Experimental Neutrino Physics in a Nutshell

Son Cao IFIRSE, VN

i.e A *practical* guide for How to THINK/ADDRESS the things as a (*neutrino*) experimentalist

Some confessions

- I had a similar background to most Vietnamese theoretical students and encountered many difficulties during my first years of Ph.D. studies in US in experimental HEP.
- My goal is to introduce experimental neutrino physics with the most basic concepts.
- My experience with *accelerator-based neutrino oscillation* experiments may not be applicable to other fields.
- Many materials are borrowed from other talks, but citations are occasionally missed.
- Your feedback is valuable, and I will always be a student for listening to it.

Lecture style: A "cocktail party"

SOURCE: CERN

KARL TATE / © LiveScience.com

Simple version of "Neutrino in SM"

http://hitoshi.berkeley.edu/neutrino/neutrino4.html

Can you explain the left and the right by just looking at the title and illustration?

Lecture style: To simplify something such as...

...with something like

J-PARC-chan lives in Tokai-mura, Naka-gun, Ibaraki, Japan.

Super-Kamiokande-chan lives in Kamioka-cho, Hida-city, Gifu, Japan.

http://higgstan.com

Contents

***** Basic steps as scientists

• Ask question(s), Design experiment, Build experiment, Collect data and Make statement based on data observation

• Examples with neutrino experiments

* Neutrino detection: A bird's eye view

• A complicated, interdisciplinary field of Particle and Nuclear physics, Material science, Mechanics, Electronics, and Data mining

Some selected topics (personal choices)

- 1) Signal and background
- 2) Hypothesis testing
- 3) Sensitivity & Parameter estimation
- 4) Systematics
- 5) Monte Carlo usage

Number of illustrations will be shown

code: https://github.com/cvson/nushortcourse

Feel free to download and play!

Basic steps as scientists

Neutrino oscillations in briefing

ref: Neutrino phenomenons and other lectures

Neutrino oscillations in briefing

flavor eigenstate

(where α is e, μ, τ) must be **superpositions** of the mass eigenstates, *a fundamental quantum mechanic phenomenon*

mass eigenstate

PMNS** leptonic

mixing matrix

Simple exercise

Show that U is unitarity if flavor eigenstates are orthogonal and mass eigenstates are orthogonal!

Relevant point: Why can we assume that the states (flavor/ mass) are orthogonal?

PMNS leptonic mixing matrix

$$c_{ij} = \cos \theta_{ij}, \ s_{ij} = \sin \theta_{ij}$$
$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{pmatrix} \text{Diag}(e^{i\rho_1}, e^{i\rho_2}, 0)$$

- U_{PMNS} is 3x3 unitary matrix and parameterized with 3 mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$) and one irreducible Dirac CP-violation phase δ_{CP} , similar to CKM matrix of quark mixing
- If neutrino is Majorana particle, there are two additional CPviolation phases (ρ_1 , ρ_2), which play no role in neutrino oscillations

Neutrino oscillation experiments aim to measure the oscillation parameters and to test if PMNS matrix can describe well the data *or need some extension*.

Other exercise

Count the number of mixing angles and phases in the n x n unitary mixing matrix.

Answer on the white board

Ask a question: e.g. does $\nu_{\mu} \rightarrow \nu_{e}$ oscillation happen?

Why is addressing this question important?

- **Confirm** non-zero mixing angle, $\theta_{13} > 0$ or set higher limit for mixing angle θ_{13} (e.g. $\theta_{13} < \alpha$)
- If non-zero, can **measure** δ_{CP} , which may be a source of matter-antimatter asymmetry in the Universe

Supported knowledge

What have you already know at the time question posed?

- Neutrino oscillations confirmed
- Some upper limit on θ_{13} from reactor

• etc...

https://arxiv.org/abs/hep-ex/0106019

Do muon neutrinos transform into electron neutrinos at given distance of travel?

at point A

at point B

$$P_{\nu_{\mu} \to \nu_{e}} = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta m_{31}^{2} + \epsilon \sin \theta_{13} \sin \delta_{CP} \dots$$

ref: Neutrino phenomenology lecture

Define goals of the exp. e.g. $\nu_{\mu} \rightarrow \nu_{e}$ search

Goal #1: Test theoretical hypothesis; basically

yes/no question

- may not be familiar with it yet(?)
- At some C.L., we observe the appearance of electron neutrino (i.e. $\theta_{13} \neq 0$)
- At some C.L., we reject the hypothesis that electron neutrino appeared (i.e. $\theta_{13} = 0$)

Goal #2: Estimate parameters of a **theoretical model** which used to describe the data

- Does the theoretical model (e.g. *neutrino oscillation*) give good description of the data?
- Allowed region for sin²θ₁₃ at 68% C.L. (1σ) or 90% C.L., etc...

