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Experimental Neutrino Physics 
in a Nutshell

i.e A practical guide for  
How to THINK/ADDRESS the things as a (neutrino) experimentalist



Some confessions
I had a similar background to most Vietnamese theoretical students and encountered 
many difficulties during my first years of Ph.D. studies in US in experimental HEP . 

My goal is to introduce experimental neutrino physics with the most basic concepts. 

My experience with accelerator-based neutrino oscillation experiments may not be 
applicable to other fields. 

Many materials are borrowed from other talks, but citations are occasionally missed. 

Your feedback is valuable, and I will always be a student for listening to it.
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Lecture style: A “cocktail party” 

http://hitoshi.berkeley.edu/neutrino/neutrino4.html 

Simple version of “Neutrino in SM”
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Can you explain the left and the right by just looking at the title 

and illustration?  
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Experiment 
setup

Lecture style: To simplify something such as…
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observed data

T2K has made the first observation of  electron neutrino 
appearance in a muon neutrino beam…with a significance  

of 7.3 𝜎 C.L. over the the hypothesis of sin2 2θ13 = 0

data-based 
statement 

It might be too 
difficult for 
young students 
with theoretical 
backgrounds to 
absorb in 10 days 
of the school.
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…with something like

http://higgstan.com 

“Neutrino Oscillation in anime language ”
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Contents
 Basic steps as scientists 

Ask question(s), Design experiment, Build experiment, Collect data 
and Make statement based on data observation 

Examples with neutrino experiments 

 Neutrino detection: A bird’s eye view  
A complicated, interdisciplinary field of Particle and Nuclear physics, Material 
science, Mechanics, Electronics, and Data mining 

 Some selected topics (personal choices) 
1) Signal and background 
2) Hypothesis testing  
3) Sensitivity & Parameter estimation  
4) Systematics 
5) Monte Carlo usage

Number of illustrations will be shown 

code: https://github.com/cvson/nushortcourse 

Feel free to download and play! 
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Basic steps as scientists

Ask a question about Nature 
Formulate the hypothesis to test 

Experiment(s) 

Design 
 Exp.

Build  
Exp.

Collect  
data

Make  
data-based  
statement

7
All connected!



Neutrino oscillations 
in briefing

ref: Neutrino phenomenons and other lectures



Neutrino oscillations in briefing
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Some distance

• Neutrino oscillations require an existence of 
neutrino mass spectrum, i.e mass eigenstate 𝜈i 

with definite mass mi (where i is 1, 2, 3* at least) 

• It requires flavor eigenstate with definite flavor,  𝜈𝛼 

(where 𝛼 is e, 𝜇, 𝜏)  must be superpositions of the 
mass eigenstates, a fundamental quantum mechanic 
phenomenon

**PMNS is shorted for Pontecorvo-Maki-Nakagawa- Sakata

|να⟩ = ∑
i

U*αi |νi⟩

PMNS** leptonic 
 mixing matrix

mass eigenstateflavor eigenstate

*It’s still possible that there are more than 3 mass eigenstates 9

Neutrino can change its flavor when give it time to propagate



Simple exercise 

|να⟩ = ∑
i

U*αi |νi⟩

PMNS** leptonic 
 mixing matrix

mass eigenstateflavor eigenstate
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Show that U is unitarity if flavor eigenstates are 
orthogonal and mass eigenstates are orthogonal ! 

Relevant point: Why can we assume that the states (flavor/ 
mass) are orthogonal? 



PMNS leptonic mixing matrix

UPMNS =
c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23

s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

Diag(eiρ1, eiρ2,0)

UPMNS is 3x3 unitary matrix and parameterized with 3 mixing 
angles  and one irreducible Dirac CP-violation 
phase , similar to CKM matrix of quark mixing 

If neutrino is Majorana particle, there are two additional CP-

violation phases ( ), which play no role in neutrino oscillations

(θ12, θ13, θ23)
δCP

ρ1, ρ2

11
Neutrino oscillation experiments aim to measure the oscillation parameters and to 
test if PMNS matrix can describe well the data or need some extension.



Other exercise 

12

Count the number of mixing angles and phases in the  
n x n unitary mixing matrix.

Answer on the white board



Ask a question: e.g.  does   oscillation happen?νμ → νe

Do muon neutrinos transform into  
electron neutrinos at given distance  

of  travel?

Why is addressing this question important? 

• Confirm non-zero mixing angle, 𝜃13 >0 or set 
higher limit for mixing angle 𝜃13 (e.g. 𝜃13 < 𝛼) 

• If non-zero, can measure 𝛿CP,  which may be a source of 
matter-antimatter asymmetry in the Universe

What have you already know at the 
time question posed? 

