Hyper-Kamiokande and proton decay 2023/07/24 M.Miura Kamioka observatory, ICRR, UTokyo

1. Does Proton Decay ?

• Nucleus consists of protons and neutrons.

- It is well known that neutron decays spontaneously as β -decay: n \rightarrow p+e⁻+ $\overline{V_e}$
 - \succ Note that $M_n > M_p$.
- People thought proton is stable because of baryon number conservation.
 - ➤ n,p has baryon number 1.
 - We have never observed phenomena with baryon number violation.
 - > Proton is the lightest baryon in the world.
 - ➤1929: Weyl suggests absolute stability of proton
- But is it really true ?

Can we explain everything by a single theory ?

50(5) by Georgi and Glashow (1924

New gauge interactions (X, Y bosons) ⇒ proton decay

Proton Decay in SU(5) Georgi and Glashow (19)

Decay mechanisms

dominated by the dimension=6 op. gauge boson mediated decays

$$\tau /_B$$
 (p $\rightarrow e^+ \pi^0$) = 4 x 10^{29±1.7} years, B (p $\rightarrow e^+ \pi^0$) \approx 40 \sim 60 %

 $p \rightarrow e^+\pi^0$ became the most famous and popular decay mode.

2. How to find proton decay

- Watch a proton for very long time (> 10³⁰ years).
 - > Age of the universe: ~ 10^{10} years
 - > Obviously impossible.

OR

- Watch many protons for (relatively) short time.
 - > Lifetime τ : N(t)=N(t=0)exp(-t/ τ)
 - Need huge detector !

Higher sensitivity in Water Cherenkov Detectors

2. Dominant decay mode: $p \rightarrow e^+ \pi^0$

What's important for $p \rightarrow e^+ \pi^0$?

In "free" proton case, e⁺ and π^0 emit in back-to-back. Energy corresponding to proton mass is fully used.

What happens if a bound proton in nucleus decays ?

Nucleus

Inefficiencies and uncertainties of proton decay search come from nuclear effect !

Key 1: Proton never stops in nucleus

 Protons don't exist locally in nucleus. It is always moving in the nuclear potential (Fermi motion, p_f ~ 225 MeV/c).

Key 2: Binding energy

 Energy corresponding proton mass should be used for compensating its binding energy (sstate: ~40 MeV, pstate:15 MeV in Oxygen).

Key 3: Proton strongly binding to other nucleus

 ~ 20% protons are strongly binding to other nucleon which also bring energy when the proton decays (correlated decay)

Key 4: π interacts in nucleus

 Mesons (π,K, e.t.c.) in decay products are affected in nuclear interactions before exiting nucleus.

Why water is used for proton decay search ?

- Easy to construct larger detector.
 - > Much cheaper than iron.
 - You can find large water tank everywhere (common technology).
- High efficiency and low uncertainty.
 - H₂O has two hydrogens which are not affected by nuclear effect. They are regarded as "free" proton.
 - ✓ Bound proton: ~ 200 MeV/c ~ 0.2c =6x10⁷ m/s
 - \checkmark velocity of molecular in liquid ~ 10² m/s
 - Free protons contribute high selection efficiency and low uncertainty.

How look like $p \rightarrow e^+ \pi^0$ in SK ?

Three e-like rings should be observed.

Stopped π^0 case π^0 $\gamma_1 \sim \gamma_2$ $E_1 = E_2$

Sometimes one γ is failed to reconstruct and observed only two rings.

If π^0 is absorbed before exiting nucleus, only e⁺ is observed (one ring).

Observed number of ring for $p \rightarrow e^+ \pi^0$

Free proton: H in H₂O No interaction in Nucleus Abs: π^0 absorption in Nucleus Scat: scattered CX: charge exchange $(\pi^0 \rightarrow \pi^{\pm}, \text{ below threshold})$

Choose 2 or 3 rings.