Hypothesis test and parameter estimation will be discussed later

How to conduct the $\nu_{\mu} \rightarrow \nu_{e}$ search?

In principle, how can we conduct the search?

- 1. Need source of ν_{μ}
 - 2. Put detector at some distance from ν_{μ} source
 - 3. Look for ν_e appeared from ν_{μ} source in detector

Does it look simple?

T2K, NOvA, etc

Do muon neutrinos transform into electron neutrinos at given distance of travel?

How to conduct the
$$\nu_{\mu} \rightarrow \nu_{e}$$
 search?

In principle, how can we conduct the search?

Things become more complicated when put into practice

(1) How can source be created? How well you understand the source? (composition, density, energy, timing, etc)
(2) What kind of detector you need? how big it is? Where do you put the detector?

(3) How can you choose distance? Typically your detector can't move from place to place.

(4) How can you identify v_e ?

(5) How do you know it coming from v_{μ} source but not others?

T2K, NOvA, etc

Do muon neutrino transform into electron neutrinos at given distance of travel?

Design an experiment: Exhaustive investment of value, cost, and time

When designing an experiment, the following questions must be addressed. In reality, there are numerous additional questions to answered.

- Think big, make cheap. HEP experiment is typically very expensive.
 - What available facilities to use, e.g. Birth of Kamiokande (ref. Prof. Oyama's lecture);T2K use Super-Kamiokande as far detector
- How do you know you have the best among many possible experiment setups •

(can be conservative)

Most important: guarantee success (doesn't mean you will get signal, but your experiment should • achieve some measurement w/unprecedented level of precision)

Also, concern about the aesthetics

of travel?

Design an experiment e.g. T2K (placed in Japan)

GPS, timing synchronize

(1) How can source be created? How well you understand the source? (composition, density, energy, timing, etc)

(2) What kind of detector you need? how big it is? Where do you put the detector?

(3) How can you choose distance? Typically your detector can't move from place to place.

(4) How can you identify v_e ?

(5) How do you know it coming from v_{μ} source but not others?

Design Exp. T2K, NOvA, etc Do muon neutrino transform into electron neutrinos at given distance of travel?

ref: T2K, Super-K, future experiments

Design experiments: evaluate the sensitivity

Let's look at basic quality: $\nu_{\mu} \rightarrow \nu_{e}$ probability as function of energy. Basically this

https://github.com/cvson/nushortcourse/tree/master/OscCalculatorPMNS

Since oscillation probability depends on neutrino energy, it's important to know energy of incoming neutrinos.

At $\sin^2 2\theta_{13} = 0.08$, Prob. is around 5% (depend on δ_{CP} value; smaller for anti-neutrino) Design Exp. T2K, NOvA, etc Do muon neutrino transform into electron neutrinos at given distance

 $N_{\nu_e} \sim \text{Prob.}(\nu_\mu \to \nu_e)$

of travel?

Design experiments: evaluate the sensitivity (cont'd)

ref: Neutrino phenomenology lecture

Design experiments: evaluate the sensitivity (cont'd)

Expected reconstructed neutrino energy distributions of expected signal+BG, total BG, and BG from ν_{μ} interactions for 5 years exposure of OA2°. Right: Expected (thick lines:) 90%CL sensitivity and (thin lines:) 3σ discovery contours as the functions of exposure time of OA2°. In left figure, expected oscillation signals are calculated with the oscillation parameters: $\Delta m^2 = 3 \times 10^{-3} \text{ eV}^2 \sin^2 2\theta_{\mu e} = 0.05$. In right figures, Three different contours correspond to 10%, 5%, and 2% uncertainty in the background estimation.

"NO" answer is also valuable. Both discovery and exclusion advance the human knowledge.

