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The Standard Model in three hours

Gauge couplings

anomaly
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What are elementary particles ?

Atom and subatomic particles

electron

10−15m

10−10m

quarks

u

e

<10−18m

<10−18m

In natural unit: ℏ = c = kB = e0 = 1,

[E] = [p] = eV, [Length] = [Time] = eV−1

Atom nucleon quark (u,d) electron

size 500 MeV−1 5 GeV−1 < 5 TeV−1 < 5 TeV−1

mass n GeV 1 GeV u(d) ∼ 2(5) MeV 0.5 MeV

5 / 46



What are elementary particles ?

Atom and subatomic particles

electron

10−15m

10−10m

quarks

u

e

<10−18m

<10−18m

In natural unit: ℏ = c = kB = e0 = 1,

[E] = [p] = eV, [Length] = [Time] = eV−1

Atom nucleon quark (u,d) electron

size 500 MeV−1 5 GeV−1 < 5 TeV−1 < 5 TeV−1

mass n GeV 1 GeV u(d) ∼ 2(5) MeV 0.5 MeV
5 / 46



What are elementary particles ?

An elementary particle is a particle with no internal structure. It is
considered as a point-like object.

Here are properties of elementary particles

1 Electric charge (quantized, q = 0,±1,±2,±1
3 ,±2

3)

2 Spin (scalar s = 0, Fermion s = 1
2 , vector boson s = 1)

3 Mass (large range: 0 → eV → GeV)

4 life-time (τ , s): stable (τγ,u,e → ∞), unstable
τW ,Z ,t,H ∼ 10−25s

5 anti particle: carry opposite quantum number e−, e+

6 Fundamental Interactions (electromagnetic, weak,strong)

7 Some other quantum numbers (color charge, lepton, baryon,
strange, CP)
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Particle content of the SM
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Mass vs Decaywidth

life-time and decay width

τ =
ℏ
Γ
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Where do we observe elementary particles?

Natural sources: Sun, explosion, cosmic rays → ν, γ, e, µ

Laboratory:

Reactor: e, ν, γ
Accelerator: all elementary particles can be produced as long
as it has enough energy → High Energy Physics
Tevatron (ECM = 2 TeV), Large Electron-Positron Collider
(LEP, ECM = 209 GeV)

Large Hadron Collider (LHC) ECM = 7, 8, 13, 13.6, 14 TeV
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High Energy Physics

Energy mass relation: E 2 = m2 + p2, p = mγv ,
γ = 1√

1−v2

LEP: Ee = 104.5 GeV
me = 0.5 MeV
ve ∼ 0.9999999999885

LHC: Ep = 7 TeV
mp = 938 MeV
vp ∼ 0.99999999102

HEP needs QFT
Uncertainty principle
∆E .∆t ≥ ℏ/2
∆p .∆x ≥ ℏ/2
consequence:
virtual particle
E 2 ̸= m2 + p2
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Quantum Mechanics vs Quantum Field Theory

QM

Space and time are
separated variables

Hamiltonian:
H = p2

2m + V (x)

Schoedinger equation:
iℏ∂ϕ(x ,t)∂t = Hϕ(x , t)

Wave function: ϕ(x , t) =∑
i ci (Ei , x)e

−iEi t/ℏ

Conserved quantity:
−iℏ∂A∂t = [H,A] = 0

==============
The Legende transformation
H = ∂L

∂(ẋ(t)) ẋ(t)− L
Lagrangian: L(x(t), ẋ(t))

QFT

Minkowski space and Lorentz
invariance: µ, ν = 0, 1, 2, 3
xµxµ = xµgµνx

ν = t2 − x⃗2

xµ = (t, x⃗) ≡ (t, x , y , z),
gµν = diag(1,−1,−1,−1)
pµ = (E , px , py , pz)
∂µ = ( ∂∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z )

Lagrangian: L(ϕ(x), ∂µϕ(x))
Euler-Lagrande equation:
∂L
∂ϕ − ∂µ ∂L

∂(∂µϕ) = 0

Conserved current:
ϕ(x) → ϕ(x) + ∆ϕ(x)
∂µjµ = 0, jµ = ∂L

∂(∂µϕ)∆ϕ(x)
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Lagrangian and Field
Lagrangian at zero temperature in Minkowski
space (4 dimensional space):

Classical Mechanics: L = T − V = L(x(t), ẋ(t))
QFT: Lagrangian is a function of free fields and their
derivatives L(ϕ(x), ∂µϕ(x)), satisfing several requirements:

Lorentz invariant, ∂µϕ(x)∂µϕ(x),A
µ(x)Aµ(x),F

µνFµν

Mass dimension is 4 since S =
∫
dx4L is dimensionless

Your wished symmetries

Free field:

it is a function of space time and belongs to a representation of
Lorentz group (scalar, vector, left (right) handed Weyl spinor,
Dirac spinor)

ϕ(x) =
∫ d3p

(2π)3
√
2E

(
a(p)e−ipµxµ + b†(p)e+ipµxµ

)
a(p), b(p): annihilation operators, a†(p), b†(p) creation operators

12 / 46



Particle classification: Boson vs Fermion

Boson

H,γ,Z ,W±, g

Spin: integer (0,1)

commutative:
ϕ(x)ϕ(y) = ϕ(y)ϕ(x)
[ϕ(x), ϕ(y)] = 0

real field:
particle ≡ anti-particle

complex field:
particle ̸= anti-particle

Fermion

Leptons, quarks

Spin: half-integer (12)

anti-commutative:
ψ(x)ψ(y) = −ψ(y)ψ(x)
{ψ(x), ψ(y)} = 0

only complex field:
particle ̸= anti-particle

Higher spin elementary particle: graviton (s=2), gravitino (s=3/2)
they have not yet been observed.
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Bosonic Field

Real scalar field: spin =0, H

Free Lagrangian: ϕ(x) with mass dimension [ϕ(x)] = 1

L = 1
2∂

µϕ∂µϕ+ m2

2 ϕ
2

Klein-Gordon equation (∂µ∂µ −m2)ϕ(x) = 0

one component field = one degree of freedom (dof)

[a(p), a†(p′)] = (2π)3δ3(p − p′), [a(p), a(p′)] = 0

ϕ(x) =

∫
d3p

(2π)3
√
2E

(
a(p)e−ipµxµ + a†(p)e+ipµxµ

)
one particle state: |p⟩ =

√
2Ea†(p)|0⟩ a(p)|0⟩ = 0
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Bosonic Field

Vector field: spin=1, massless γ, g , massive (Z ,W±)

Free Lagrangian: Aµ(x) with mass dimension [Aµ] = 1

L = −1
4F

µνFµν +
m2

2 AµAµ where the field strength tensor
Fµν = ∂µAν − ∂νAµ

Proca equation: ∂νF
µν +m2Aµ = 0

Four component field > 2 dof (massless), 3 dof (massive) →
need gauge fixing condition ∂µAµ(x) = 0

ϵµ(λ, p): polarization vector λ = ±1 for massless,
λ = −1, 0, 1 for massive

Aµ(x) =

∫
d3p

(2π)3
√
2E

∑
λ

(
ϵ
µ(p, λ)a(p, λ)e−ipµxµ + ϵµ∗(p, λ)b†(p, λ)e+ipµxµ

)

∑
λ

ϵµ(p, λ)ϵν(p, λ) = −gµν +
kµkν

m2
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Fermionic Field

Dirac field: spin=1
2 , charged fermions e, µ, τ, u, d , s, c , b, t

Free Lagrangian: ψ(x) with mass dimension [ψ(x)] = 3
2

L = ψ̄(iγµ∂µ −m)ψ where ψ̄ = ψ†γ0

Dirac matrix: γµ are 4× 4 matrices, in chiral representation:

γµ =

((
0 1
1

)
,

(
0 −σ⃗
σ⃗ 0

))
≡

(
0 σ̄µ

σµ 0

)
σ1,2,3 are three 2× 2 Pauli matrices

Dirac equation (iγµ∂µ −m)ψ = 0

Four complex component field ψ(x) ≡ (ψ1, ψ2, ψ3, ψ4)
T

ψ(x) =

∫
d3p

(2π)3
√

2E

∑
λ=±1

(
u(p, λ)a(p, λ)e−ipµxµ + v(p, λ)b†(p, λ)e+ipµxµ

)

u(p, λ), v(p, λ) are Dirac spinors satisfying (γµpµ −m)u = 0
and (γµpµ +m)v = 0
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Left- and right-handed Weyl spinor

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
and [γ5, γµ] = 0

Let’s define left- and right-handed projectors

PL = 1−γ5

2 =

(
1 0
0 0

)
, PR = 1+γ5

2 =

(
0 0
0 1

)
,

PLPL = PL,PRPR = PR ,PLPR = 0

One can construct:

ψL = PLψ =


ψ1

ψ2

0
0

 , ψR = PRψ =


0
0
ψ3

ψ4

 , ψ = ψL + ψR

ψL is left-handed Weyl spinor and ψR is right-handed Weyl
spinor. ( Weyl spinors are two component spinors.)