• Neutrino oscillations confirmed 

• Some upper limit on 𝜃13 from reactor 

• etc…
https://arxiv.org /abs/hep-ex/0106019

Supported knowledge

at point A at point B
L (distance)

ref: Neutrino phenomenology lecture 13
Pνμ→νe

= sin2 2θ13 sin2 θ23 sin2 Δm2
31 + ϵ sin θ13 sin δCP . . .



Do muon neutrinos transform into  
electron neutrinos at given distance  

of  travel?

Driven by 
 theoretical models

T2K, NOvA, etc

Hypothesis test and parameter estimation will be discussed later

Goal #2: Estimate parameters of a theoretical 
model which used to describe the data 

• Does the theoretical model (e.g. neutrino 
oscillation) give good description of the data? 

• Allowed region for sin2𝜃13 at 68% C.L. (1σ) or 
90% C.L., etc…

Goal #1: Test theoretical hypothesis; basically 
yes/no question 

• At some C.L., we observe the appearance of 
electron neutrino (i.e. 𝜃13 ≠ 0) 

• At some C.L., we reject the hypothesis that 
electron neutrino appeared (i.e. 𝜃13 = 0)

may not be familiar with it yet(?)

Define goals of the exp. e.g.  searchνμ → νe

at point A at point B
L (distance)

14
Pνμ→νe

= sin2 2θ13 sin2 θ23 sin2 Δm2
31 + ϵ sin θ13 sin δCP . . .



How to conduct the   search?νμ → νe

Do muon neutrinos transform into  
electron neutrinos at given distance  

of  travel?

In principle, how can we conduct the search? 

1. Need source of    

2. Put detector at some distance from  source 

3. Look for   appeared from  source in detector 

νμ

νμ

νe νμ

Does it look simple ?

at point A at point B
L (distance)

T2K, NOvA, etc
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In principle, how can we conduct the search? 

1. Need source of    

2. Put detector at some distance from  source 

3. Look for   appeared from  source in detector 

νμ

νμ

νe νμ

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

(1)

(2) (3)

(4) (5)

Things become more complicated when put into practice

(1) How can source be created? How well you understand the source? 
(composition, density, energy, timing, etc) 

(2) What kind of detector you need? how big it is? Where do you put the 
detector? 

(3) How can you choose distance? Typically your detector can’t move 
from place to place. 

(4) How can you identify νe? 
(5) How do you know it coming from νμ source but not others?

16

How to conduct the   search?νμ → νe



Design an experiment: Exhaustive investment of value, cost, and time 

Design  
Exp.

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

When designing an experiment, the following questions must be addressed. In reality, there are 
numerous additional questions to answered. 
• Think big, make cheap. HEP experiment is typically very expensive.  

• What available facilities to use, e.g. Birth of Kamiokande (ref. Prof. Oyama’s lecture);T2K use 
Super-Kamiokande as far detector   

• How do you know you have the best among many possible experiment setups  

• Most important: guarantee success (doesn’t mean you will get signal, but your experiment should 
achieve some measurement w/ unprecedented level of precision)

(can be conservative)

Also, 
concern about 
the aesthetics 

17



Design an experiment  e.g. T2K (placed in Japan)

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

Design  
Exp.

(1)

(2) (3)

(4)
(5)

GPS, timing synchronize

ref: T2K, Super-K, future experiments 18

(1) How can source be created? How well you understand the source? 
(composition, density, energy, timing, etc) 

(2) What kind of detector you need? how big it is? Where do you put the 
detector? 

(3) How can you choose distance? Typically your detector can’t move 
from place to place. 

(4) How can you identify νe? 
(5) How do you know it coming from νμ source but not others?



At , 
Prob. is around 5%  

(depend on 𝛿CP value;  
smaller for anti-neutrino)

sin2 2θ13 = 0.08

https://github.com/cvson/nushortcourse/tree/master/OscCalculatorPMNS 
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Design experiments: evaluate the sensitivity

Design  
Exp.

Since oscillation probability depends on neutrino energy, 
it’s important to know energy of incoming neutrinos.

Let’s look at basic quality:     probability as function of energy. Basically this 
is a counting experiment

νμ → νe
Nνe

∼ Prob.(νμ → νe)

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

ref: Neutrino phenomenology lecture 19



Design  
Exp.