Normally, **physic potentials** (*how good/"sensitive"*) of designed detector much be computed for various scenario of underlying parameters:

- Range of parameter(s) in which detector can explore
- At what values of parameter(s), detector can make observation/discovery
- Evaluation at this stage may **simplify detector performance** (e.g. *systematic errors*)

Build experiment: huge efforts from many people

- Typically, neutrino detector is **big** (with few exception) and **take year(s) to build**
- Neutrino detector is often **located in deep underground** to cancel the noise from cosmic ray
 - big MONEY for this (e.g *NOvA* is on surface although it is design to be underground)
 - India controversy on INO building due to natural conservation
 - Hyper-K allocates lot of money to make cavern

Many additional considerations,

- How to access it?
- How to monitor it?
- How to maintain it?
- ...

ref: Hyper-K/future exp. lectures

Collect and record data (and relevant conditions)

Events / day

- Data taking needs time: from year to decade (e.g., Super-K 26 years, T2K 12 years) length [m]
- Your detector may NOT at same condition during data-• collecting period
 - Detector position can be unintentionally moved due • to, e.g. earthquake
 - Some photosensors can be out-of-function
 - Light yield (no. of photon per fixed amount of deposited energy) can be changed due to water quality, aging of scintillator, etc... \rightarrow affect conversion from observed signal to energy
 - etc...

Take high-quality data and keep experimental condition in **control** as much as possible \rightarrow maximize the reliability & replication of the result!

ref: Super-K lecture/training

Make statement based on data (*compared to prediction*)

- The statement is never simple like "yes" or "no"
- It is always associated with level of uncertainty/ confidence (*or statistical significance*) as well as relevant assumptions If an observation is claimed, parameter's allowed range is estimated. If not, a parameter limit is set. It is always associated with level of uncertainty/
- •
- E.g.: Conclusions.—T2K has made the first observation of electron neutrino appearance in a muon neutrino beam with a peak energy of 0.6 GeV and a baseline of 295 km. With the fixed parameters $|\Delta m_{32}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.5$, $\delta_{CP} = 0$, and $\Delta m_{32}^2 > 0$ ($\Delta m_{32}^2 < 0$), a best-fit value of $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032} (0.170^{+0.045}_{-0.037})$ is obtained, with a significance of 7.3σ over the hypothesis of $\sin^2 2\theta_{13} = 0$. When combining the T2K result with the world average value of θ_{13} from reactor experiments, some values of δ_{CP} are disfavored at the 90% C.L.

T2K will continue to take data to measure the neutrino oscillation parameters more precisely and to further explore CP violation in the lepton sector.

Still many opening questions...Make your own path?

Still many opening questions...Make your own path?

Some experiments are going to build (DUNE, HYPER-K, JUNO, etc) Some are waiting for your!

Neutrinos are Majorana or Dirac particles?
CP symmetry violated in neutrino oscillation?
Neutrino mass ordering is inverted or normal?
Is there 4th generation of neutrino?
Can right-handed neutrino exist? (In low-energy scale)
Can the 3x3 mixing matrix be non-unitary?
etc...______

Keep in mind some good practices

Maximize the reliability and reproducibility of the result

Monitor exp. Record data carefully & systematically

Compute expected sensitivity, Blind analysis Redundant Statistical Interference, Internal Review Control sample, Calibration

Basics of Neutrino detection

Bird's-eye view only.

Detailed in "particle and radiation detector" and others

Neutrino detection principle

Neutrinos can't be seen directly but can be traced when interacting with nucleon/nuclei with help of photon

Neutrino interactions

This is just a single illustration. Many detection technique out there. ref: Particle and Radiation detector lecture

Photon detectors

"Pattern of light induced by neutrino interaction"

Event reconstruction

')Q

What do we expect the detector to reveal?

- Is really neutrino (i*nteracting with matter in the detector*)?
- What's neutrino type/flavor? (e.g. ν_e, ν_μ, ν_τ)
- What's neutrino energy? (It's important for showing the neutrino oscillation pattern)
- -Where does neutrino come from? (e.g. *the Sun, atmospherics, reactor, accelerator, extragalactic objects...*)

Basics of neutrino detection

- Neutrino **must interact** with matter (*water, scintillator, iron, argon...*) in the detector to be detected
 - O Interactions results in ionization or excitation of matter; or emission of the Cherenkov or transition radiation
- O Almost detectors base on the charge detection
 - O At some points, free electrons or current of charge are produced
 - O Photons can *"convert"* into photoelectron (p.e.) via the **photoelectric effect**

$$E_{photon} = hf \longrightarrow E_{electron} = hf - \omega$$

Trace of neutrinos: (typically) very faint flash of light

Super-Kamiokande IV

12-03-19:01:30:02

D wall: 930.0 cm

>26.7

Charge(pe)

• 23.3-26.1

• 20.2-23.