Selection criteria for $p \rightarrow e^+ \pi^0$

- 1. Event vertex should be located 2 m inward from the tank wall (fiducial volume cut, 22.5kton).
- 2. 2 or 3 ring event.
- 3. All ring should be e-like (Particle IDentification).
- 4. No Michel electrons.
- 5. Reconstruct π^0 mass for 3 ring events. It should be 85 < M π^0 < 185 MeV/c²
- Reconstruct total mass and momentum should be 800 < M_{tot} <1050 MeV/c², P_{tot} < 250 MeV/c.

Total mass vs Total momentum for $p \rightarrow e^+ \pi^0$

- Selection efficiency ~ 40 %
- Inefficiency is dominated by unavoidable physics processes.

2-2. What's Background events for proton decay searches ?

- Atmospheric neutrino is dominant backgrounds for proton decay searches.
 - ➤ Visible energy ~ 1 GeV.
 - Solar or SN v is too low energy.
 - Cosmic ray μ are rejected by outer detector.

Typical background for $p \rightarrow e^+ \pi^0$

Charged current π^0 production

- Exchange W boson between v and proton (charged current interaction).
- v changes to e^+ .
- π⁰ and neutron are produced.
 Because neutron doesn't emit Chrenkov light, visible particles after the reaction are same as p→e⁺π⁰

Total mass vs Total momentum for atmospheric v background MC (After all cuts except for total mass and momentum)

- Generate huge atm.n MC, 2000 year of SK!
 - Expected BG: ~1.3 ev/Mton*yr
- Neutrino events tend to have higher total momentum.
- Almost background free in lower momentum region (<100 MeV/c).

The region
 corresponds to free
 proton decay.

Further background reduction

- Neutron doesn't emit Chrenkov light.
 - However, neutron is thermalized in water and finally captured by hydrogen (~200 μs); n + p → d +γ (2.2 MeV)
- If we can detect delayed 2.2 MeV γ ray, we can reduce background more.
- Neutron capture is also important for SN Relic v and separate v and vbar interactions in atmospheric n oscillation analysis.

How powerful to reject background

- Sample: out of signal box in M_{tot} vs P_{tot} plot.
 ➢ Dot: data,
 - Histogram: Atm.v MC (solid: reconstructed, dash: true)
- ~ 50 % background events are rejected with neutron=0.
- On the other hand, ~ 7.5 % of p→e⁺π⁰ are accompanied with neutron from deexcitation of nucleus. Neutron tagging reduces a few % in selection efficiency.

2-3. SK result (so far)

We have not find any evidences of nucleon decays !

Result of $p \rightarrow e^+ \pi^0$

- Exposure: 450 kton year
- Efficiency: 38.6 % (SK-IV)
- Expected BG: 0.63 events
 - 0.05 evetns in P_{tot} <100MeV/c
 - 0.58 events in 100 ~ 250 MeV/c
 - Observed: 0 event

Lower limit of proton life
 time: > 2.4x10³⁴ years

3. SUSY favored decay mode: $p \rightarrow v K^+$

3-1 How to find $p \rightarrow v K^+$ in Water Cherenkov detector

- K⁺ has low momentum, most of them stop in water and decay with 12 nsec lifetime.
- Major K⁺ decay mode
 - \succ K⁺ \rightarrow $\nu\mu^+$: 64 %
 - \succ K⁺ \rightarrow $\pi^+\pi^0$: 21 %
- "Stopping K⁺" means two body decay products of K⁺ should have monochromatic momentum.

 \succ K⁺ \rightarrow $\nu\mu^+$: 236 MeV/c

- \succ K⁺ $\rightarrow \pi^+\pi^0$: 206 MeV/c
- Using this property, Water Cherenkov detector can search for $p \rightarrow v K^+$.

3-2. Search for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- Visible particle is only μ^+ with Michel electron.
- Search for data excess around 236 MeV/c of μ comparing with atmospheric ν MC.
- After proton decay, 40 % of remaining nucleus emits 6 MeV γ for deexcitation. It is useful to reduce background.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$ with γ

Difficult to identify γ from hit pattern.

Time structure with nuclear γ

- 3 hit clusters in time should be observed in case of signal.
- The event is triggered by μ hits.
- γ signal is much smaller than µ and easily hidden by tail of µ hits.
- Make 12 nsec time window and slide it toward left from t₀ (end of µ tail) to search for maximum hit cluster.