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

Neutrino Energy (GeV)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

) eν
→
µν

 o
r 

eν
→
µν

Pr
ob

. (

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
2 eV-3 10×|=2.50 32

2 m∆|
2 eV-5 10×|=7.60 21

2 m∆|
=1.0023θ22sin
=0.8712θ22sin
=0.0413θ22sin

L=295 km

=0
CP

δ, NH, ν

 °=270
CP

δ,NH, ν

=0CPδ, NH, ν

°=270CPδ, NH, ν

  

Probability depends on values of (also mass hierarchy, ). 
Smaller probability means that with the same neutrino flux, 
number of observed events is smaller.

sin2 2θ13 δCP

Design experiments: evaluate the sensitivity (cont’d)

ref: Neutrino phenomenology lecture

Nνe
∼ Prob.(νμ → νe)

At  
Prob. is around 2.5%  
(depend on 𝛿CP value;  

smaller for anti-neutrino)

sin2 2θ13 = 0.04

Let’s look at basic quality:     probability as function of energy. Basically this 
is a counting experiment

νμ → νe

https://github.com/cvson/nushortcourse/tree/master/OscCalculatorPMNS 

T2K 𝜈 energy range

T2K baseline
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hep-ex/0106019

T2K original proposal

Design  
Exp.
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2θ
μe

=
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n2
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θ 2
3

 Normally, physic potentials (how good/“sensitive”) of designed 
detector much be computed for various scenario of underlying 
parameters: 

• Range of parameter(s) in which detector can explore 

• At what values of parameter(s), detector can make 
observation/discovery 

• Evaluation at this stage may simplify detector 
performance (e.g. systematic errors) 

ref: Hyper-K/T2K lectures

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

Design experiments: evaluate the sensitivity (cont’d)

“NO” answer is also valuable. Both discovery 
and exclusion advance the human knowledge. 
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Build experiment: huge efforts from many people

Design  
Exp.

Build  
Exp.

• Typically, neutrino detector is big (with few exception) and 
take year(s) to build  

• Neutrino detector is often located in deep underground to 
cancel the noise from cosmic ray 

• big MONEY for this (e.g NOvA is on surface although it is design 
to be underground) 

• India controversy on INO building due to natural 
conservation 

• Hyper-K allocates lot of money to make cavern

Many additional considerations,  

• How to access it?  
• How to monitor it? 
• How to maintain it? 
• …

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

ref: Hyper-K/future exp. lectures 22
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Collect and record data (and relevant conditions)
• Data taking needs time:  from year to decade (e.g., Super-

K 26 years, T2K 12 years) 

• Your detector may NOT at same condition during data-
collecting period 

• Detector position can be unintentionally moved due 
to, e.g. earthquake  

• Some photosensors can be out-of-function  

• Light yield (no. of photon per fixed amount of deposited 
energy) can be changed due to water quality, aging of 
scintillator, etc… →  affect conversion from observed 
signal to energy 

• etc…
Design  

Exp.

Build  
Exp.

Collect  
data

Take high-quality data and keep experimental condition in 
control as much as possible →  maximize the reliability & 
replication of the result!

Atmospheric	! FCFV	events	

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc

ref: Super-K lecture/training



 Make statement based on data (compared to prediction)
• The statement is never simple like “yes” or “no” 

• It is always associated with level of uncertainty/
confidence (or statistical significance) as well as relevant 
assumptions 

• If an observation is claimed, parameter’s allowed 
range is estimated. If not, a parameter limit is set. 

• E.g.:

Design  
Exp.

Build  
Exp.

Collect  
data

make 
statement

10.1103/PhysRevLett.112.061802

Do muon neutrino transform into  
electron neutrinos at given distance  

of  travel?

T2K, NOvA, etc
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 Still many opening questions…Make your own path?

Neutrinos are Majorana or Dirac particles? 
CP symmetry violated in neutrino oscillation? 
Neutrino mass ordering is inverted or normal? 
Is there 4th generation of neutrino? 
etc…

 More questions from other lecturers

25



 Still many opening questions…Make your own path?

Some experiments are going to build (DUNE, HYPER-K, JUNO, etc) 
Some are waiting for your!

Neutrinos are Majorana or Dirac particles? 
CP symmetry violated in neutrino oscillation? 
Neutrino mass ordering is inverted or normal? 
Is there 4th generation of neutrino? 
Can right-handed neutrino exist? (In low-energy scale) 
Can the 3x3 mixing matrix be non-unitary? 
etc…

 More questions from other lecturers

26



Keep in mind some good practices 

Maximize the reliability 
and reproducibility of the result 

Evaluate 

uncertainties,

Internal 

Review 

Monitor exp.  Record data carefully  & systematically 

  Compute 
 expected  

sensitivity, Control sample,
Blind  

analysis

Redundant  

Statistical  

Interference, 

Calibration

27
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Basics of Neutrino detection
Bird’s-eye view only.  

Detailed in “particle and radiation detector” and others



Neutrino detection principle
Neutrinos can’t be seen directly but can be traced when 
interacting with nucleon/nuclei with help of photon 
detectors/sensors

This is just a single illustration.  
Many detection technique out there.

Neutrino interactions

nucleon/nuclei

Charged particles 
(𝜇, e,𝝅, p,…)

Neutral particles 
(n,𝜋0,𝛾,…)

Photon detectors

“eyes”

“lot of eyes”

help to observe

Event reconstruction

“Pattern of light induced by  
neutrino interaction”

what observed

wa
nn

a k
no

w 
th

is 

29ref: Particle and Radiation detector lecture



What do we expect the detector to reveal?

