Probing the Nature of Neutrinos: the Search for Neutrinoless Double-β Decay

Junting Huang

Shanghai Jiao Tong University

July 20, 2024 Vietnam School on Neutrinos ICISE center, Quy Nhon, VN

Table of Contents

1. [Nature of Neutrinos](#page-2-0)

- 1.1 [Neutrino Masses](#page-2-0)
- 1.2 [Neutrinoless Double-](#page-9-0) β Decay

2. [Experimental Design](#page-11-0)

- 2.1 [Signal Signature](#page-12-0)
- 2.2 Intrinsic 2νββ [Background](#page-13-0)
- 2.3 [Choice of Isotopes](#page-14-0)
- 2.4 [Background Challenges](#page-16-0)
- 3. [Experimental Programs](#page-17-0)
- 3.1 [Technology Overview](#page-18-0)
- 3.2 [Experiment Review](#page-20-0)
- 3.3 [Current Status and Future Prospect](#page-40-0)

4. [Summary and Outlook](#page-43-0)

Neutrinos in the Standard Model

- ▶ proposed in 1930, Pauli \blacktriangleright discovered in 1956, reactor $\overline{\nu}_e$, Cowan and Reines
- ▶ Lee, Yang, Wu in 1956–1957: parity violation
- ▶ Goldhaber in 1957: neutrinos are left-handed
- \blacktriangleright three light active neutrinos ν_e , ν_μ , and ν_τ
- $N = 2.9840 + 0.0082$ from Z boson decay
- ▶ neutrinos were considered massless in Standard Model

Number of active neutrino flavors from Z decay in LEP experiments.

Discovery of Neutrino Oscillations

- \blacktriangleright Super-Kamiokande: atmospheric ν_{μ} disappearance
- ▶ SNO: ν_e flux and total neutrino $\nu_{e,\mu,\tau}$ flux from the Sun
- ▶ neutrinos have non-zero mass, 2015 Nobel Prize

Neutrino Oscillation Measurements

 $\triangleright \nu_{\alpha}$: state with specific flavor $(\nu_{e}, \nu_{\mu}, \nu_{\tau})$

 \blacktriangleright ν_i : state with specific mass (m_1, m_2, m_3)

 $\blacktriangleright \ket{\nu_{\alpha}} = \sum_i U^*_{\alpha i} |\nu_i\rangle$, matrix U is unitary, called PMNS matrix

$$
U=\left(\begin{array}{ccc}1&&&\\&c_{23}&s_{23}\\&&-s_{23}&c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13}& &-s_{13}e^{i\delta_{CP}}\\&1&&\\&-s_{13}e^{i\delta_{CP}}&&c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12}&s_{12}\\-s_{12}&c_{12}&\\&&1\end{array}\right)
$$

 \blacktriangleright θ_{ij} , δ_{CP} , $\Delta m_{ij}^2 = m_i^2 - m_j^2$ ▶ θ_{12} , Δm_{21}^2 (solar, reactor) ▶ θ_{23} , $|\Delta m_{32}^2|$ (atmo., beam) \blacktriangleright θ_{13} (reactor) $\blacktriangleright |\Delta m_{32}^2| = 2.5 \times 10^{-3} \text{ eV}^2$ $\Delta m^2_{21}=7.5\times 10^{-5}\,$ e $\rm V^2$ ▶ mass ordering and absolute

masses remain unknown

Absolute Neutrino Masses

- ▶ KATRIN experiment [\[3\]](#page-44-2)
	- \triangleright end point of tritium β decay at 18.574 keV
	- $\blacktriangleright\hspace{.15cm} m_{\beta}^2 = \sum |U_{ei}|^2 m_i^2$
	- \triangleright m_β < 1.1 eV, 2019 [\[3\]](#page-44-2)
	- \blacktriangleright m_β < 0.8 eV, 2021 [\[4\]](#page-44-3)
	- \triangleright m_β < 0.45 eV, 2024, [\[5\]](#page-44-4)
- ▶ cosmology, Planck data
	- e.g. $\sum m_i < 0.28 \text{ eV}$ [\[6\]](#page-45-0)
	- ▶ cosmological model dependent