Selection criteria for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- 1μ -like ring with Michel electron
- $215 < P\mu < 260 \text{ MeV/c}$
- Proton rejection cuts
- Search Max hit cluster
 Reduce background by 5x10⁻⁴!

 by sliding time window (12ns width);
 A < Nγ < 30 hits</p>
 T_u-T_y < 75 nsec</p>
- No neutron
- Selection efficiency = (selected events)/(proton decay in fiducial volume):
 9 %
 - > Br(K⁺ $\rightarrow \nu \mu^+$)= 64 %, only 40 % emits nuclear $\gamma \rightarrow 26$ % even if detector is perfect.

Remark for this analysis

- This analysis is limited by time resolution of PMTs.
 - > If γ is close to μ , γ peak is hidden by μ hits.
 - Time resolution of SK PMT is 2.2 nsec at 1 photoelectron.
 - If μ peak becomes sharper, the selection efficiency will be improved.

3-3. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

- Both π^+ and π^0 has 205 MeV/c in momentum. This is just above Cherenkov threshold for π^+ , thus it is not identified as a ring in most of case.
- π^+ decays into μ (invisible) and ν , μ decays into ev_ev_μ .
- π^0 decays into 2 γ s.
- Search for 206 MeV/c π^0 with Michel electron.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

Look like a ring, but fake ring cut rejects this ring ...

10

-1000

-500

0 Residual PMT Hit Times (ns)

1 mu-e decay

500

1000

Use π^+ information to select events

B) Make likelihood for hit pattern.

Selection criteria for p $\rightarrow v$ K⁺, K⁺ $\rightarrow \pi^+\pi^0$

- 1 or 2 e-like rings with decay-e.
- 85 < $M\pi^0$ < 185 MeV.
- $175 < P\pi^0 < 250 \text{ MeV/c.}$
- E_{bk} : visible energy sum in 140-180 deg. of π^0 dir, E_{res} : in 90-140 deg,
 - L_{shape}: Likelihood based on charge profile

 $10 < E_{bk} < 50 \text{ MeV}$

E_{res} < 12 MeV (20 MeV for 1ring)

L_{shape} > 2.0 (3.0 for 1ring)

- No neutrons
- Selection efficiency: 10 % (Br(K⁺ $\rightarrow \pi^+\pi^0$)=21 %)

Background for $p \rightarrow v K^+$

- Dominant background is K⁺ production by neutrino interactions.
 - $\succ vp \rightarrow v\Lambda K^+$, $\Lambda \rightarrow p\pi^-$ (BR:64 %, mostly invisible in WCD)

 \succ Emit nuclear γ as same as the signal.

- It is also rare interaction and we had poor information from very old bubble chamber. Large uncertainty.
- Recently MINERvA measures K⁺ production. It is very useful information for this analysis.

3-4. SK results (So far)

- Exposure: 365 kton year
- Expected background: 0.3 events for $K^+ \rightarrow \nu \mu$ with nuclear γ , 0.6 events for $K^+ \rightarrow \pi^+ \pi^0$.
- No candidates observed and no excess in momentum distribution.
 Black: Data
- Lower lifetime limit: > 0.8x10³⁴ year

Red: Atm.n MC

3. Summary of SK results

- Most of modes have been investigated with > 0.3 Mton • year exposure (red and green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- Many of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidence of nucleon decay has been observed.

Future prospects

- Still no evidence has been found. Major decay modes are explored up to around 10³⁴ years.
- Proton lives longer, ~10³⁵ years ?
 - ➢ Run SK 10 times more (~200 years)? → Impossible.
- Absolutely, we need larger detector !

4. Hyper-Kamiokande project

Neutrino oscillation

Proton decay ?