30

- Is really neutrino (interacting with matter in the 
detector )?  

- What’s neutrino type/flavor? (e.g. ) 

- What’s neutrino energy? (It’s important for showing 
the neutrino oscillation pattern ) 

-Where does neutrino come from? (e.g. the Sun, 
atmospherics, reactor, accelerator, extragalactic objects…)

νe, νμ, ντ



Basics of neutrino detection 

31

 Neutrino must interact with matter (water, scintillator, iron, 
argon…) in the detector to be detected 

Interactions results in ionization  or excitation of matter; 
or emission of the Cherenkov or transition radiation    

Almost detectors base on the charge detection  

At some points, free electrons or current of charge are produced  

Photons can “convert” into photoelectron (p.e.) via the 
photoelectric effect



Trace of neutrinos: (typically) very faint flash of light 

….~1015 photons are generated 32

A ~ 9MeV solar neutrino candidate 
123 p.e. counted in 103 PMT in few 100ns; 

~ 1 p.e. per hit PMT

A ~400MeV  candidate from T2K beam 
3934 p.e. counted in 1763 hit PMT in few 100ns 

 ~3-4 p.e. per hit PMT

νe

In a blinking of LED



PN physics

Material science

Mechanics

Electronic

Data mining

Neutrino detection is a complicate, 
interdisciplinary field

33



Involved Particle and Nuclear physics

PN physics

Material science

Mechanics

Electronic

Data mining

F. Sanchez, neutrino 2018

• Neutrino-nucleon/nuclei interaction is complicated 

• For oscillation analysis, you need, essentially  

(1) Particle identity 

(2) Neutrino energy

Charged particles

neutral particles

Based on induced charged particle 
in final state interaction

“Neutrino interaction” lecture 34



Material science in neutrino experiments

PN physics

Mechanics

Electronic

Data mining

T2K far detector use water; NOvA use liquid scintillator; MINOS used 
magnetized steel, OPERA used Emulsion, etc…? 

• T2K, NOvA needs to identify both 𝜈𝜇 and 𝜈e 

• MINOS focus on 𝜈𝜇 and its antineutrino 

• OPERA need to see 𝜈𝝉 

Material selection depends on particle you want to detect and its 
properties. Also detector size & our understanding of neutrino 
interaction on selected material are important factors.  

Water

Liquid scintillator

magnetized iron

Emulsion

PN physics

Material science

Mechanics

Electronic

Data mining

35



Mechanics in neutrino experiments

• In Nov 2001, Super-K suffered a serious blow, ~700 PMT tubes exploded 
(cost $3000 per each) (5000 PMT remain undamaged) 

• Cause: one tubes (contain a vacuum) exploded, released energy, caused 
shock wave → chain reaction of explosion 

• To mitigate this possibility: Acrylic shield is developed and used
Bare PMT

PMT w/ acrylic shield

Similar structure in aquarium

One example

PN physics

Material science

Mechanics

Electronic

Data mining
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Electronics in neutrino experiments

• Number of photon sensor/ “eyes” per each detector is often 
very large: 13,000 channels in Super-K, 334,000 channels 
in NOvA far detector, ~60,000 in Super-FGD (T2K) 

• With many “eyes”,  a “nervous” system (or Internet of things) is 
needed to collect  and manipulate data efficiently  

• “Eyes” don’t not always open; no need and not good for 
lifetime of electronics 

• “Eyes” actually operate when receiving “trigger” signal, 
and often within a predefined time window

Depend on how often your detector get data; how many events 
interact in your detector in a time window, etc…

Ex: NOvA electronics at Near Detector

PN physics

Material science

Mechanics

Electronic

Data mining
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Data mining in neutrino experiments

(SK Software training)

PN physics

Material science

Mechanics

Electronic

Data mining

38

• Basically, you need guidance from theory/simulation 

• The method is something like this: 

1. Create a detector simulation to see what happens 
when particles enter your detector. 

2. Simulate various types of neutrino interactions (true 
info. such as neutrino type, energy, direction, interaction 
point in detector, is known) 

3. Obtain pattern for simulated neutrino events and 
store as an event library  

4. Compare your data pattern to library to determine 
how likely data match with types of simulated events

How do you know this is likely due to 𝜈e 
interaction? 