We define chirality from γ5ψL = −ψL, γ5ψR = ψR

Dirac field Lagrangian:
L = ψ̄(iγµ∂µ−m)ψ = iψ̄L/∂ψL+ iψ̄R/∂ψR +m(ψ̄LψR + ψ̄RψL)

mass term does not respect chirality
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Massless Fermionic Field

Lagrangian

L = iψ̄L/∂ψL + iψ̄R/∂ψR Left- and right-handed Weyl spinor are
independent. Chirality is Lorentz invariant and from Dirac
equation one gets (i , j , k = 1, 2, 3)

(γ0|p| − γ ipi )u(p) = 0 → (1− γ0γ ipi

|p| )u(p) = 0

Using γ0γ i = γ5Σi where Σi = 1
2ϵ

ijkσjk , σjk = i
2 [γi , γk ] then

γ5u(p) =
Σipi

|p| u(p) where
Σ⃗p⃗
|p| is the helicity operator.

For massless particle helicity is identical to chirality.

Neutrino in the SM

They are left-handed Weyl spinor and their anti-neutrinos are
right-handed Weyl spinor. There is no right-handed neutrinos. As
consequence neutrinos are massless in the SM.
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Fundamental interactions: Electromagnetic

between particles carring
electric charge

Quantum view: charged
particles interact by
exchanging a virtual
photon

e−

e−

e+

e+

γ
e e

p

EM interaction can be
described by a point-like
interaction of charged particle
with photon. Lagrangian can
be written as

Lint = eψ̄(x)γµψ(x)Aµ(x)

19 / 46



Weak interaction (1)

Nuclear beta decay :
n → p+ + e− + νe
see Prof. Nakaya’s lecture

Enrico Fermi proposed
(1934)
GF√
2
(p̄(x)γµn(x))(ē(x)γ

µν(x))

Wu’s experiment (1956) found parity violation in beta decay

Sudarshan and Marshak (1957), Feynman and Gell-Mann
(1958) suggested

GF√
2
(p̄(x)γµ(1− γ5)n(x))(ē(x)γ

µ(1− γ5)ν(x))
n

p+

GF/
√
2

e−

νe
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Weak interaction (2)

Proton and neutron consist of quarks (1964, Gell-Mann and
Zweig): p = (uud) while n = (ddu)

GF√
2
(d̄(x)γµ(1− γ5)u(x))(ē(x)γ

µ(1− γ5)ν(x))

The beta decay can be described exchanged by W . It can be
written as

Lint =
g2

2
√
2
ū(x)γµ(1− γ5)d(x)Wµ(x)+

g2

2
√
2
ē(x)γµ(1− γ5)ν(x)Wµ(x)

α2 =
g2
2

4π ∼ 3× 10−2

d

u

e

ν̄e

W−

g2

g2
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Weak interaction (3)

Not only charged current interaction

Lint =
g2

2
√
2
ū(x)γµ(1− γ5)d(x)Wµ(x) +

g2

2
√
2
ē(x)γµ(1− γ5)ν(x)Wµ(x)

But also neutral current interaction

Lint =
g2

2 cos θW
f̄ (x)γµ(g f

V − g f
Aγ5)f (x)Zµ(x)

f : quark, charged leptons, neutrinos
g f
V , g

f
A are coefficients depending on electric charge and isospin of

fermion f
weak neutral current was confirmed in 1973, in a neutrino
experiment in the Gargamelle buble chamber at CERN
W , Z were seen in 1983 at Super Proton Synchrotron at CERN
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Strong interaction

Old: Strong interaction between nucleons to form nuclei

The quarks model of Gell-Mann and Zweig (1964) to explain
the classification of hadrons

New: all particles carrying color charge participate strong
interaction (quarks, gluons)