Kamiokande 3kton

15.5m

SN Neutrino

16m

一夕記録

Super-Kamiokande 50kton Hyper-Kamiokande 260kton

Hyper-K is multi-purpose detector

HYPER-K COLLABORATION

22 countries, 102 institutes, ~570 people as of July 2023, and growing

Collaborating Institutes

NUMBER OF COLLABORATORS

I wish Vietnam joins soon

ece	4	
/	59	
and	45	
sia	23	
in	48	
eden	5	
tzerland	15	
aine	4	
	87	

339 members

3

7

33

1

Europe

Armenia

Czech

France

Germany

Gre

Ital

Pol

Ru: Spa

Sw Sw

Oceania	160 members
Australia	5
India	10
Korea	16
Japan	129
Americas	62 members
Brazil	3
Canada	42
	0
Mexico	9
Korea Japan Americas Brazil Canada	16 129 62 members 3 42

Africa	12 members
Morocco	12

Enhance proton decay search with HK

- Fiducial volume: 22.5kton (SK) \rightarrow 190kton (HK)
- New photo sensor: Box&Line PMT
 - 2 times better photon counting performance
 - a half time resolution

Better photon counting contributes neutron tagging

- Neutron tagging efficiency study with several detector set up.
- Efficiency depends on dark rate.
- Achive ~ 70% in the current baseline design (black) with ~ 4kHz dark rate.
- p→e+p0 background reduction vs. Neutron tagging efficiency

0.25

0.5

SK

BKG fraction

0.8

0.6

0.4

0.2

0

 Background of HK becomes a half of SK !

→ e⁺π⁰

40k

5 0.75 1 Tagging efficiency

Sensitivity for $p \rightarrow e^+ \pi^0$

(SK: 0.18) (SK: 1.1)

Sensitivity for $p \rightarrow v K^+$

Expected signal after 10 years run assuming the current lifetime limit

3σ discovery potential

What are still unknown in v oscillation?

Effects of unknown parameters on v oscillation are small \rightarrow Need statistics = larger detector !

v beam experiments: Can study CP phase by comparing v v-bar oscillation.

Expected v_e spectrum at HK (assuming 1.3 MW x 10 years)

Sensitivity of CP violation

HK 10 years

- In 60 % region in δ_{CP} , we can discovery δ_{CP} with 5σ .
- If = $\delta_{CP} \pm 90$ degree, we can discover it within 5 years.

Atmospheric $\mathbf{v}: \mathbf{v}_{u} \rightarrow \mathbf{v}_{e}$ enhancement by matter effect

 v_e oscillation due to non-zero θ_{13} provides atm. nu. observation to investigate mass hierarch effect

 $v_{\mu} \rightarrow v_{e}$ osc. probability in matter:

Possible to determine mass hierarchy !

Sensitivity to determine mass hierarchy

Beam v: sensitive to δCP , but weak in mass hierarchy. Atm. v: large uncertainty from δCP . \rightarrow Combining both analysis

gives good sensitivity to mass hierarchy.

 3σ determine within 2 ~ 5 years !

Construction of HyperK has been started !

Aim to start observation in 2027 !

Access tunnel has reached to the center of HyperK tank !

Detector Cavern is becoming a reality

4. Summary

- Proton decay is a key phenomena of Grand Unified Theories beyond the Standard Model.
- Super-Kamiokande is the leading detector to hunt proton decays and have searched for it for more than 20 years.
- However, no evidence has been observed and the current proton lifetime limits are around 10³⁴ years.
- It may be around the corner ! Hope three times lucky (3 度目の正直 in Japanese) in Hyper-Kamiokande.
- HK also can determine remaining ν oscillation parameters .

Backup

Problems solved by SUSY

 Unification scale higher than non-SUSY-GUTs (M_x ~ 2 x 10¹⁶ GeV) suppression of gauge boson mediated decay

$$\frac{\tau}{B}$$
 (p \rightarrow e⁺ π^{0}) $\approx \left(\frac{M_{\chi}}{2x10^{16}\text{GeV}}\right)^{4}$ x 10^{36±1} years

dominated by the D=5 op. (color Higgs triplet, q=1/3) mediated decays

⇒ highly model dependent

 $p \rightarrow v K^+$ is regarded as dominant mode in SUSY-GUTs.