Neutrino detection is complicate

PN physics

Material science

Mechanics

Electronic

Data mining

Neutrino detection is a complicate, interdisciplinary field.  
You don’t need to know all of these. Expert in one field is probably enough.
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Before going to some selected topics, let’s have  a 
quick digest on Histogram, a conventional way to visualize 
data in HEP 

40

• Taking about experiment is to talk about data. 
• To make number less boring, a “sexy” way to visualize it 

was invented, so-call Histogram



A histogram is an accurate representation of the distribution of 
numerical data. It is an estimate of the probability distribution of a 
continuous variable (quantitative variable) and was first 
introduced by Karl Pearson.

https://en.wikipedia.org/wiki/Histogram

Histogram

Go google image and type: histogram neutrino

41



Values of variable X
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Histogram

Entries  10
Mean    25.35
RMS     2.923

 https://github.com/cvson/nushortcourse/tree/master/basic01

Histogram

#entry #value 
0        29.9947 
1        22.8262 
2        28.909 
3        24.8497 
4        29.1213 
5        24.7164 
6        20.4956 
7        24.6265 
8        25.0396 
9        22.9462
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Histogram

#entry #value 
0        29.9947 
1        22.8262 
2        28.909 
3        24.8497 
4        29.1213 
5        24.7164 
6        20.4956 
7        24.6265 
8        25.0396 
9        22.9462
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bin 
[20,21)

bin 
[29,30)

https://github.com/cvson/nushortcourse/tree/master/basic01
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100 entries in your sample

Histogram

Can you guess data following  
which distribution?

Values of variable X
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Histogram

Entries  100
Mean    24.82
RMS      4.83

 https://github.com/cvson/nushortcourse/tree/master/basic01
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1000 entries in your sample    (as 
data sample increased)

Histogram

Values of variable X
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Histogram

Entries  1000
Mean    25.14
RMS     5.131

 https://github.com/cvson/nushortcourse/tree/master/basic01

Can you guess data following  
which distribution?
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Histogram

Values of variable X
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Histogram

Entries  10000
Mean    25.03
RMS     4.906

 https://github.com/cvson/nushortcourse/tree/master/basic0110000 entries in your sample    (as 
data sample increased)

Can you guess data following  
which distribution?
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Histogram

Values of variable X
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Histogram

Entries  100000
Mean       25
RMS      4.92

  100,000 entries in your sample    
(as data sample increased)

https://github.com/cvson/nushortcourse/tree/master/basic01

Can you guess data following  
which distribution?
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Histogram

Histogram
Entries  100000
Mean       25
RMS      4.92

 / ndf 2χ  42.97 / 27
Prob   0.02633
Constant  31.6±  7985 
Mean      0.0±    25 
Sigma     0.012± 4.993 
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Histogram
Entries  100000
Mean       25
RMS      4.92
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Indeed, it generated with Gaussian 
distribution with Mean = 25 and RMS =5

100,000 entries in your sample    
(as data sample increased)

Your data might be underlying a particular 
distribution/pattern but it might not be easy to 
reveal if your data sample is not statistic enough. 

https://github.com/cvson/nushortcourse/tree/master/basic01
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1) Underlying distribution

Two-dimensional histogram
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The histogram can be 
shown in more than one-

dimension

https://github.com/cvson/nushortcourse/tree/master/basic01
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Two-dimensional histogram
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https://github.com/cvson/nushortcourse/tree/master/basic01

Zoom-in

bin, ~90 entries 

bin width in Y-view

bin width in X-view

Bin width may vary and is not fixed
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Some selected topics 
1) Signal and background 

2) Hypothesis test 

3) Sensitivity & Parameter estimation  

4) Systematics 

5) Monte Carlo usage 101
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Signal: For what you consider as object to study, e.g. 𝜈e  from 𝜈𝜇 beam 

Background: Anything else

Signal and Background

52

• It’s important to define clearly what’s signal. Sometime it’s not 
straightforward, e.g. 

• For oscillation analysis,  𝜈e  from 𝜈𝜇 beam observed at far-site detector is 
signal but intrinsic 𝜈e  is background 

• For understanding neutrino source composition, 𝜈e cross-section is 
measured at near-site detector, intrinsic 𝜈e  is signal 

• In selected data sample, ratio of signal-to-background does matter, not 
only absolute number of signal.

Measurement is performed on a selected sample which contains both signal and 
background. Background is always present since your sample selection is not perfect.



Signal vs. Background: Classification problem

Electron with EM activity, look more fuzzy than muon.  

NOvA, scintillator technique

You need machinery/tool to separate signal from background. The “fuzzy” thing is quantized into one or 
multiple variables which is used to build likelihood of data to be signal or to be background. (Some (deep) machine 
learning can skip the middle steps.)

