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THE STANDARD MODEL IN THREE HOURS

- oo DISCOVer
I HISTORY




REFERENCES

@ Particle Data Group
https://pdg.1bl.gov/

@ Books:
Mathew D. Schwartz " Quantum Field Theory and the Standard
Model”
C. P. Burgess and Guy D. Moore " The Standard Model: A Primer”
Michael E. Peskin and Daniel V. Schroeder " An Introduction to
Quantum Field Theory”

@ Online Lectures:
Prof. Leonard Susskind's lectures on the SM
Prof. Michael E. Peskin's lectures on youtube

@ Ask teachers, researchers and friends
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https://pdg.lbl.gov/
https://cosmolearning.org/courses/particle-physics-the-standard-model-416/video-lectures/
https://www.youtube.com/watch?v=0LWYXkeuy-Q

Lecture 1
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WHAT ARE ELEMENTARY PARTICLES 7

Atom and subatomic particles

— electron

<10""*m

R T S o
@ quarks

10-5m <107""m
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WHAT ARE ELEMENTARY PARTICLES 7

Atom and subatomic particles

| \ electron
\
\ <10 "m

107" )
@ quarks

10-5m <107"m

In natural unit: h=c=kg = ¢ =1,
[E] = [p] = eV, [Length] = [Time] = eV~!

Atom nucleon quark (u,d) electron
size | 500 MeV ™' [ 5 GeV ! <5 TeV! <5 TeV !
mass n GeV 1 GeV | u(d) ~2(5) MeV | 0.5 MeV
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WHAT ARE ELEMENTARY PARTICLES 7

An elementary particle is a particle with no internal structure. It is
considered as a point-like object.

Here are properties of elementary particles

Electric charge (quantized, g = 0,41, £2, j:%, j:%)

Spin (scalar s = 0, Fermion s =  , vector boson s = 1)
Mass (large range: 0 — eV — GeV)

©0 00

life-time (7, s): stable (7y,4,e — 00), unstable
TW,Z,t,H ™~ 1025

anti particle: carry opposite quantum number e, e™

Fundamental Interactions (electromagnetic, weak,strong)

© 0 0

Some other quantum numbers (color charge, lepton, baryon,
strange, CP)
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PARTICLE CONTENT OF THE SM

mass
charge —

spin —+

QUARKS

LEPTONS
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down J ~ strange J . bottom J L photon
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R WA ® J\
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MASS vS DECAYWIDTH

life-time and decay width

=l =

8 uon
GeV 1

‘Iuon.S
d
[ J
" o
3 Mev ®°
=
keV
ov{ @ Neutrinos
o]

Photon. Gluon
o 10-"%ev 10-tev GeV
Decay width
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WHERE DO WE OBSERVE ELEMENTARY PARTICLES?

o Natural sources: Sun, explosion, cosmic rays — v,7, e, i
o Laboratory:
e Reactor: e, v,y
o Accelerator: all elementary particles can be produced as long
as it has enough energy — High Energy Physics
Tevatron (Ecy = 2 TeV), Large Electron-Positron Collider
(LEP, Ecpm = 209 GeV)

Large Hadron Collider (LHC) Ecpm =7,8,13,13.6,14 TeV
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HiGH ENERGY PHYSICS

ENERGY MASS RELATION:

1

Y= 1—v2
LEP: E. = 104.5 GeV LHC: E, =7 TeV
me = 0.5 MeV m, = 938 MeV

ve ~ 0.9999999999885 vp ~ 0.99999999102
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HiGH ENERGY PHYSICS

ENERGY MASS RELATION:

1

LHC: E, =7 TeV
mp = 938 MeV
vp ~ 0.99999999102

Y= 1—v2
LEP: E. = 104.5 GeV
me = 0.5 MeV
Ve ~ 0.9999999999885
[——
Far less than Comparable to
310 m/s 3x10* mjs
c(0) Spead '
Far larger than o
10%m O Classical Relativistic
Mechanics Mechanics
Size
A Quantum Quantum
Near or less than ;E;S Mechanics Field Theory

10%m

HEP needs QFT
Uncertainty principle
AE.At > h/2
Ap.Ax > h/2
consequence:

virtual particle

E2 4 m? 4 p?
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QUANTUM MECHANICS VS QUANTUM FIELD THEORY