Many Other GUTs Beyond This Simple Story

Model	Ref.	Modes	τ_N (years)
Minimal SU(5)	Georgi, Glashow [2]	$p \rightarrow e^+ \pi^0$	$10^{30}-10^{31}$
Minimal SUSY $SU(5)$	Dimopoulos, Georgi [11], Sakai [12]	$p \rightarrow \bar{\nu}K^+$	
	Lifetime Calculations: Hisano,	$n \rightarrow \overline{\nu} K^0$	$10^{28} - 10^{32}$
	Murayama, Yanagida [13]		
SUGRA $SU(5)$	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$
SUSY $SO(10)$	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu}K^+$	
with anomalous		$n \rightarrow \overline{\nu} K^0$	$10^{32} - 10^{35}$
flavor $U(1)$		$p \rightarrow \mu^+ K^0$	
SUSY $SO(10)$	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$
SUSY $SO(10)$	Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
ESSM (std. $d = 5$)			$\lesssim 10^{35}$
SUSY $SO(10)/G(224)$	Babu, Pati, Wilczek [19, 20, 21],	$p \rightarrow \bar{\nu}K^+$	$\leq 2 \cdot 10^{34}$
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$	
$(new \ d = 5)$		Br	$\sim (1 - 50)\%$
SUSY $SU(5)$ or $SO(10)$	Pati [18]	$p \rightarrow e^+ \pi^0$	$\sim 10^{34.9\pm1}$
MSSM $(d = 6)$			
Flipped $SU(5)$ in CMSSM	Ellis, Nanopoulos and Wlaker[22]	$p \rightarrow e/\mu^+ \pi^0$	$10^{35} - 10^{36}$
Split $SU(5)$ SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{37}$
SU(5) in 5 dimensions	Hebecker, March-Russell[24]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$
		$p \rightarrow e^+ \pi^0$	
SU(5) in 5 dimensions	Alciati et.al. [25]	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$
option II			
GUT-like models from	Klebanov, Witten[26]	$p \rightarrow e^+ \pi^0$	$\sim 10^{36}$
Type IIA string with D6-branes			

Uncertainties in the predictions:

Nuclear matrix elements updated w. IQCD, still: x10 uncertainty in lifetime

SUSY masses: ~ x100 uncertainty in lifetime

Proton life time: $10^{30} \sim 10^{35}$ years

TABLE I: Summary of the expected nucleon lifetime in different theoretical models.

Modes beyond $e^+\pi^0$, $K^+\nu$ and other antilepton + meson decays

$p \rightarrow \mu^{-} \pi^{+} K^{+}$	B + L
$n \rightarrow \overline{n}$	$\Delta B = 2$, TeV < scale < GUT
$pp \rightarrow K^+K^+$	$\lambda''_{\rm uds} < 10^{-8}$
$p \rightarrow e^{-}\pi^{+}\pi^{+}\nu \nu$	6 dimensions
$n \rightarrow v v v$	invisible
$p \rightarrow e^+ \gamma$	radiative

there is plenty to keep us busy ...

- After Time-of-Flight subtraction, search for 7 hits in 10 nsec time window. \rightarrow candidates of γ .
- Make 16 variables related to space and time information of each hits (RMS of phi, theta, hit time, e.t.c.)
- Put them into Neural Network to judge γ or not.
- Neutron tagging efficiency: 21 % (mis-tagging: 1.8 %)

3. $p \rightarrow v K^+$ search

Difficulty of $p \rightarrow v K^+$

- K⁺ mass: 494 MeV, relatively heavy.
- Cherenkov threshold: 560 MeV/c.
- Most of K⁺ can not emit Cherenkov light.

Q. Calculate momentum of K⁺ from free proton decay. Hint: proton mass: 938 MeV, "free" means proton momentum=0.

3-1 How to find $p \rightarrow v K^+$ in Water Cherenkov detector

- K⁺ has low momentum, most of them stop in water and decay with 12 nsec lifetime.
- Major K⁺ decay mode
 - \succ K⁺ \rightarrow $\nu\mu^+$: 64 %
 - \succ K⁺ \rightarrow $\pi^+\pi^0$: 21 %
- "Stopping K⁺" means two body decay products of K⁺ should have monochromatic momentum as seen in the previous question !

 \succ K⁺ \rightarrow $\nu\mu^+$: 236 MeV/c

 \succ K⁺ $\rightarrow \pi^+\pi^0$: 206 MeV/c

• Using this property, Water Cherenkov detector can search for $p \rightarrow v K^+$.