New constraints from DESI

 \triangleright Dark Energy Spectroscopic Instrument (DESI): spectra of > 6 million extragalactic objects, precision measurements of large-scale distribution of matter in the Universe

 \triangleright CMB + DESI BAO limit in 2024: $\sum m_{\nu} < 0.072$ eV [\[7\]](#page-45-1)

Where Do Neutrino Masses Come from? [\[13\]](#page-46-0) ▶ neutrinos can be Dirac particles: $m\overline{\psi}_R\psi_L$, need ψ_R $v_{\rm L}$ ${\rm v}_{\rm R}$ ▶ why are neutrino masses so small? fermion masses die sie be $11 - 4$ C_{α} t o $V_1 \longmapsto V_2 \bullet V_3$ e_{ℓ} keV GeV ueV meV eV MeV TeV \triangleright a different possible source: seesaw mechanism $[8-12]$ $[8-12]$ v_{\perp}

seesaw requires that neutrinos are Majorana particles

 $1/M$

Majorana Neutrinos

$$
\triangleright
$$
 Majorana in 1937: $\nu = \overline{\nu}$ [14]

$$
(i\widetilde{\gamma}^{\mu}\partial_{\mu}-m)\widetilde{\psi}=0,
$$

where $\widetilde{\gamma}^{\mu}$ are purely imaginary satisfying Clifford Algebra, $i\widetilde{\gamma}^{\mu}$ is real, ψ is a real field [\[15\]](#page-46-3)

"The theory, however, can be obviously modified so that the β -emission, both positive and negative, is always accompanied by the emission of a neutrino." — E. Majorana [\[14\]](#page-46-2)

 \triangleright besides neutrino mass, may also help explain baryon asymmetry: leptogenesis $[16]$, L violation induces B violation most promising probe: neutrinoless double- β decay

Neutrinoless Double-β Decay

- \blacktriangleright double- β (2ν $\beta\beta$) decay
	- ▶ first calculated by Goeppert-Mayer in 1935
	- ▶ first direct observation: ${}^{82}Se \rightarrow {}^{82}Kr + 2e^- + 2\overline{\nu}$ in a time projection chamber (TPC), Elliott, Hahn, and Moe, 1987
- **▶** neutrinoless double- β (0ν $\beta\beta$) decay, Furry, 1939, lepton number violation process, Majorana \leftrightarrow 0 $\nu\beta\beta$ decay [\[17\]](#page-46-5)

$$
{}_{Z}^{A}X \rightarrow {}_{Z+2}^{A}X + 2e^-
$$

Feynman diagrams of $2\nu\beta\beta$ and $0\nu\beta\beta$ decays.

Decay Half-Life

 \blacktriangleright decay half-life

$$
\frac{1}{T_{1/2}} = G^{0\nu} \big| M^{0\nu} \big|^2 \frac{m_{\beta\beta}^2}{m_e^2}.
$$

• phase factor $G^{0\nu}$, nuclear matrix element $M^{0\nu}$ ► effective Majorana mass $m_{\beta\beta} = \left|\sum_k U_{ek}^2 m_k\right|$ \triangleright $m_{\beta\beta}$ vs. mass ordering and absolute neutrino mass Inverted Normal 0.100

Experimental Design

Signal Signature

- ▶ mono-energetic peak at $Q_{\beta\beta}$
- ▶ background free

 $T_{1/2} \propto \epsilon M t$

where M is mass, t is running time, ϵ is efficiency

 \blacktriangleright with background

$$
T_{1/2} \propto \epsilon \sqrt{\frac{Mt}{B\Delta E}}
$$

- \blacktriangleright B: background index, in \rm{keV}^{-1} \rm{kg}^{-1} yr $^{-1}$
- ΔE : energy resolution

The two-electron energy spectrum for the $2\nu\beta\beta$ and $0\nu\beta\beta$ decays. For example, $Q_{\beta\beta} = 2039$ keV for ⁷⁶Ge, and 2458 keV for $136Xe$.