@ Space and time are
separated variables

° Hamilt?nian:
H=2%-+V(x)

@ Schoedinger equation:
- 9o(x,
in22t) — Ho(x, t)

e Wave function: ¢(x, t) =
3, i Erx)e B

o Conserved quantity:
—ihd2 =[H,A] =0

The Legende transformation
H = azan*(D) — £
Lagrangian: L£(x(t),

x(t))

QFT

@ Minkowski space and Lorentz
invariance: p,v =0,1,2,3

xFx, = xtgx¥ = t2 — X2
xt = (t,X) = (t,x,y,z),
guw = diag(1,—-1,-1,-1)

PM — (€;7P§;F55 Pzg
= (3% 5% By 92)
e Lagrangian: L(¢(x), 0" ¢(x))

° EuIer—Lagrande equation:

oL
5% — 0" a5e =0

o Conserved current:
P(x) = o(x) + Ag(x)
0ju =0, ju = 53z Ab(x)
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LAGRANGIAN AND FIELD
LAGRANGIAN AT ZERO TEMPERATURE IN MINKOWSKI

SPACE (4 DIMENSIONAL SPACE):

o Classical Mechanics: £L=T — V = L(x(t), x(t))
o QFT: Lagrangian is a function of free fields and their
derivatives L(¢p(x), 0" p(x)), satisfing several requirements:
o Lorentz invariant, 0" ¢(x)0,¢(x), AH(x)Au(x), F* Fu.
o Mass dimension is 4 since S = [ dx*L is dimensionless
e Your wished symmetries

v

it is a function of space time and belongs to a representation of
Lorentz group (scalar, vector, left (right) handed Weyl spinor,
Dirac spinor)

6(x) = | 25 (alp)e™ ™ + bl (p)ets)

a(p), b(p): annihilation operators, a'(p), b'(p) creation operators

v

™7 = =
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PARTICLE CLASSIFICATION: BOSON VS FERMION

BosonN

o H Cmioy
e Spin: integer (0,1) o Leptons, quarks
@ commutative: @ Spin: half-integer (%)
d(x)d(y) = ¢(y)o(x) @ anti-commutative:
[p(x), o(y)] =0 Y(x)e(y) = —(y)i(x)
o real field: {v(x),v(y)t =0
particle = anti-particle @ only complex field:
e complex field: particle # anti-particle
particle # anti-particle

Higher spin elementary particle: graviton (s=2), gravitino (s=3/2)
they have not yet been observed.
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BosonNic FIELD

Real scalar field: spin =0, H

o Free Lagrangian: ¢(x) with mass dimension [¢(x)] =1

L= 10460, + T ¢?
o Klein-Gordon equation (0*9,, — m?)¢(x) =0
@ one component field = one degree of freedom (dof)
o [a(p), a'(p)] = (27)*6*(p — P'), [a(p), a(p")] = O

3
P(x) = /(275]3\[)/% (a(p)e""’”x“ + aT(p)eJ“"p“X“)

one particle state: |p) = v2Eaf(p)|0)  a(p)|0) =0
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BosonNic FIELD

Vector field: spin=1, massless v, g, massive (Z, W)
o Free Lagrangian: A*(x) with mass dimension [A#] =1
L= —%F“”FW + ’";A“AM where the field strength tensor
FHv = gAY — g AH
e Proca equation: 9, F* 4+ m?A* =0
e Four component field > 2 dof (massless), 3 dof (massive) —
need gauge fixing condition O*A,(x) =0

e (A, p): polarization vector A = £1 for massless,
A= —1,0,1 for massive

o3 ) ) )
A (x) = / ST (Mo Nale, e 1 4 e (p, A)b (p, N)e TP m)
A

(2m)3V2E
» L kPkY
D PN (P N) = —g" + 7 o

A
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FERMIONIC FIELD

Dirac field: spin:%, charged fermions e, u, 7, u,d,s,c, b, t

o Free Lagrangian: ¢(x) with mass dimension [¢(x)] = 3

L = P(iy*9, — m)y where ¢ = 1170
Dirac matrix: 7, are 4 x 4 matrices, in chiral representation:

L ({0 1\ (0 —F\)_ [0 &
"=\ Jo\¢ o)) \er 0
o123 are three 2 x 2 Pauli matrices

e Dirac equation (iv*0, — m)y =0

o Four complex component field ¥(x) = (1,2, V3, ¥4) T
o

3 ) i
w(x):/ @ ;/33275 3= (ulp, Nalp, Ne TP 4 v(p, M (p, N)e PR
0 A==+1

u(p, A), v(p, A) are Dirac spinors satisfying (y*p, — m)u =0
and (v#p, +m)v =0
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LEFT- AND RIGHT-HANDED WEYL SPINOR

. 10
v5 = i7%91273 = ( 0 1) and [v5,7,] =0

o Let's define left- and right-handed projectors

[ 10 Tt 00
PL= 27—(0 0), Pr = J?—(O 1>,

P.P. = P.,PrPr = Pr,P.Pr =0
One can construct:

Y1 0
v=P= "2 vr=Peo=| | v =vitie
0 s

1y is left-handed Weyl spinor and 1 is right-handed Weyl
spinor. ( Weyl spinors are two component spinors.)
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LEFT- AND RIGHT-HANDED WEYL SPINOR

. 10
v5 = i7%y1y2y3 = ( 0 1) and [vs,7,] = 0

o Let's define left- and right-handed projectors

1—7s 10 T+ 0 0
P =" —(0 0), Pg = X _(O 1>,

P.P. = P.,PrPr = Pr,P.Pr =0
One can construct:

Y1 0

v=pP= |2, wr=Pro=| 0|, w=w+ur
0 V3
0 v

1y is left-handed Weyl spinor and 1 is right-handed Weyl
spinor. ( Weyl spinors are two component spinors.)

o We define chirality from 5, = —v, Y5¥r = ¥R
o Dirac field Lagrangian: B B B
L = Y(in"0u — m)Y = ib P + ivrPYr + m( R +YrYL)

mass term does not respect chirality
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MASSLESS FERMIONIC FIELD

LAGRANGIAN

i P + ivrPYr Left- and right-handed Weyl spinor are
independent. Chirality is Lorentz invariant and from Dirac
equation one gets (/,j, k =1,2 3)

(+°lpl = 7'P)ulp) = 0= (1 - T2EYu(p) = 0
Using %9 = 5%/ where ¥’ = —GUkO'Jk, g, = 2[7,-,')/;(] then

D
Il
I
I

ysu(p) = ZI;IIJI u(p) where T:p‘ is the helicity operator.
For massless particle helicity is identical to chirality.
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MASSLESS FERMIONIC FIELD

LAGRANGIAN

i P + ivrPYr Left- and right-handed Weyl spinor are
independent. Chirality is Lorentz invariant and from Dirac
equation one gets (/,j, k =1,2 3)

(+°lpl = 7P )u(p) = 0 — (1 — L& )u(p) = 0

Using %9 = 5%/ where ¥’ = fe’fkajk, g, = 2[7,-,'7;(] then
ysu(p) = % u(p) where T:p‘ is the helicity operator.

For massless particle helicity is identical to chirality.

D
Il
I
I

A

They are left-handed Weyl spinor and their anti-neutrinos are
right-handed Weyl spinor. There is no right-handed neutrinos. As
consequence neutrinos are massless in the SM.

.
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FUNDAMENTAL INTERACTIONS: ELECTROMAGNETIC

@ between particles carring

electric charge

e Quantum view: charged
particles interact by
exchanging a virtual
photon

Electric Magnetic
_ kg,
F==7 =/
,
igq' {":gi L

Like charges repal

F:qv_ré

EM interaction can be
described by a point-like
interaction of charged particle
with photon. Lagrangian can
be written as

Line = ep(x)7"1)(x)Au()
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WEAK INTERACTION (1)

@ Nuclear beta decay :
n—pt+e +uve

I
see Prof. Nakaya's lecture L& L/ \U J

@ Enrico Fermi proposed .
(1934) ?Ll EBE _{:B
S5 (B(x) () (E(x)7"v(x))

e Wu's experiment (1956) found parity violation in beta decay

e Sudarshan and Marshak (1957), Feynman and Gell-Mann
(1958) suggested

%(ﬁ(X)W(l = 75)n(x))(EC)*(1 = 5)v(x))
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WEAK INTERACTION (2)

e Proton and neutron consist of quarks (1964, Gell-Mann and
Zweig): p = (uud) while n = (ddu)