3-2. Search for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- Visible particle is only μ^+ with Michel electron.
- Search for data excess around 236 MeV/c of μ comparing with atmospheric ν MC.
- After proton decay, 40 % of remaining nucleus emits 6 MeV γ for deexcitation. It is useful to reduce background.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$ with γ

Difficult to identify γ from hit pattern.

Time structure with nuclear γ

- 3 hit clusters in time should be observed in case of signal.
- The event is triggered by μ hits.
- γ signal is much smaller than µ and easily hidden by tail of µ hits.
- Make 12 nsec time window and slide it toward left from t₀ (end of µ tail) to search for maximum hit cluster.

Selection criteria for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- 1μ -like ring with Michel electron
- $215 < P\mu < 260 \text{ MeV/c}$
- Proton rejection cuts
- Search Max hit cluster
 Reduce background by 5x10⁻⁴!

 by sliding time window (12ns width);
 A < Nγ < 30 hits</p>
 T_u-T_y < 75 nsec</p>
- No neutron
- Selection efficiency = (selected events)/(proton decay in fiducial volume):
 9 %
 - > Br(K⁺ $\rightarrow \nu \mu^+$)= 64 %, only 40 % emits nuclear $\gamma \rightarrow 26$ % even if detector is perfect.

Remark for this analysis

- This analysis is limited by time resolution of PMTs.
 - > If γ is close to μ , γ peak is hidden by μ hits.
 - Time resolution of SK PMT is 2.2 nsec at 1 photoelectron.
 - If μ peak becomes sharper, the selection efficiency will be improved.

3-3. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

- Both π^+ and π^0 has 205 MeV/c in momentum. This is just above Cherenkov threshold for π^+ , thus it is not identified as a ring in most of case.
- π^+ decays into μ (invisible) and ν , μ decays into $e\nu_e\nu_\mu$.
- π^0 decays into 2 γ s.
- Search for 206 MeV/c π^0 with Michel electron.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

Look like a ring, but fake ring cut rejects this ring ...

Use π^+ information to select events

B) Make likelihood for hit pattern.

Selection criteria for p $\rightarrow v$ K⁺, K⁺ $\rightarrow \pi^+\pi^0$

- 1 or 2 e-like rings with decay-e.
- 85 < $M\pi^0$ < 185 MeV.
- $175 < P\pi^0 < 250 \text{ MeV/c.}$
- E_{bk} : visible energy sum in 140-180 deg. of π^0 dir, E_{res} : in 90-140 deg,
 - L_{shape}: Likelihood based on charge profile

 $10 < E_{bk} < 50 \text{ MeV}$

E_{res} < 12 MeV (20 MeV for 1ring)

L_{shape} > 2.0 (3.0 for 1ring)

- No neutrons
- Selection efficiency: 10 % (Br(K⁺ $\rightarrow \pi^+\pi^0$)=21 %)

Background for $p \rightarrow v K^+$

- Dominant background is K⁺ production by neutrino interactions.
 - $\succ vp \rightarrow v\Lambda K^+$, $\Lambda \rightarrow p\pi^-$ (BR:64 %, mostly invisible in WCD)

 \succ Emit nuclear γ as same as the signal.

- It is also rare interaction and we had poor information from very old bubble chamber. Large uncertainty.
- Recently MINERvA measures K⁺ production. It is very useful information for this analysis.

3-4. SK results (So far)

- Exposure: 365 kton year
- Expected background: 0.3 events for $K^+ \rightarrow \nu \mu$ with nuclear γ , 0.6 events for $K^+ \rightarrow \pi^+ \pi^0$.
- No candidates observed and no excess in momentum distribution.
 Black: Data
- Lower lifetime limit: > 0.8x10³⁴ year

Red: Atm.n MC

Faster PMT response improves nuclear γ tagging in p $\rightarrow v$ K⁺

- Time resolution: 2.2nsec (SK)
 →1.1 nsec (HK).
- Sharper time distribution of μ
 → γ close to μ cab be identified !

(Better photon counting also contributes improvement)