Super-Kamiokande,  
Water-cherenkov technique

This guides your eyes but we need 
quantitative things

Particle Radiation Detectors/ Super-K lectures 53



Signal vs. Background: Example of data classification
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https://github.com/cvson/nushortcourse/tree/master/datamining
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Signal vs. Background: by eyes

Variable 1
5− 4− 3− 2− 1− 0 1 2 3 4 5

Va
ria

bl
e 

2

5−

4−

3−

2−

1−

0

1

2

3

4

5 Signal
Background

Variable 1
1.5− 1− 0.5− 0 0.5 1 1.5

Va
ria

bl
e 

2

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

Signal
Background

Variable 1
0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2

Va
ria

bl
e 

2

1−

0.5−

0

0.5

1

Signal
Background

Variable 1
3− 2− 1− 0 1 2 3

Va
ria

bl
e 

2

3−

2−

1−

0

1

2

3 Signal
Background

Decision rule/boundary

https://github.com/cvson/nushortcourse/tree/master/datamining
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Signal vs. Background: by machine learning
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Partice ID parameter
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Ex: atmospheric neutrinos observed  
in Super-Kamiokande

Red curve is what machine learned 
Black dots are your data

Signal vs. Background: ID parameter

• To make selection (or decision rule/
boundary), typically a likelihood of 
data to be signal/background is built.  
Sometimes called particle identification (ID)
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• Background is unavoidable 

• Enhance signal and suppress background 
is important in HEP analysis, especially in 
neutrino experiment where statistics is limited.  

• can be from hardware side or software side 

• It’s (big) money can be saved when you can 
improve your selection since it is effectively 
equivalent to collecting more data or enlarge 
your detector



Signal and Background: Example from real data

NOvA, Neutrino 2022T2K, Neutrino 2022 58



Some selected topics 
1) Signal and background 

2) Hypothesis testing 

3) Sensitivity & Parameter estimation  

4) Systematics 

5) Monte Carlo usage
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Hypothesis testing
Attempt to see if data being consistent with a theoretical model  

• H0: Null hypothesis — typically what we want to “reject” (e.g. Standard Model) 

• H1: Alternative/Test hypothesis — what we want to examine (e.g. New Physics)

E.g.:  
H0: CP is conserved in the leptonic mixing; H1: CP is violated in the leptonic mixing 

Or  
H0: Neutrino mass ordering is normal; H1: Neutrino mass ordering is inverted

Four possible outcomes
Data are consistent with H0 but not H1 

New physics (model) is disfavored

Data are consistent with neither H0 or H1, 
other physics (model) is required 

Data are consistent with H1 but not H0, 
Evidence/observation of the new physics (model)

Data are consistent with both H0 and H1, 
data is not sensitive enough to tell difference 
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Hypothesis testing (cont’d)

L (distance)

H0: you are not pregnant

61

In testing a hypothesis H0, there are two kinds of errors: 

• Type-I error: erroneously reject H0 although H0 is true 

• i.e. “falsely discover” 𝜃13 ≠ 0 although the true is 𝜃13 = 0 

• Type-II error: erroneously accept H0 (or reject H1) although H0 
is false (or H1 is true) 

• i.e. “fail to observe” 𝜃13 ≠ 0 although the true is 𝜃13 ≠ 0

Hypothesis H0:  
Hypothesis H1: 

θ13 = 0
θ13 ≠ 0



Hypothesis testing (cont’d)

L (distance)

When you make statement, it should include two errors (𝛼, β).  

• (1-𝛼) (%) is normally mentioned as Confidence Level (C.L.), set at 
beginning of the test as toleration level, e.g 0.05 or 95% C.L.  

• (1-β) (%) is probability that you make “observation” at (1-𝛼) (%)  
C.L. We care this error especially when e.g. due to statistic fluctuation, 
you are very lucky to make observation or very unlucky to make no 
observation

The less error you 
have, the higher 
confidence level 
you are

Prob. is 𝛼

Prob. is β
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In testing a hypothesis H0, there are two kinds of errors: 

• Type-I error: erroneously reject H0 although H0 is true 

• i.e. “falsely discover” 𝜃13 ≠ 0 although the true is 𝜃13 = 0 

• Type-II error: erroneously accept H0 (or reject H1) although H0 
is false (or H1 is true) 

• i.e. “fail to observe” 𝜃13 ≠ 0 although the true is 𝜃13 ≠ 0

Hypothesis H0:  
Hypothesis H1: 

θ13 = 0
θ13 ≠ 0



–Karl Popper

“…Hypotheses can be ruled out, 
never be proved to be true.” 
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Value of toy experiments
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https://github.com/cvson/nushortcourse/tree/master/basic01 

 throw the dice following 
 Poisson distribution

Hypothesis testing:  Example w/ T2K exp.

T2K: “appearance” of   

• Background: 6.5 events 

• Data: 9 events 

νe

p-value> 0.05: data failed to reject hypothesis H0 and  
the result is statistically nonsignificant.   