GF , - _
()71 = 75)u(x)) ()Y (1 = 75)v(x))
V2
@ The beta decay can be described exchanged by W. It can be
written as

Line = & a(x)7#(1 — ~5)d(x) Wu(x)—l—%é(x)v“(l ) (X)W,(x)

2V2

2
ap =82 ~3x1072
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WEAK INTERACTION (3)

Not only charged current interaction

8 _ 8 _
Lint = ——=a(x)v"(1 — v5)d(x) W, (x) + ==¢&(x)v*(1 — v5)v(x) W, (x
= 7 H0OY (1= ) AW, + 55 Ex) (1 35 W, ()
But also neutral current interaction
Lime = 582 F(x)7" (gl — gfis)F(x) Zu(x)

~ 2cos Ow

f: quark, charged leptons, neutrinos

g\f/,gz are coefficients depending on electric charge and isospin of
fermion f

weak neutral current was confirmed in 1973, in a neutrino
experiment in the Gargamelle buble chamber at CERN
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STRONG INTERACTION

("]

@ The quarks model of Gell-Mann and Zweig (1964) to explain

(]

("]

g —

Old: Strong interaction between nucleons to form nuclei

the classification of hadrons

New: all particles carrying color charge participate strong
interaction (quarks, gluons)

Lagrangian: simple guest based on Lorentz invariance
Liw = gd7"qG, +gs(9"G")G,G, +g2G,G,G"G”

G,(x): gluon field gs: strong coupling

u s u

2
& ~12x107! g
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FUNDAMENTAL INTERACTIONS: RECAP
ELECTROMAGNETIC

ay(My) = £ ~ 1.2 x 107!

4

GRAVITATION

gravitational force: F = G™32
G ~6.67x107 1 mdkgts!
Construct a dimensionless

coupling
2
ag = %’Ze ~ 1.7 x 107

o K a <oy < ag
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SYMMETRY

@ makes a theory more @ makes computation simpler
predictable @ easier to convince stubborn

o leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may

be broken.
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SYMMETRY

@ makes a theory more @ makes computation simpler

predictable @ easier to convince stubborn

o leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may

be broken.

A symmetry is mathematically represented by a group of
transformations. If the Lagrangian is invariant under these
transformation, one says the theory processes the symmetry.
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SYMMETRY

@ makes a theory more @ makes computation simpler

predictable @ easier to convince stubborn

@ leads to conservation laws physicists
Human-invented symmetry may not be realized in Nature, or may

be broken.
A symmetry is mathematically represented by a group of
transformations. If the Lagrangian is invariant under these
transformation, one says the theory processes the symmetry.
Familiar example:
@ Space is isotropic — SO(3) rotation group — conservation of
angular momentum
@ Space-time is homogeneous — translation group —
conservation of energy and momentum
o U(1)g: ¥r — €/®pr, gr is electric charge — conservation of
electric charge
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(QUESTION?

Can we use symmetry to build interactions between elementary
particles?
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UNITARY TRANSFORMATIONS

Important in physics, geometry, informatics
@ Preserve probability in quantum mechanics

[(2U|Upn)[* = (02| UTUJp1) [ = | (2]tf1)|?

Unitary: (| UTU|11) = (h]ab1)
Anti-unitary: (1a|UTUJtb1)* = (1aah1)
o Unitary

Utu =1
@ Special Unitary
detU =1
e Matrix representation SU(N): N x N matrices with
UlU=1 detU=1

U=eTo,  T,4+Ti=1 T[T =0,
T,: generators, Hermitian and traceless matrices.

a=1,...,D where D is the number degree of freedom
D=N>-1
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ABELIAN GAUGE SYMMETRY (1)

e U(1)q transformation: given a quantum field 1)(x)
V' (x) = €8%(x)
« is a continuous parameter € R, g is parameter

characterizing the group, @ is the quantum number carried by
the field 1(x). It acts on field, donot change space-time.