Intrinsic 2νββ Background

 \blacktriangleright $T_{1/2}^{2\nu}\ll T_{1/2}^{0\nu}$, $2\nu\beta\beta$ decay is a potential ultimate background

 \triangleright the fraction of the $2\nu\beta\beta$ counts in the peak region [\[18\]](#page-47-0)

 $\digamma\propto\left(\Delta E/Q_{\beta\beta}\right)^{6}$

Signature of $0\nu\beta\beta$ decay in the observed spectrum of electron energy normalized by the Q value $(Q_{\beta\beta})$ [\[18\]](#page-47-0).

Choice of Isotopes

- ▶ high abundance: lower cost in enrichment, or without enrichment, e.g. ¹³⁰Te
- $▶$ high $Q_{\beta\beta}$: low intrinsic $2\nu\beta\beta$ background, low background of radioactivity

Nuclear Matrix Element and Phase Space Factor

 \blacktriangleright larger $|M^{0\nu}|$ 2 and $G^{0\nu}$, easier for $0\nu\beta\beta$ decay to happen

$$
1/\,T_{1/2}=\,G^{0\nu}\big|M^{0\nu}\big|^2m_{\beta\beta}^2/m_e^2
$$

ightharpoonup in $|M^{0\nu}|$ 2 due to nuclear models

Phase factors [\[19\]](#page-47-1) and nuclear matrix elements [\[20\]](#page-47-2).

Background Challenges

- \triangleright cosmic rays and cosmogenic activation, e.g. 77 Ge, 137 Xe
- radioactivity of detector materials, e.g. ^{235}U , ^{238}U , ^{232}Th
- **•** anthropogenic, e.g. 60 Co, 137 Cs, 110m Ag
- **►** neutrinos: $\nu + e^-$ → $\nu + e^-$

Experimental Programs

Main Approaches

- \blacktriangleright source \neq detector
	- \blacktriangleright source on a foil
	- ▶ event energy and topology
	- ▶ low resolution and efficiency
- \blacktriangleright source $=$ calorimeter
	- $▶$ measure double- β energy
	- ▶ high resolution and efficiency
	- no event topology
- \triangleright source = calorimeter = tracker
	- ▶ high pressure gas TPC
	- ▶ high efficiency and resolution, event topology
	- ▶ large volume, weak self-shielding

Bottom figure taken from [\[22\]](#page-47-4) based on simulation.

Detector Signals

- ▶ signals come in form of heat (bolometer), light (scintillator), and charge (semiconductor, etc.)
- \blacktriangleright non-exhaustive list, selectively introduce them clockwise

CUORE Experiment

- ▶ Cryogenic Underground Observatory for Rare Events, at LNGS
- bolometers, ultra-cold 130 TeO₂
- ▶ 988 TeO₂ crystals, 206 kg of 130 Te, 11.8 mK
- ▶ 7 keV FWHM at $Q_{\beta\beta}$, taking data since 2019

CUORE 2024 Results

- ▶ 2024 new result: $T_{1/2} > 2.2 \times 10^{25}$ yr at 90% C.L. [\[23\]](#page-47-5)
- \blacktriangleright about 2 t yr TeO₂ exposure (plan to stop at 3 t yr), background 1.42×10^{-2} keV $^{-1}$ kg $^{-1}$ yr $^{-1}$
- ▶ 90% background near $Q_{\beta\beta}$ from α , ⁶⁰Co peak at 2505.7 keV

CUPID Experiment

- ▶ CUPID: CUORE Upgrade with Particle Identification
- **►** separate α from β/γ with the same energy
- \triangleright CUPID-0: scintillating bolometers $\mathsf{Zn}^{82}\mathsf{Se}$ crystals
- \blacktriangleright CUPID-Mo: Li₂ ¹⁰⁰MoO₄, chosen for CUPID ton-scale
- ▶ PRL 126, 181802 (2021), 1.17 kg yr, 7.6 keV FWHM [\[24\]](#page-48-0)