Lagrangian: simple guest based on Lorentz invariance

Lint = gs q̄γ
µqGµ + gs(∂

µGν)GµGν + g2
s GµGνG

µGν

Gµ(x): gluon field gs : strong coupling

αs =
g2
s

4π ∼ 1.2× 10−1

d d

u u

g

gs

gs
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Fundamental interactions: recap
Electromagnetic

e−

e−

e+

e+

γ

α = e2

4π
∼ 7× 10−3

Weak

d

u

e

6̄ =e

W−

α2 =
g22
4π ∼ 3× 10−2

g2

g2

Strong

d d

u u

g

gs

gs

αs(MZ) =
g2s
4π ∼ 1.2× 10−1

Gravitation

gravitational force: F = G m1m2
r2

G ∼ 6.67× 10−11m3 kg−1 s−1

Construct a dimensionless

coupling

αG = Gm2
e

ℏc ∼ 1.7× 10−45

αG ≪ α < α2 < αs
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Symmetry

makes a theory more
predictable

leads to conservation laws

makes computation simpler

easier to convince stubborn
physicists

Human-invented symmetry may not be realized in Nature, or may
be broken.

A symmetry is mathematically represented by a group of
transformations. If the Lagrangian is invariant under these
transformation, one says the theory processes the symmetry.
Familiar example:

Space is isotropic → SO(3) rotation group → conservation of
angular momentum

Space-time is homogeneous → translation group →
conservation of energy and momentum

U(1)Q : ψf → e iαqf ψf , qf is electric charge → conservation of
electric charge
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Question?

Can we use symmetry to build interactions between elementary
particles?
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Unitary transformations

Important in physics, geometry, informatics

Preserve probability in quantum mechanics

|⟨ψ2U|Uψ1⟩|2 = |⟨ψ2|U†U|ψ1⟩|2 = |⟨ψ2|ψ1⟩|2

Unitary: ⟨ψ2|U†U|ψ1⟩ = ⟨ψ2|ψ1⟩
Anti-unitary: ⟨ψ2|U†U|ψ1⟩∗ = ⟨ψ2|ψ1⟩
Unitary

U†U = 1

Special Unitary
detU = 1

Matrix representation SU(N): N × N matrices with

U†U = 1 detU = 1

U = e iαaTa , Ta + T †
a = 1, Tr[Ta] = 0,

Ta: generators, Hermitian and traceless matrices.
a = 1, . . . ,D where D is the number degree of freedom
D = N2 − 1
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Abelian Gauge Symmetry (1)

U(1)Q transformation: given a quantum field ψ(x)

ψ′(x) = e iαgQψ(x)

α is a continuous parameter ∈ R, g is parameter
characterizing the group, Q is the quantum number carried by
the field ψ(x). It acts on field, donot change space-time.

Abelian/ commutative group:

e iαgQ1e iαgQ2 = e iα(Q1+Q2)g = e iαgQ2e iαgQ1

Global transformation: α is independent of space-time

L = ψ̄(iγµ∂µ −m)ψ

where ψ̄ = ψ†γ0

→ invariant under U(1)Q → Dirac Lagrangian has U(1)Q
symmetry

Assume if there exists a term as ψ̄1ϕψ2 then we have
−Qψ1 + Qϕ + Qψ2 = 0. It means that Q quantum number is
conserved.

28 / 46



Abelian Gauge Symmetry (1)

U(1)Q transformation: given a quantum field ψ(x)

ψ′(x) = e iαgQψ(x)

α is a continuous parameter ∈ R, g is parameter
characterizing the group, Q is the quantum number carried by
the field ψ(x). It acts on field, donot change space-time.

Abelian/ commutative group:

e iαgQ1e iαgQ2 = e iα(Q1+Q2)g = e iαgQ2e iαgQ1

Global transformation: α is independent of space-time

L = ψ̄(iγµ∂µ −m)ψ

where ψ̄ = ψ†γ0

→ invariant under U(1)Q → Dirac Lagrangian has U(1)Q
symmetry

Assume if there exists a term as ψ̄1ϕψ2 then we have
−Qψ1 + Qϕ + Qψ2 = 0. It means that Q quantum number is
conserved.

28 / 46



Abelian Gauge Symmetry (1)

U(1)Q transformation: given a quantum field ψ(x)

ψ′(x) = e iαgQψ(x)

α is a continuous parameter ∈ R, g is parameter
characterizing the group, Q is the quantum number carried by
the field ψ(x). It acts on field, donot change space-time.

Abelian/ commutative group:

e iαgQ1e iαgQ2 = e iα(Q1+Q2)g = e iαgQ2e iαgQ1

Global transformation: α is independent of space-time

L = ψ̄(iγµ∂µ −m)ψ

where ψ̄ = ψ†γ0

→ invariant under U(1)Q → Dirac Lagrangian has U(1)Q
symmetry

Assume if there exists a term as ψ̄1ϕψ2 then we have
−Qψ1 + Qϕ + Qψ2 = 0. It means that Q quantum number is
conserved.