1.3- 2.2

T2K Beam Run 410183 Spill 1879360

A ~ 9MeV solar neutrino candidate 123 p.e. counted in 103 PMT in few 100ns; ~1 p.e. per hit PMT

In a blinking of LED

....~10¹⁵ photons are generated

A ~400MeV ν_{e} candidate from T2K beam 3934 p.e. counted in 1763 hit PMT in few 100ns ~3-4 p.e. per hit PMT

Times (ns)

32

Electronic

Mechanics

Material science

PN physics

Neutrino detection is a complicate, interdisciplinary field

Involved Particle and Nuclear physics

- Neutrino-nucleon/nuclei interaction is complicated
- For oscillation analysis, you need, essentially
 - (1) Particle identity

(2) Neutrino energy

Based on induced charged particle in final state interaction

"Neutrino interaction" lecture

Material science in neutrino experiments

T2K far detector use water; NOvA use liquid scintillator; MINOS used magnetized steel, OPERA used Emulsion, etc...?

- T2K, NOvA needs to identify both v_{μ} and v_{e}
- MINOS focus on v_{μ} and its antineutrino
- OPERA need to see v_{τ}

Material selection depends on particle you want to detect and its properties. Also detector size & our understanding of neutrino interaction on selected material are important factors.

Water Liquid scintillator **Material science**

Mechanics in neutrino experiments

One example

- In Nov 2001, Super-K suffered a serious blow, ~700 PMT tubes exploded (cost \$3000 per each) (5000 PMT remain undamaged)
- Cause: one tubes (contain a vacuum) exploded, released energy, caused shock wave → chain reaction of explosion
- To mitigate this possibility: Acrylic shield is developed and used

Electronics in neutrino experiments

- Number of photon sensor/ "eyes" per each detector is often very large: 13,000 channels in Super-K, 334,000 channels in NOvA far detector, ~60,000 in Super-FGD (T2K)
- With many "eyes", a "nervous" system (*or Internet of things*) is needed to collect and manipulate data efficiently
 - "Eyes" don't not always open; no need and not good for lifetime of electronics
 - "Eyes" actually operate when receiving "trigger" signal, and often within a predefined time window

Depend on how often your detector get data; how many events interact in your detector in a time window, etc...

Ex: NOvA electronics at Near Detector

Data mining in neutrino experiments

How do you know this is **likely** due to v_e interaction?

- Basically, you need guidance from theory/simulation
- The method is something like this:
 - 1. Create a **detector simulation** to see what happens when particles enter your detector.
 - 2. Simulate various types of neutrino interactions (true info. *such as neutrino type, energy, direction, interaction point in detector,* is known)
 - 3. Obtain **pattern** for simulated neutrino events and store as an event library
 - 4. Compare your data pattern to library to determine how **likely** data match with types of simulated events

Neutrino detection is complicate

Data mining

Electronic

Mechanics

Material science

PN physics

Neutrino detection is a complicate, interdisciplinary field. You don't need to know all of these. Expert in one field is probably enough.

Before going to some selected topics, let's have a quick digest on Histogram, a conventional way to visualize data in HEP

- Taking about experiment is to talk about data.
- To make number less boring, a "sexy" way to visualize it was invented, so-call <u>Histogram</u>

https://en.wikipedia.org/wiki/Histogram

A **histogram** is an accurate representation of the distribution of numerical data. It is an estimate of the probability distribution of a **continuous variable** (quantitative variable) and was first introduced by Karl Pearson.

Go google image and type: histogram neutrino

100 entries in your sample

Can you guess data following which distribution?

1000 entries in your sample (as data sample increased)

Can you guess data following which distribution?

10000 entries in your sample (as data sample increased)

Can you guess data following which distribution?

100,000 entries in your sample (as data sample increased)

Can you guess data following which distribution?