KamLAND-Zen

- \blacktriangleright multi-ton scale experiment, light from liquid scintillator
- ▶ liquid scintillator loaded with 3.1% Xe, 745 kg, 91% enriched
- $110m$ Ag from Fukushima (2011)
- ▶ 270 keV FWHM

1879 17-inch and 20-inch PMTs

Kamland-Zen 2024 Results [\[25\]](#page-48-1)

- ▶ Zen 400: $T_{1/2}$ > 0.9 \times 10²⁶ yr
- ▶ Zen 800: $T_{1/2}$ > 3.4 \times 10²⁶ yr
- combined: $T_{1/2} > 3.8 \times 10^{26}$ yr
- most stringent in the inverted mass ordering region!
- ▶ future: KamLAND2, more light yield, new electronics, etc. cover inverted region

10

10

10 10^{-1}

Events / 0.05 MeV

a) NO - Shell Model

 \cdots ORPA - EDE $-$ IBM

(b) IO

SNO+

- ▶ SNOLAB, 5890 mwe
- ▶ 780 tons liquid scintillator is in, will be loaded with 0.5% natural Te, 1300 kg ¹³⁰Te
- ▶ 7000 tons water for shielding, \sim 9300 PMTs

Expected spectrum [\[26\]](#page-48-2).

EXO-200, nEXO

- ▶ liquid Xe TPC, single phase, enriched
- ▶ EXO-200 (Enriched Xenon Observatory)
	- ▶ 110 kg of Xe, enriched to 80.6% in $136\times$
	- ▶ PRL 123, 161802 (2019), 67 keV FWHM ($σ/E = 1.15\%)$
- ▶ nEXO (next EXO), plann to use 5 ton of Xe, barium tagging

DARWIN, XLZD, PandaX-xT

- ▶ liquid Xe duel phase TPC for dark matter WIMP searches
- \triangleright $\sigma/E = 0.8\%$ resolution at $Q_{\beta\beta}$ achieved in XENON1T [\[27\]](#page-48-3)
- \triangleright DARWIN: 50t Xe for dark matter searches, 3.6t of 136 Xe [\[28\]](#page-48-4)
- \triangleright PandaX-xT, expect sensitivity below inverted ordering [\[29\]](#page-48-5)

NEXT, AXEL, PandaX-III

- \blacktriangleright high pressure gas Xe TPC: high resolution (< 1% FWHM [\[30\]](#page-49-0), $\sigma/E < 0.4\%$), topology to reject α , β and γ
- \triangleright NEXT: electroluminescent amplification $+$ PMTs, NEXT-100: 100 kg, under comissioning
- ▶ PandaX-III: fine-pitch Micromegas [\[31\]](#page-49-1)
- ▶ AXEL: cellular photosensors, electroluminescence (ELCC) [\[32\]](#page-49-2)

SuperNEMO

- ▶ built upon the success of NEMO-3
- \blacktriangleright thin foil enriched in double- β isotope, flexibility in isotope type
- wire-chamber tracker: measure particles' trajectories, background rejection
- ▶ segmented calorimeter: energy and timing

GERDA, MAJORANA, and LEGEND

- ▶ $^{76}Ge \rightarrow {}^{76}Se + 2e^-$
- \triangleright source is also detector, high efficiency
- ▶ best energy resolution and lowest background index in all $0\nu\beta\beta$ decay experiments
- ▶ commercial technology, modest cryogenic requirements

GERDA Experiment

- \blacktriangleright LNGS, Italy, 3500 wme, 10⁶ reduction of cosmic rays
- \triangleright water tank: 10 m diameter, muon veto, shielding
- ▶ LAr veto: 0.5 m diameter, 2 m high, veto, shielding, cooling
- \triangleright about 40 detectors, enriched to about 87%, 35.6 kg

Detector Array and Liquid Argon Veto Instrumentation

- \triangleright detectors mounted on 6 strings, nylon cylinder
- ▶ liquid argon veto: TPB reflector, PMTs, wavelength shifting $fibers + SiPMs$

Energy Calibration

- ²²⁸Th, weekly calibration
- \triangleright between calibrations: test pulses injected every 20 s, stable operating conditions for physics analysis is about 80%

An example of the GERDA Phase II calibration data.