28 / 46



Abelian Gauge Symmetry (2)

If α is a function of space-time α(x) → local transformation.

L = ψ̄(iγµ∂µ −m)ψ

is not invariant anymore.

What should we do to restore symmetry?

Under e iα(x)gQ transformation

L → ψ̄(iγµ∂µ −m)ψ − gQψ̄γµψ∂µα(x)

If we add one more term in the original Lagrangian

L = ψ̄(iγµ∂µ −m)ψ + gQψ̄γµAµψ (1)

and require that the new field Aµ transform as

Aµ → Aµ + ∂µα(x)

(1) is invariant under local transformation.

Rewrite (1) as
L = ψ̄(iγµDµ −m)ψ

with Dµ = ∂µ − igQAµ : covariant derivative
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Quantum Electrodynamics (QED)

Lagrangian is invariant under a local transformation. There
appears a new vector field Aµ and an interaction term.

L = iψ̄γµ(∂µ − igQAµ)ψ −mψ̄ψ − 1

4
FµνFµν

Fµν = ∂µAν − ∂νAµ = i
gQ [Dµ,Dν ]

Identifying g to elementary charge e, Q to electric charge
quantum number, Q = −1 for electron, Q = 2/3 for up-type
quark, Q = −1/3 for down-type quark, Aµ as photon field, we
obtain a theory called Quantum Electrodynamics (QED)
Photon is massless since the term mAA

µAµ is not gauge
invariant.

Photon is a real vector
field.

There is no self-coupling
of photons

ψ

ψ

Aµ

ieQγµ
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Identifying g to elementary charge e, Q to electric charge
quantum number, Q = −1 for electron, Q = 2/3 for up-type
quark, Q = −1/3 for down-type quark, Aµ as photon field, we
obtain a theory called Quantum Electrodynamics (QED)
Photon is massless since the term mAA

µAµ is not gauge
invariant.

Photon is a real vector
field.

There is no self-coupling
of photons

ψ

ψ

Aµ

ieQγµ
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Non-Abelian gauge Symmetry (1): Yang-Mills
Theory (1954)

It is not enough to describe all interactions by only Abelian gauge
symmetry, we want to have multiple vector particles appears in the
theory.

SU(N), N ≥ 2: a set of fermionic fields belong to a
fundamental represenntation of SU(N).

Σ =


ψ1

ψ2
...
ψN

 → e igNαa(x)T a


ψ1

ψ2
...
ψN


a = 1, · · · ,N2 − 1, T a are N × N Hermitian matrices,
generators of SU(N) which obey the group algebra

[T a,T b] = i f abcT c f abc group structure constant
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Non-Abelian gauge Symmetry (2)

Lagrangian of the set of fermionic fields

L = iΣ̄γµDµΣ− Σ̄MΣ

M is N × N mass matrix.

Under SU(N) local transformation

L → iΣ̄U†γµD ′
µUΣ− Σ̄U†MUΣ

It is invariant if

D ′
µ = UDµU

†

U†MU = M

M = m1 means that all fields in the multiplet must have the
same mass.
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Non-Abelian gauge Symmetry (3)

Using the similarity with Abelian case, we set

Dµ = ∂µ − igNT
aAa

µ, a = 1, · · · ,N2 − 1

The requirement D ′
µ = UDµU

† means that

T .A′
µ = UT .AµU

† +
i

gN
U∂µU

†

= T .Aµ + T .∂µϕ+ i [T .∂µϕ,T .Aµ] + · · ·

How to construct field strength tensor?

[Dµ,Dν ] = −igNF
a
µνT

a

then F a
µν = ∂µA

a
ν − ∂νA

a
µ + gN f

abcAb
µA

c
ν
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Non-Abelian gauge Symmetry (4)

Lagrangian of the set of fermionic fields and new vector fields
(gauge fields)

L = iΣ̄γµDµΣ−mΣ̄Σ− 1

4
F a
µνF

µν
a

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gN f

abcAb
µA

c
ν

All fields in the multiplet must have the same mass. Gauge
fields are massless
Number of new gauge fields N2 − 1, they belong to the adjoin
representation of the SU(N) → real fields
Trilinear and quartic gauge couplings exist

ψb

ψc

Aa
µ

igNγ
µT abc

Aa
µ

Ab
ν

Ac
ρ

Aa
µ

Ab
ν

Ac
ρ

Ad
ξ
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Discussions on Gauge symmetry