Your data might be underlying a particular distribution/pattern but it might not be easy to reveal if your data sample is not statistic enough.

Two-dimensional histogram

The histogram can be shown in more than onedimension

Two-dimensional histogram

https://github.com/cvson/nushortcourse/tree/master/basicO1

Bin width may vary and is not fixed

Some selected topics

- 1) Signal and background
- 2) Hypothesis test
- 3) Sensitivity & Parameter estimation
- 4) Systematics
- 5) Monte Carlo usage 101

Signal and Background

Signal: For what you consider as object to study, e.g. v_e from v_μ beam *Background*: Anything else

Measurement is performed on a **selected** sample which contains both **signal** and **background**. *Background is always present since your sample selection is not perfect*.

- It's important to define clearly what's signal. Sometime it's not straightforward, e.g.
 - For oscillation analysis, v_e from v_μ beam observed at far-site detector is signal but intrinsic v_e is background
 - For understanding neutrino source composition, v_e cross-section is measured at near-site detector, intrinsic v_e is signal
- In selected data sample, **ratio of signal-to-background does matter**, not only absolute number of signal.

Signal vs. Background: Classification problem

Super-Kamiokande,

Water-cherenkov technique

NOvA, scintillator technique

Electron with EM activity, look more fuzzy than muon.

This guides your eyes but we need quantitative things

You need **machinery/tool to separate signal from background.** The "fuzzy" thing is quantized into one or multiple variables which is used to build *likelihood* of data to be signal or to be background. (*Some (deep) machine learning can skip the middle steps.*)

Particle Radiation Detectors/ Super-K lectures

Signal vs. Background: Example of data classification

1.5

2

з

Signal vs. Background: by eyes

Decision rule/boundary

Signal vs. Background: by machine learning

Decision rule/boundary

Signal vs. Background: ID parameter

- To make selection (or decision rule/ boundary), typically a **likelihood** of data to be signal/background is built. *Sometimes called particle identification* (ID)
- Background is unavoidable
- Enhance signal and suppress background is important in HEP analysis, especially in neutrino experiment where statistics is limited.
 - can be from hardware side or software side
- It's (big) money can be saved when you can improve your selection since it is effectively equivalent to collecting more data or enlarge your detector

Red curve is what machine learned Black dots are your data

Signal and Background: Example from real data

Some selected topics

- 1) Signal and background
- 2) Hypothesis testing
- 3) Sensitivity & Parameter estimation
- 4) Systematics
- 5) Monte Carlo usage

Hypothesis testing

Attempt to see if data being consistent with a theoretical model

- H₀: Null hypothesis typically what we want to "reject" (e.g. *Standard Model*)
- H₁: Alternative/Test hypothesis what we want to examine (e.g. *New Physics*)

E.g.:

H₀: CP is conserved in the leptonic mixing; H₁: CP is violated in the leptonic mixing Or

 H_0 : Neutrino mass ordering is normal; H_1 : Neutrino mass ordering is inverted

Four possible outcomes

Data are consistent with H₀ but not H₁ New physics (model) is disfavored

Data are consistent with both H_0 and H_1 , data is not sensitive enough to tell difference Data are consistent with H_1 but not H_0 , Evidence/observation of the new physics (model)

Data are consistent with neither H₀ or H₁, other physics (model) is required

Hypothesis testing (cont'd)

Hypothesis $H_0: \theta_{13} = 0$

Hypothesis $H_1: \theta_{13} \neq 0$

In testing a hypothesis H_0 , there are two kinds of errors:

- Type-I error: erroneously reject H_0 although H_0 is true
 - i.e. "falsely discover" $\theta_{13} \neq 0$ although the true is $\theta_{13} = 0$
- **Type-II error**: erroneously accept H_0 (*or reject* H_1) although H_0 is false (*or* H_1 *is true*)
 - i.e. "fail to observe" $\theta_{13} \neq 0$ although the true is $\theta_{13} \neq 0$

H_{0:} you are not pregnant

Hypothesis testing (cont'd)

Hypothesis $H_0: \theta_{13} = 0$

Hypothesis $H_1: \theta_{13} \neq 0$

In testing a hypothesis H_0 , there are two kinds of errors:

- Type-I error: erroneously reject H_0 although H_0 is true
 - i.e. "falsely discover" $\theta_{13} \neq 0$ although the true is $\theta_{13} = 0$
- **Type-II error**: erroneously accept H_0 (*or reject* H_1) although H_0 is false (*or* H_1 *is true*)
- i.e. "fail to $bserve" \theta_{15} \neq 0$ although the true is $\theta_{15} \neq 0$ When you make statement, it should include two errors (α, β) . **The less error you** have, the higher confidence level you are $(1-\alpha)$ (%) is normally mentioned as Confidence Level (C.L.), set at beginning of the test as toleration level, e.g 0.05 or 95% C.L. • (1- β) (%) is probability that you make "observation" at (1- α) (%) C.L. We care this error especially when e.g. *duc to statistic fluctuation*, you are very lucky to make observation or very unlucky to make no observation

Prob. is α

"...Hypotheses can be ruled out, never be proved to be true."

-Karl Popper

Hypothesis testing: Example w/ T2K exp.

Hypothesis H₀: data agree with background (no $\overline{\nu_e}$ signal)

if you are familiar with ROOT, can try
p-value = 1-ROOT::Math::poisson_cdf(8,6.5);

Read p-value, eg. https://en.wikipedia.org/wiki/P-value

Hypothesis testing: Example from NOvA

Hypothesis H₀: data agree with background (no $\overline{\nu_e}$ signal)

p-value< **0.05:** data **reject hypothesis** H₀ and the result is **statistically significant**, (*but not observation yet*!)

p-value = 1-ROOT::Math::poisson_cdf(17,5.3);
sigma = TMath::NormQuantile(1 - p-value);

5.41634e-06

4.39985

 $< 5\sigma$ (level of discovery)

Some selected topics

- 1) Signal and background
- 2) Hypothesis test
- 3) Sensitivity & Parameter estimation
- 4) Systematics
- 5) Monte Carlo usage

Sensitivity

You might hear, e.g.

without mentioning to data

- T2K has good "sensitivity" on CP violation
- NOvA has good "sensitivity" on both CP violation and mass hierarchy

"Good" sensitivity means you can reject some hypothesis, i.e make observation of something, with high confidence level (1- α)(%) with high probability (1- β)(%)

For sensitivity, normally only quote C.L. while keep $(1-\beta)(\%) = 50\%$

Prediction of rate of events occurred in detector

https://github.com/cvson/nushortcourse/tree/master/eventpred

typically conducted with "fake" data (which you know the truth behind)

Here, oscillation is applied to make "fake" data. Sensitivity study is typically conducted with "fake" data (*which you know the truth behind*)

https://github.com/cvson/nushortcourse/tree/master/sensitivity

https://github.com/cvson/nushortcourse/tree/master/sensitivity

Data is well described by the blue line rather than the red and the green. But is it the "best" parameter to describe the data yet?
Parameter estimation

- When we talk about parameter(s), we need predefine a model $P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}}$
- Given data and model, how do we estimate parameter(s)?
 - One need quantify the difference between
 data and prediction at various parameter values
 - Method to quantify is not unique, e.g. Maximum likelihood

$$\chi^{2}(\overrightarrow{o_{k}}, \overrightarrow{o_{true}}) = \sum_{i} \chi^{2} \left(N_{i}(\overrightarrow{o_{k}}), N_{i}(\overrightarrow{o_{true}}) \right)$$
$$\log \chi^{2} = \sum_{i} 2(N_{exp.} - N_{obs.}) - 2N_{obs.} \cdot \log(N_{exp.}/N_{obs.})$$

What's the best parameters to describe your data?

Other example with Electron neutrino appearance search

https://github.com/cvson/nushortcourse/tree/master/sensitivity

For CP violation

.gif file <u>https://imgur.com/a/jikEQSL</u>

https://github.com/cvson/nushortcourse/tree/master/sensitivity

Illustration for comparing data with various prediction on the left with χ^2 calculated corresponding on the right. From this, confidence intervals are extracted (not going to detail now)

76

2

For CP violation

.gif file <u>https://imgur.com/a/cQfNjT0</u>

https://github.com/cvson/nushortcourse/tree/master/sensitivity

Illustration for comparing data with various prediction on the left with χ^2 calculated corresponding on the right. From this, confidence intervals are extracted (not going to detail now)