Calibration Curve

- \triangleright after each calibration, find the position of the gamma lines
- \triangleright fit a linear function as the calibration curve (ADC to keV)
- ▶ energy resolution determined from width of Gaussian

Background Reduction

- \triangleright liquid argon veto $+$ pulse shape discrimination $+$ cosmic veto
- \blacktriangleright first in the field to operate in background-free regime
- \triangleright signal efficiency: 46% for coaxial, 61% for BEGe, 66% for IC

Energy Spectrum

- ▶ analysis cut: liquid argon veto, pulse shape discrimination
- $▶$ at low energy, dominated by $2\nu\beta\beta$ decay of ⁷⁶ Ge
- \triangleright $Q_{\beta\beta} \pm 25$ keV for blind analysis

Calibrated energy spectrum after all event selections.

Final GERDA Results: PRL 125 (2020), 252502

• half-life limit: $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% C.L.

▶ world's lowest background: $B = 5.2 \times 10^{-4}$ cts/(keV kg yr)

LEGEND-200 Detector and New Results

- ▶ about 130kg of Ge, a year data taking since early 2023, new results in Neutrino 2024 (talk by Luigi Pertoldi)
- ▶ background index: $BI = 5.3 \times 10^{-4}$ cts/(keV kg yr), $T_{1/2}$ > 1.9×10^{-26} yr

Comparison: Background vs. Exposure

 \blacktriangleright keys to $0\nu\beta\beta$ experiments: background and exposure

extreme background requirements for LEGEND, nEXO, etc.

A summary of background and exposure for various experiments [\[33\]](#page-49-3).

Current Status

leading constraints on $m_{\beta\beta}$ comes from ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe

region above the inverted mass ordering is mostly excluded

Future Prospect

- ▶ cover inverted ordering region: $m_{\beta\beta} \sim 10$ meV, use larger mass, further reduce background
- ▶ CUPID, nEXO, KamLAND2-Zen, NEXT, etc.
- EGEND: 1 ton of 76 Ge, run for 10 yr, 10^{28} yr
- ▶ dark matter experiments (XLZD/DARWIN/PandaX, CDEX), future JUNO, new ideas (NvDEx, etc.)

Relation with Other Neutrino Experiments

- ▶ mass ordering measurement
	- \triangleright NOvA + T2K: no preference with 2024 joint analysis [\[35\]](#page-50-0)
	- \blacktriangleright JUNO: data taking starts in 2025, 6 years, 3-4 σ
	- ▶ next generation beam experiments: DUNE, T2HK
- ▶ precision measurement of mixing parameters [\[36\]](#page-50-1)
- ▶ absolute mass from beta decay, sum of neutrino masses

Figure adapted from [\[37\]](#page-50-2).

Summary and Outlook

▶ Majorana neutrinos may solve several fundamental issues in particle physics and cosmology

- \triangleright origin of neutrino mass, why it is small
- \blacktriangleright why the universe is dominated by matter

Exercise neutrinoless double- β decay is the most promising probe

- ▶ keys: exposure, energy resolution, and background
- ▶ technologies: bolometers, scintillators, TPCs, semiconductors
- \triangleright most of the parameter space above the inverted mass ordering region are excluded, results led by 76 Ge, 130 Te, and 136 Xe
- \triangleright the goal of next generation experiment is to reach below the inverted mass ordering region, ton-scale, lower background