@ Abelian/ commutative group:
el 8Q1 oiagQ — oic(Qi+Q)g — oiagQ2 giagQs
o Global transformation: « is independent of space-time
L= p(inh 0y — m)
where ¢ = 40
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ABELIAN GAUGE SYMMETRY (1)

e U(1)q transformation: given a quantum field 1)(x)
W (x) = 6@y (x)
« is a continuous parameter € R, g is parameter
characterizing the group, @ is the quantum number carried by
the field 1(x). It acts on field, donot change space-time.
@ Abelian/ commutative group:
g1 piagQy — oia(Qi+Q2)g — oiagQ gicgQ

o Global transformation: « is independent of space-time
L= (i — m)
where ¢ = 40
— invariant under U(1)g — Dirac Lagrangian has U(1)q
symmetry

28 /46



ABELIAN GAUGE SYMMETRY (1)

U(1)q transformation: given a quantum field v (x)

W(x) = e8%(x)
« is a continuous parameter € R, g is parameter
characterizing the group, @ is the quantum number carried by
the field 1(x). It acts on field, donot change space-time.

Abelian/ commutative group:
g1 piagQy — oia(Qi+Q2)g — oiagQ gicgQ

Global transformation: « is independent of space-time
L =y(iv"0y — m)y
where ¢ = 40
— invariant under U(1)g — Dirac Lagrangian has U(1)q
symmetry
Assume if there exists a term as 110, then we have

—Qy, + Qp + Qy, = 0. It means that Q quantum number is
conserved.
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ABELIAN GAUGE SYMMETRY (2)

e If a is a function of space-time a(x) — local transformation.
L = §(ir"8, — m)d
is not invariant anymore.
What should we do to restore symmetry?
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ABELIAN GAUGE SYMMETRY (2)

e If a is a function of space-time a(x) — local transformation.
£ = §(ir"d, — my
is not invariant anymore.
What should we do to restore symmetry?
o Under /()@ transformation
L— "‘/_}(’.’Y#au — m)y — gQTZ'Y'uwaua(X)

o If we add one more term in the original Lagrangian
L= P(iv 0 — m)y + gQUy" At (1)
and require that the new field A, transform as
Au — Ay + O0ua(x)
(1) is invariant under local transformation.

o Rewrite (1) as B
£ = §(ir" Dy, — m)y

with D, = 9, — igQA,, :  covariant derivative
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ’gQAM)l/} - m¢¢ - ZF'LWF;W

Fiv = grAY — 8 Al = _5[D,, D, ]
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ngAu)i/J - md”/} - ZFMVFNV

Fi = grAY — 8 Al = _5[D,, D, ]

Identifying g to elementary charge e, Q to electric charge
quantum number, Q@ = —1 for electron, Q@ = 2/3 for up-type
quark, @ = —1/3 for down-type quark, A, as photon field, we
obtain a theory called Quantum Electrodynamics (QED)
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QUANTUM ELECTRODYNAMICS (QED)

@ Lagrangian is invariant under a local transformation. There
appears a new vector field A, and an interaction term.

= . - 1
L= /@W”(aﬂ, - ’gQAM)w - m?/”/f - ZFMVFNV

Fi = grAY — 8 Al = _5[D,, D, ]
Identifying g to elementary charge e, Q to electric charge
quantum number, Q@ = —1 for electron, Q@ = 2/3 for up-type
quark, @ = —1/3 for down-type quark, A, as photon field, we
obtain a theory called Quantum Electrodynamics (QED)

@ Photon is massless since the term myA*A,, is not gauge
invariant.

@ Photon is a real vector

fle|d [
@ There is no self-coupling

of photons
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NON-ABELIAN GAUGE SYMMETRY (1): YANG-MILLS
THEORY (1954)

It is not enough to describe all interactions by only Abelian gauge
symmetry, we want to have multiple vector particles appears in the
theory.
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NON-ABELIAN GAUGE SYMMETRY (1): YANG-MILLS
THEORY (1954)

It is not enough to describe all interactions by only Abelian gauge
symmetry, we want to have multiple vector particles appears in the
theory.
e SU(N), N > 2: a set of fermionic fields belong to a
fundamental represenntation of SU(N).