 $\boldsymbol{\gamma}$

Some selected topics

- 1) Signal and background
- 2) Hypothesis test
- 3) Sensitivity & Parameter estimation

4) Systematics

5) Monte Carlo usage

Systematic sources

without quoting error, your result is meaningless

For neutrino exp., there are basically three sources of errors

- Neutrino source
 - Proton beam condition (use monitors but still error)
 - Pion/Kaon production when proton hits on target: this is the most dominant error, external data from other experiments are used
 - Current uncertainty level of 10%, but can improved
- Neutrino interaction model
 - Statistic is challenging
 - Nuclear effect
 - Final state interaction
- Detector systematics
 - Secondary interaction
 - Detector response

Another source is the uncertainty on the "other" oscillation parameters One experiment are typically sensitive to a subset of parameters

Systematic sources

No covariance btw. 2 para.

Not just systematic value matter but covariance btw systematics is also important

Histogram_px Entries 10000 Mean 0.9999

0.100

RMS

Positive covariance btw. 2 para.

Negative covariance btw 2 para.

Assume two variables follow gaussian with mean = 1.0 and σ =0.1

Systematic sources

Because of this, global data combination is non-trivial

Some selected topics

- 1) Signal and background
- 2) Hypothesis test
- 3) Sensitivity & Parameter estimation
- 4) Systematics
- 5) Monte Carlo usage

Monte Carlo usage

Pi calculation method

- Random throw points (dots)
 - If inside the circle, you count
- Ratio of counts inside the circle to all throw points is proportional to area ratio of 1/4 circle and corresponding square

 π = 2.824, 10 (%) error after n=50

see gif at https://imgur.com/a/hBJXmck

Toy model of virus transmission

A static model: People don't move / (effectively social distance)

• Non-infected

https://github.com/cvson/nushortcourse/tree/master/mctoy See gif at https://imgur.com/a/gzV92ZC

Toy model of virus transmission

A dynamic model: People move as their wish (or no social distance)

- infected
- Non-infected

https://github.com/cvson/nushortcourse/tree/master/mctoy

Monte Carlo usage

Thumb rule: randomly go through all possibilities under predefined rule

Neutrino Event generator is one example

- Neutrino energy follows some distribution → Generate a lot of neutrinos with energy follow that distribution
- There are many possible interactions for a definitive energy with different cross section → There a lot of neutrinos generated, each of them can go different interactions
- Four-momentum of out-going particles are not fixed (can be random as long as the conservations (*energy, momentum, etc...*) are satisfied)

2.5

3

3.5

True E [GeV]

2

0.5

1

1.5

T2K v_{μ} flux at Super-K with 250 kA operation

To conclude

Four golden lessons

Steven Weinberg

Advice to students at the start of their scientific careers.

- 1. No one knows everything, and you don't have to
- 2. Go for the messes that's where the action is

(Neutrino physics is still a mess more or less)

- 3. **Forgive yourself for wasting time** (You will never be sure which are right problems to work on)
- 4. Learn something about the history of science (As a scientist, you're probably not going to get rich... But you can get great satisfaction by recognizing that your work in science is a part of history.)

Mistake is always out there

"Neutrino mistakes: wrong tracks and hints, hopes and failures" —- By Maury Goodman at History of the Neutrino, 2018

SIN report of $\mu \rightarrow e \gamma$

#High y anomaly#NuTeV Helium bag events

℁LSND/eV "sterile" vs

IMB limit on ν oscillations

Alternating neutral currentsReines-Sobel v oscillations

* Vanucci PS191 oscillations

*BNL 776 & 816 oscillations

BEBC oscillations

- #HPW "super" trimuons
- Oscillations in Bugey

Majoron emission in 0ν2β PNL/USC

%SPT vs. V-A

Superluminal vs

17 keV ν

- Early atmospheric v lack of polarization
- # MINOS anti- $\nu \theta_{23}$

 $\approx v$ grammar

- Labels for Δm^2_{ab}
- PDG m(v) encoding
- Which v is a particle?
- *Karmen time anomaly
- Time variations in Troitsk m_v²
- $\text{**ITEP m}(v_{e}) = 30 \text{ eV in } 1980$

I was in MINOS exp. & work for both wrong tracks

Mistake is always out there

Thank you for listening and good luck!