References I

- 1 Y. Fukuda et al., "Evidence for oscillation of atmospheric neutrinos", Phys.Rev.Lett. 81, 1562-1567 (1998).
- ² Q. Ahmad et al., "Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory", Phys.Rev.Lett. 89[, 011301 \(2002\).](https://doi.org/10.1103/PhysRevLett.89.011301)
- 3 M. Aker et al., "Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN", [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.123.221802) 123[, 221802 \(2019\).](https://doi.org/10.1103/PhysRevLett.123.221802)
- ⁴ M. Aker et al., "Direct neutrino-mass measurement with sub-electronvolt sensitivity", Nature Phys. 18[, 160–166 \(2022\).](https://doi.org/10.1038/s41567-021-01463-1)
- ⁵ M. Aker et al., "Direct neutrino-mass measurement based on 259 days of KATRIN data", (2024).

References II

- ⁶ S. Roy Choudhury and S. Choubey, "Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios", [JCAP](https://doi.org/10.1088/1475-7516/2018/09/017) 09, [017 \(2018\).](https://doi.org/10.1088/1475-7516/2018/09/017)
- 7 First neutrino results from the dark energy spectroscopic instrument, [https:](https://agenda.infn.it/event/37867/contributions/233919/) [//agenda.infn.it/event/37867/contributions/233919/](https://agenda.infn.it/event/37867/contributions/233919/).
- ⁸ P. Minkowski, " $\mu \rightarrow e\gamma$ at a Rate of One Out of 10⁹ Muon Decays?", Phys. Lett. B 67[, 421–428 \(1977\).](https://doi.org/10.1016/0370-2693(77)90435-X)
- 9 T. Yanagida, "Proc. workshop on unified theory and the baryon number in the universe", KEK Report No. 79-18 95 (1979).
- ¹⁰M. Gell-Mann, P. Ramond, and R. Slansky, "Complex Spinors and Unified Theories", Conf. Proc. C 790927, 315–321 (1979).
- ¹¹S. L. Glashow, "The Future of Elementary Particle Physics", [NATO Sci. Ser. B](https://doi.org/10.1007/978-1-4684-7197-7_15) 61, 687 (1980).

References III

- $12R$. N. Mohapatra and G. Senjanovic, "Neutrino Mass and Spontaneous Parity Nonconservation", [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.44.912) 44, 912 [\(1980\).](https://doi.org/10.1103/PhysRevLett.44.912)
- $13H$. Murayama, "The origin of neutrino mass", Phys. World 15, 35–39 (2002).
- ¹⁴E. Majorana, "Teoria simmetrica dell'elettrone e del positrone", Nuovo Cim. 14[, 171–184 \(1937\).](https://doi.org/10.1007/BF02961314)
- ¹⁵F. Wilczek, "Majorana returns", [Nature Physics](https://doi.org/10.1038/nphys1380) 5, 614–618 [\(2009\).](https://doi.org/10.1038/nphys1380)
- ¹⁶M. Fukugita and T. Yanagida, "Baryogenesis Without Grand Unification", Phys. Lett. B 174[, 45–47 \(1986\).](https://doi.org/10.1016/0370-2693(86)91126-3)
- ¹⁷S. Bilenky and C. Giunti, "Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model", [Int. J. Mod.](https://doi.org/10.1142/S0217751X1530001X) Phys. A 30[, 1530001 \(2015\).](https://doi.org/10.1142/S0217751X1530001X)

