▶ NEXT: electroluminescent amplification + PMTs, NEXT-100:
100 kg, under comissioning

▶ PandaX-III: fine-pitch Micromegas [31]

▶ AXEL: cellular photosensors, electroluminescence (ELCC) [32]

29 / 44



SuperNEMO

▶ built upon the success of NEMO-3

▶ thin foil enriched in double-β isotope, flexibility in isotope type

▶ wire-chamber tracker: measure particles’ trajectories,
background rejection

▶ segmented calorimeter: energy and timing
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GERDA, MAJORANA, and LEGEND

▶ 76Ge → 76Se+ 2e−

▶ source is also detector, high efficiency

▶ best energy resolution and lowest background index in all
0νββ decay experiments

▶ commercial technology, modest cryogenic requirements
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GERDA Experiment
▶ LNGS, Italy, 3500wme, 106 reduction of cosmic rays

▶ water tank: 10m diameter, muon veto, shielding

▶ LAr veto: 0.5m diameter, 2m high, veto, shielding, cooling

▶ about 40 detectors, enriched to about 87%, 35.6 kg

plastic scintillator panels
muon veto

clean room

ultra-pure water
muon Cherenkov veto

LAr cryostat

LAr veto 
instrumentation Ge detector array with 

low activity electronics

BEGe detector module 
in low mass holder

wavelength 
shifting fibers with 

SiPM read-out

low activity PMTs
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Detector Array and Liquid Argon Veto Instrumentation

▶ detectors mounted on 6 strings, nylon cylinder

▶ liquid argon veto: TPB reflector, PMTs, wavelength shifting
fibers + SiPMs
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Energy Calibration

▶ 228Th, weekly calibration

▶ between calibrations: test pulses injected every 20 s, stable
operating conditions for physics analysis is about 80%
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An example of the GERDA Phase II calibration data.
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Calibration Curve

▶ after each calibration, find the position of the gamma lines

▶ fit a linear function as the calibration curve (ADC to keV)

▶ energy resolution determined from width of Gaussian
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Background Reduction
▶ liquid argon veto + pulse shape discrimination + cosmic veto

▶ first in the field to operate in background-free regime

▶ signal efficiency: 46% for coaxial, 61% for BEGe, 66% for IC
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Energy Spectrum
▶ analysis cut: liquid argon veto, pulse shape discrimination
▶ at low energy, dominated by 2νββ decay of 76Ge
▶ Qββ ± 25 keV for blind analysis
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Final GERDA Results: PRL 125 (2020), 252502

▶ half-life limit: T1/2 > 1.8× 1026 yr at 90% C.L.

▶ world’s lowest background: B = 5.2× 10−4 cts/(keV kg yr)
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LEGEND-200 Detector and New Results
▶ about 130kg of Ge, a year data taking since early 2023, new

results in Neutrino 2024 (talk by Luigi Pertoldi)
▶ background index: BI = 5.3× 10−4 cts/(keV kg yr),

T1/2 > 1.9× 10−26 yr
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Comparison: Background vs. Exposure

▶ keys to 0νββ experiments: background and exposure

▶ extreme background requirements for LEGEND, nEXO, etc.

A summary of background and exposure for various experiments [33].
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Current Status
▶ leading constraints on mββ comes from 76Ge, 130Te, and 136Xe

▶ region above the inverted mass ordering is mostly excluded

isotope experiment year half-life limit (yr) mββ (meV) reference
76Ge LEGEND-200 2024 1.9× 1026 ∼79-180 [34]
136Xe KamLAND-Zen 2024 3.8× 1026 28-122 [25]
130Te CUORE 2024 3.8× 1025 70-240 [23]
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Future Prospect
▶ cover inverted ordering region: mββ ∼ 10meV, use larger

mass, further reduce background
▶ CUPID, nEXO, KamLAND2-Zen, NEXT, etc.
▶ LEGEND: 1 ton of 76Ge, run for 10 yr, 1028 yr
▶ dark matter experiments (XLZD/DARWIN/PandaX, CDEX),

future JUNO, new ideas (NvDEx, etc.)
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Relation with Other Neutrino Experiments
▶ mass ordering measurement

▶ NOvA + T2K: no preference with 2024 joint analysis [35]
▶ JUNO: data taking starts in 2025, 6 years, 3-4σ
▶ next generation beam experiments: DUNE, T2HK

▶ precision measurement of mixing parameters [36]

▶ absolute mass from beta decay, sum of neutrino masses

Figure adapted from [37].

43 / 44



Summary and Outlook

▶ Majorana neutrinos may solve several fundamental issues in
particle physics and cosmology
▶ origin of neutrino mass, why it is small
▶ why the universe is dominated by matter

▶ neutrinoless double-β decay is the most promising probe
▶ keys: exposure, energy resolution, and background
▶ technologies: bolometers, scintillators, TPCs, semiconductors

▶ most of the parameter space above the inverted mass ordering
region are excluded, results led by 76Ge, 130Te, and 136Xe

▶ the goal of next generation experiment is to reach below the
inverted mass ordering region, ton-scale, lower background
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