Hypothesis H0: data agree with background (no     signal)  νe

if you are familiar with ROOT, can try 
p-value = 1-ROOT::Math::poisson_cdf(8,6.5);

Read p-value, eg.  
https://en.wikipedia.org/wiki/P-value 

p-value =
No. of toy exp., value > 9

All of toy exp.
= 0.208
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Value of toy experiments
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Hypothesis testing: Example from NOvA

NOvA: appearance of   

• Background: 5.3 events 

• Data: 18 events 

νe

p-value< 0.05: data reject hypothesis H0 and  
the result is statistically significant, (but not observation yet!)   

p-value = 1-ROOT::Math::poisson_cdf(17,5.3); 

sigma = TMath::NormQuantile(1 - p-value);

5.41634e-06
4.39985 < 5σ (level of discovery)

p-value =
No. of toy exp., events > 18

All of toy exp.
= 5.27e − 6
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Hypothesis H0: data agree with background (no     signal)  νe



Some selected topics 
1) Signal and background 

2) Hypothesis test 

3) Sensitivity & Parameter estimation  

4) Systematics 

5) Monte Carlo usage 
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Sensitivity

You might hear, e.g.  

• T2K has good “sensitivity” on CP violation 

• NOvA has good “sensitivity” on both CP violation and 
mass hierarchy

“Good” sensitivity means you can reject some hypothesis, 
i.e make observation of something, with high confidence 
level (1-𝛼)(%) with high probability (1-β)(%)

For sensitivity, normally only quote C.L. while keep  (1-β)(%) = 50%

without 
mentioning 

 to data
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Prediction of rate of events occurred in detector
To give some sense on sensitivity and parameter 
estimation, we will follow one specific example

Ni = Φflux × σ × Mdet × ϵ
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https://github.com/cvson/nushortcourse/tree/master/eventpred

=
 [GeV]µνTrue E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

/G
eV

/a
to

m
]

2
[c

m
ν

/E
σ

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16
0.18
0.2

0.22

36−10×
O16

8Cross section on 

Total
CCQE

πCC1
CC coherent
CC other
NC

O16
8Cross section on 

x

Detection efficiency 
assume a constant (<1)

Assumes no oscillation happens yet 
e.g. observation at Near Detector

68



Neutrino Energy [GeV]
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Prediction with oscillation

https://github.com/cvson/nushortcourse/tree/master/sensitivity

where  ⃗o = (Δm2
21, Δm2

31, θ12, θ13, θ23, δCP)
Ni( ⃗o ) = Φflux × σ × Mdet . × ϵ × P( ⃗o )

Here, oscillation is applied to make “fake” data. Sensitivity study is 
typically conducted with “fake” data (which you know the truth behind)

P(νμ → νμ) ∼ 1 − sin2 2θ23 sin2 Δm2
31L

4Eν
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Prediction with oscillation
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⃗otrue
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P(νμ → νμ) ∼ 1 − sin2 2θ23 sin2 Δm2
31L

4Eν

Ni( ⃗o ) = Φflux × σ × Mdet . × ϵ × P( ⃗o )
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where  ⃗o = (Δm2
21, Δm2

31, θ12, θ13, θ23, δCP)

Here, oscillation is applied to make “fake” data. Sensitivity study is 
typically conducted with “fake” data (which you know the truth behind)



Prediction with oscillation
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Δm2

⃗otrue

⃗o = (Δm2
21, Δm2

31, θ12, θ13, θ23, δCP)
P(νμ → νμ) ∼ 1 − sin2 2θ23 sin2 Δm2

31L
4Eν

Ni( ⃗o ) = Φflux × σ × Mdet . × ϵ × P( ⃗o )
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Here, oscillation is applied to make “fake” data. Sensitivity study is 
typically conducted with “fake” data (which you know the truth behind)



Prediction with oscillation
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green. But is it the “best” parameter to describe the data yet?
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Parameter estimation

log χ2 = ∑
i

2(Nexp. − Nobs.) − 2Nobs. . log(Nexp./Nobs.)
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2• When we talk about parameter(s), we need predefine 
a model 

• Given data and model, how do we estimate 
parameter(s)? 
• One need quantify the difference between 

data and prediction at various parameter values 
• Method to quantify is not unique, e.g. Maximum 

likelihood

χ2( ⃗ok, ⃗otrue) = ∑
i

χ2 (Ni( ⃗ok), Ni( ⃗otrue))

P(νμ → νμ) ∼ 1 − sin2 2θ23 sin2 Δm2
31L

4Eν

Nexp

Nobs

Energy 
bin i
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What’s the best parameters to describe your data?

https://github.com/cvson/nushortcourse/tree/master/sensitivity

Illustration for comparing data with various prediction on the 
left with  𝜒2 calculated corresponding on the right. From this, 
confidence intervals are extracted (not going to detail now)

χ2
.gif file https://imgur.com/a/zkMN2R3 
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Other example with Electron neutrino appearance search

https://github.com/cvson/nushortcourse/tree/master/sensitivity
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For CP violation 
https://github.com/cvson/nushortcourse/tree/master/sensitivity