References IV

- ¹⁸S. R. Elliott and P. Vogel, "Double beta decay", [Ann. Rev. Nucl.](https://doi.org/10.1146/annurev.nucl.52.050102.090641) Part. Sci. 52[, 115–151 \(2002\).](https://doi.org/10.1146/annurev.nucl.52.050102.090641)
- ¹⁹J. Kotila and F. lachello, "Phase space factors for double- β decay", Phys. Rev. C 85[, 034316 \(2012\).](https://doi.org/10.1103/PhysRevC.85.034316)
- 20 J. Gómez-Cadenas and J. Martín-Albo, "Phenomenology of neutrinoless double beta decay", PoS GSSI14[, 004 \(2015\).](https://doi.org/10.22323/1.229.0004)
- 21 J.-P. Cheng et al., "The China Jinping Underground Laboratory and its Early Science", [Ann. Rev. Nucl. Part. Sci.](https://doi.org/10.1146/annurev-nucl-102115-044842) 67, 231–251 [\(2017\).](https://doi.org/10.1146/annurev-nucl-102115-044842)
- $22P$. Ferrario et al., "Demonstration of the event identification capabilities of the NEXT-White detector", JHEP 10[, 052 \(2019\).](https://doi.org/10.1007/JHEP10(2019)052)
- ²³D. Q. Adams et al., "With or without ν ? Hunting for the seed of the matter-antimatter asymmetry", (2024).

References V

 $24E$. Armengaud et al., "New Limit for Neutrinoless Double-Beta Decay of ¹⁰⁰Mo from the CUPID-Mo Experiment", [Phys. Rev.](https://doi.org/10.1103/PhysRevLett.126.181802) Lett. **126**[, 181802 \(2021\).](https://doi.org/10.1103/PhysRevLett.126.181802)

 25 Results from kamland-zen, [https:](https://agenda.infn.it/event/37867/contributions/233913/)

[//agenda.infn.it/event/37867/contributions/233913/](https://agenda.infn.it/event/37867/contributions/233913/).

 26 Sno+ homepage,

<https://falcon.phy.queensu.ca/SNO+/index.html>.

- $27E$. Aprile et al., "Energy resolution and linearity of XENON1T in the MeV energy range", [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-020-8284-0) 80 , 785 (2020).
- 28 F. Agostini et al., "Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of $136Xe^r$, [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-020-8196-z) 80, [808 \(2020\).](https://doi.org/10.1140/epjc/s10052-020-8196-z)
- ²⁹A. Abdukerim et al., "PandaX-xT: a Multi-ten-tonne Liquid Xenon Observatory at the China Jinping Underground Laboratory", (2024).

References VI

- ³⁰J. Renner et al., "Energy calibration of the NEXT-White detector with 1% resolution near $Q_{\beta\beta}$ of¹³⁶Xe", JHEP 10[, 230 \(2019\).](https://doi.org/10.1007/JHEP10(2019)230)
- $31X$. Chen et al., "PandaX-III: Searching for neutrinoless double beta decay with high pressure¹³⁶Xe gas time projection chambers", [Sci. China Phys. Mech. Astron.](https://doi.org/10.1007/s11433-017-9028-0) 60, 061011 (2017).
- ³²S. Obara et al., "AXEL: High-pressure Xe gas TPC for BG-free $0\nu2\beta$ decay search", [Nucl. Instrum. Meth. A](https://doi.org/10.1016/j.nima.2019.162803) 958, edited by [M. Krammer, T. Bergauer, M. Dragicevic, M. Friedl, M. Jeitler,](https://doi.org/10.1016/j.nima.2019.162803) [J. Schieck, and C. Schwanda, 162803 \(2020\).](https://doi.org/10.1016/j.nima.2019.162803)
- ³³M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, "Toward the discovery of matter creation with neutrinoless double-beta decay", (2022).
- ³⁴The first year of legend-200 physics data in the quest for $0\nu\beta\beta$ decay, [https:](https://agenda.infn.it/event/37867/contributions/233912/)

[//agenda.infn.it/event/37867/contributions/233912/](https://agenda.infn.it/event/37867/contributions/233912/).

- 35 Results from a joint analysis of data from nova and t2k, <https://indico.fnal.gov/event/62062/>.
- ³⁶S.-F. Ge and W. Rodejohann, "JUNO and Neutrinoless Double Beta Decay", Phys. Rev. D 92[, 093006 \(2015\).](https://doi.org/10.1103/PhysRevD.92.093006)
- 37 M. Agostini et al., "Probing Majorana neutrinos with double- β decay", Science 365[, 1445 \(2019\).](https://doi.org/10.1126/science.aav8613)