(1 1
ro | 2| o emescor | 2
YN Uy
a=1,--- ,N>—1, T? are N x N Hermitian matrices,

generators of SU(N) which obey the group algebra

[T, TP =if3bcTc  £3b¢ group structure constant
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NON-ABELIAN GAUGE SYMMETRY (2)

o Lagrangian of the set of fermionic fields
L=iTy"D, ¥ — TMET

M is N x N mass matrix.

e Under SU(N) local transformation
L — iLUWD UL — LUTMUL
It is invariant if
D, = UD,U!
UmMu = ™

M = m1 means that all fields in the multiplet must have the
same mass.
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NON-ABELIAN GAUGE SYMMETRY (3)

@ Using the similarity with Abelian case, we set
D,=0,—ignT?°A3, a=1,--- N -1
The requirement D], = UD,U" means that
TA, = UTAU + g’;vuaﬂ Ut
= T.A+T.0,0+i[T.0up, TA)+---
@ How to construct field strength tensor?
Dy, D) = —ignF3, T°

then F2, = 0,A3 — 0,A3 + gnf?° AL AS

A
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NON-ABELIAN GAUGE SYMMETRY (4)

@ Lagrangian of the set of fermionic fields and new vector fields
(gauge fields)

i S 1 a v
L= iTy"D,¥ — mEL — 2 FFY

F2, = 0,A% — 0,A% 4 gn PP AL AL

o All fields in the multiplet must have the same mass. Gauge
fields are massless

o Number of new gauge fields N> — 1, they belong to the adjoin
representation of the SU(N) — real fields

@ Trilinear and quartic gauge couplings exist

b
A
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Di1scussioNs ON GAUGE SYMMETRY

o Gauge fields are real vector fields and massless

@ Interaction terms appear naturally with a common coupling
for each group

o All fields in the multiplet must have the same mass

Is that enough to describe the electromagnetic, weak and strong
interactions?
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SYMMETRY BREAKING MECHANISM

Gauge symmetry must be broken for at least weak interaction.

o explicit breaking: add different mass terms for different
fermions and for different gauge fields. This loose the
predictive feature of the theory.

@ spontaneous symmetry breaking?
Lagrangian is invariant under the symmetry, but the ground
state of the theory is not.
— attractive idea

36 /46



SPONTANEOUS SYMMETRY BREAKING

Spontaneous symmetry breaking in phase transition [L.D. Landau 1937]
Spontaneous symmetry breaking in field theory [Y. Nambu 1960]

Spontaneous symmetry breaking in the Standard Model [F. Englert, R.
Brout 1964, P.W. Higgs 1964]

Ferromagnetlsm Symmetric phase: M=0

Broken phase: M # 0

o e L W e & e e e

Sorad o S prtis P S S S

s B Skes § o O ™ S

F o o e ke o W o e

e Ui o e e e

LA T S P S e
\y “massive’’ mode

M=0 M #0
Mz

T>T, “massless” mode

transverse

taken from the Nobel lecture by Francois Englert in 2013
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SPONTANEOUS BREAKING OF DISCRETE SYMMETRIES

(1)
Consider a Lagrangian of a real scalar field ¢
A

1 1
_ 1., L o0 A g
L= 30"00,6 — 5md — 70
where the potential is V = im?¢? + 2 ¢*
@ proccesses a Z, symmetry ¢ — —¢
@ m, A depend on temperature.
>0 ifT > T¢
) > >
T)~c(T—Te)+--—
m(T) ~ < <) {<o ifT < Tc

e for T < T¢, ml T) = —u?, X is positive. Find the extrema through

=0 maximum

oV e A
96 W+ ed —0—>{

the two minima correspond to two vacuum states [0_), |04)

o=+ % two possible minima
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SPONTANEOUS BREAKING OF DISCRETE SYMMETRIES

(2)

@ At either minimum, the Z, symmetry is spontaneous broken.

@ Take one minimum and expand ¢ around it ¢ = % +¢

m*
£ = 260,54 30 _ o =\ [Ami — L

@ The qNS field has a possitive mass squared 2

@ The new Lagrangian is not invariant under symmetry ¢ — —@, so it
seems Z, symmetry is broken. But it is in fact still invariant under
the original ¢ — —¢. Its manifestation presents in the relation
between mass and couplings. Z, symmetry is not broken in
Lagrangian, it is hidden.