Illustration for comparing data with various prediction on the 
left with  𝜒2 calculated corresponding on the right. From this, 
confidence intervals are extracted (not going to detail now)

χ2
.gif file https://imgur.com/a/jikEQSL 
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For CP violation 
https://github.com/cvson/nushortcourse/tree/master/sensitivity

Illustration for comparing data with various prediction on the 
left with  𝜒2 calculated corresponding on the right. From this, 
confidence intervals are extracted (not going to detail now)

χ2
.gif file https://imgur.com/a/cQfNjT0 
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Some selected topics 
1) Signal and background 

2) Hypothesis test 

3) Sensitivity & Parameter estimation  

4) Systematics 

5) Monte Carlo usage 
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Systematic sources

For neutrino exp., there are basically three sources of errors 
• Neutrino source 

• Proton beam condition (use monitors but still error) 
• Pion/Kaon production when proton hits on target: this is the most 

dominant error, external data from other experiments are used 
• Current uncertainty level of 10%, but can improved  

• Neutrino interaction model 
• Statistic is challenging 
• Nuclear effect 
• Final state interaction 

• Detector systematics 
• Secondary interaction 
• Detector response 

without quoting error, your result is meaningless

Another source is the uncertainty on 
 the “other” oscillation parameters 

One experiment are typically sensitive 
to a subset of parameters
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Systematic sources
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No covariance btw. 2 para.

Positive covariance btw. 2 para.

Negative covariance btw 2 para.

Not just systematic value matter  
but covariance btw systematics is also important

Assume two variables 
follow gaussian with mean = 1.0 and 𝞼 =0.1  



81

Systematic sources
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Because of this, global data combination is non-trivial

Not just systematic value matter  
but covariance btw systematics is also important

No covariance btw. 2 para.

Positive covariance btw. 2 para.

Negative covariance btw 2 para.

Assume two variables 
follow gaussian with mean = 1.0 and 𝞼 =0.1  

= 0.1*sqrt(2)
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Some selected topics 
1) Signal and background 

2) Hypothesis test 

3) Sensitivity & Parameter estimation  

4) Systematics 

5) Monte Carlo usage
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Monte Carlo usage

Pi calculation method 
• Random throw points (dots) 

• If inside the circle, you count 
• Ratio of counts inside the circle to 

all throw points is proportional to 
area ratio of 1/4 circle and 
corresponding square

  
https://github.com/cvson/nushortcourse/tree/master/mctoy

see gif at https://imgur.com/a/hBJXmcK 
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Toy model of virus transmission

mass : 1.05322 theoretical 1.05221 
 xcm : -0.00182585 
 ycm : 0.00821742 
 zcm : -0.266806 theoretical -0.269071

https://github.com/cvson/nushortcourse/tree/master/mctoy

A static model: People don’t move / (effectively social distance)

● infected 
● Non-infected See gif at https://imgur.com/a/gzV92ZC 
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Toy model of virus transmission

mass : 1.05322 theoretical 1.05221 
 xcm : -0.00182585 
 ycm : 0.00821742 
 zcm : -0.266806 theoretical -0.269071

https://github.com/cvson/nushortcourse/tree/master/mctoy

A dynamic model: People move as their wish (or no social distance )

● infected 
● Non-infected 
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Monte Carlo usage

Neutrino Event generator is one example 

• Neutrino energy follows some distribution → Generate a 
lot of neutrinos with energy follow that distribution 

• There are many possible interactions for a definitive 
energy with different cross section  → There a lot of 
neutrinos generated, each of them can go different 
interactions 

• Four-momentum of out-going particles are not fixed (can 
be random as long as the conservations (energy, 
momentum, etc…) are satisfied)

Thumb rule: randomly go through all possibilities under predefined rule 
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To conclude
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https://www.nature.com/articles/426389a.pdf 

1. No one knows everything, and you don’t have to  

2. Go for the messes — that’s where the action is  

3. Forgive yourself for wasting time (You will never be sure 
which are right problems to work on) 

4. Learn something about the history of science (As a 
scientist, you’re probably not going to get rich… But you can 
get great satisfaction by recognizing that your work in science 
is a part of history. )

(Neutrino physics is still a mess more or less)



“Neutrino mistakes: wrong tracks and hints, hopes and failures” 
—- By Maury Goodman  at History of the Neutrino, 2018
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I was in MINOS exp. 
& work for both 

wrong tracks 

Mistake is always out there 



“Neutrino mistakes: wrong tracks and hints, hopes and failures” 
—- By Maury Goodman  at History of the Neutrino, 2018
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Mistake is always out there 

Soudan mine, Feb. 2012 
716m from surface

Surface of Soudan mine 
Feb. 2012

Auxiliary Detector

I was in MINOS exp. 
& work for both 

wrong tracks 

…but gain a lot of experience
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Thank you for listening  
and good luck!