If = v (v is a constant) and £(v) = 0. One recall the vacuum
expectation value (0]¢|0) = fD¢e*ffd4X£[¢]¢ —v

At the two minima (0.]¢[04) = /%% and (0_[¢[0_) = —/ %
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SPONTANEOUS BREAKING OF CONTINUOUS GLOBAL
SYMMETRIES (1)

Consider a Lagrangian of a complex scalar field ¢ = ¢1 + i
£=8“¢*3H¢—m2¢*¢—%¢2¢*2

where the potential is V = m?¢*¢ + 2 ¢%¢*2 .
@ proccesses a global U(1) symmetry ¢ — e'%¢p
e m? >0, > 0 the potential has stable minima at ¢ =0
e m? < 0, > 0 the potential has an unstable maximum at
¢ = 0 and infinite number of equivalent minima with

lp| = % where y?2 = —m?.

infinite vacuum states
(degenerate vacuum) |0p)

(#) = (09|9|0g) = \/%e;a
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SPONTANEOUS BREAKING OF CONTINUOUS GLOBAL
SYMMETRIES (2)

@ Choosing a particular vacuum means the spontaneous
symmetry breaking.

e For convenience, take the vacuum (Qg|¢|0o) = 1/% =v/V2
and expand around the VEV as

o= vigein/(v)

We obtain

1 1 4 1 A
L= 5(8“0)2 + 5(8up)2 + “7 — plo? + 5\/,u2)\a3 + Eo“

o o has mass v/2yi. p is massless and it is called
Nambu-Goldstone boson.

@ Remaining shift symmetry of the Lagrangian p — p + v@ that
forbids a mass term for p
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GOLDSTONE’S THEOREM

Spontaneous breaking of continuous global symmetries implies the
existence of massless spin-0 Nambu-Goldstone bosons.
Proof given by Goldstone, Salam and Weinberg (1962)

@ No observed massless scalars.

@ What we observed are some pions with small masses.
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SPONTANEOUS BREAKING OF GAUGE SYMMETRIES (1)

The Higgs mechanism is not fairly named since the idea was contributed
from many people: Anderson, Brout, Englert, Ginzburg, Guralnik, Haga,
Kibble, Landau and Higgs.

@ Consider here only the Abelian gauge symmetry. For the
non-Abelian we leave it to the Standard Model discussion.

@ Lagriangian for complex scalar field with U(1) gauge symmetry
¢ — eiga(x)¢

L= PP Fuy 4 D™D 4 12670 — 5 (6°6)
where D,, = 0,, + igA,, and F** = OFAY — OV A-.
@ The potential has minimum at (¢) = = with v = V2u2 /.
@ Expand around the VEV as
¢ = %eip/(V)

Consider only the term

(v+o)? [ 0,0  Oup . Mo OFp
D, o*DFp = ~——2 — == — gA _" AM
o ® 5 v to ! v I18AL Y=/ +i +’g43 i




SPONTANEOUS BREAKING OF GAUGE SYMMETRIES (2)

Rewrite
(v+0o) [ Ou0  Oup oHo  OFp .
* MY _ B N [ op w
D, ¢*D"¢ > V1o i= igA, + + i v + igA
(vt of [ (04af (@)
5 v+ o) + + gA.

@ There is a mass term for gauge field:

2.2
v'g o
> ALA,

MA = vg
@ There is a bilinear term mixing
MABMPAH

complicates the interpretation of physical spectrum.
— How to remove this term?
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SPONTANEOUS BREAKING OF GAUGE SYMMETRIES (3)

@ The remaining symmetry of the new Lagrangian is
A, — A+ é@ua(x) and p — p — va(x)

@ Removing the bilinear term mixing by using a gauge fixing condition

o Unitary gauge: p = 0, the Goldstone boson disappears from
theory. Physical gauge. The Goldstone boson has been eaten
by the gauge boson. Before massless gauge field has 2 dof,
now it is massive and it has 3 dof.

o t'Hooft Feymann gauge: adding a gauge fixing term to the
Lagrangian

_% (0. A" — MAP)2
In this gauge p has mass My.

o This gauge fixing is not gauge invariant. To restore gauge

invariance one has to add Faddeev-Popov ghost term

= 5(8, A" —Map)

CATCA
Ca, Ca are ghost and anti-ghost field, scalars but have fermionic
properties.
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