Gauge fields are real vector fields and massless

Interaction terms appear naturally with a common coupling
for each group

All fields in the multiplet must have the same mass

Is that enough to describe the electromagnetic, weak and strong
interactions?
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Symmetry breaking mechanism

Gauge symmetry must be broken for at least weak interaction.

explicit breaking: add different mass terms for different
fermions and for different gauge fields. This loose the
predictive feature of the theory.

spontaneous symmetry breaking?
Lagrangian is invariant under the symmetry, but the ground
state of the theory is not.
→ attractive idea
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Spontaneous symmetry breaking

Spontaneous symmetry breaking in phase transition [L.D. Landau 1937]
Spontaneous symmetry breaking in field theory [Y. Nambu 1960]

Spontaneous symmetry breaking in the Standard Model [F. Englert, R.

Brout 1964, P.W. Higgs 1964]

taken from the Nobel lecture by Francois Englert in 2013 

Symmetric phase: M=0 Broken phase: M ≠ 0
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Spontaneous breaking of discrete symmetries
(1)

Consider a Lagrangian of a real scalar field ϕ

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4

where the potential is V = 1
2m

2ϕ2 + λ
4!ϕ

4

proccesses a Z2 symmetry ϕ→ −ϕ
m, λ depend on temperature.

m2(T ) ∼ c(T − TC ) + · · · →
{
≥ 0 ifT ≥ TC

< 0 ifT < TC

for T < TC , m
(T ) = −µ2, λ is positive. Find the extrema through

∂V

∂ϕ
= −µ2ϕ+

λ

6
ϕ3 = 0 →

{
ϕ = 0 maximum

ϕ = ±
√

6µ2

λ two possible minima

the two minima correspond to two vacuum states |0−⟩, |0+⟩
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Spontaneous breaking of discrete symmetries
(2)

At either minimum, the Z2 symmetry is spontaneous broken.

Take one minimum and expand ϕ around it ϕ =
√

6µ2

λ + ϕ̃

L =
1

2
∂µϕ̃∂µϕ̃+

3m4

2λ
− µ2ϕ̃2 −

√
λ

6
mϕ̃3 − λ

4!
ϕ̃4

The ϕ̃ field has a possitive mass squared µ2

The new Lagrangian is not invariant under symmetry ϕ̃→ −ϕ̃, so it
seems Z2 symmetry is broken. But it is in fact still invariant under
the original ϕ→ −ϕ. Its manifestation presents in the relation
between mass and couplings. Z2 symmetry is not broken in
Lagrangian, it is hidden.

If ϕ = v (v is a constant) and L(v) = 0. One recall the vacuum

expectation value ⟨0|ϕ|0⟩ =
∫
Dϕe−i

∫
d4xL[ϕ]ϕ = v

At the two minima ⟨0+|ϕ|0+⟩ =
√

6µ2

λ and ⟨0−|ϕ|0−⟩ = −
√

6µ2

λ
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Spontaneous breaking of continuous global
symmetries (1)

Consider a Lagrangian of a complex scalar field ϕ = ϕ1 + iϕ2

L = ∂µϕ∗∂µϕ−m2ϕ∗ϕ− λ

4
ϕ2ϕ∗2

where the potential is V = m2ϕ∗ϕ+ λ
4ϕ

2ϕ∗2

proccesses a global U(1) symmetry ϕ→ e iαϕ
m2 > 0, λ > 0 the potential has stable minima at ϕ = 0
m2 < 0, λ > 0 the potential has an unstable maximum at
ϕ = 0 and infinite number of equivalent minima with

|ϕ| =
√

2µ2

λ where µ2 = −m2.

infinite vacuum states
(degenerate vacuum) |0θ⟩
⟨ϕ⟩ = ⟨0θ|ϕ|0θ⟩ =

√
2µ2

λ e iθ
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Spontaneous breaking of continuous global
symmetries (2)

Choosing a particular vacuum means the spontaneous
symmetry breaking.

For convenience, take the vacuum ⟨00|ϕ|00⟩ =
√

2µ2

λ ≡ v/
√
2

and expand around the VEV as

ϕ = v+σ√
2
e iρ/(v)

We obtain

L =
1

2
(∂µσ)2 +

1

2
(∂µρ)

2 +
µ4

λ
− µ2σ2 +

1

2

√
µ2λσ3 +

λ

16
σ4

σ has mass
√
2µ. ρ is massless and it is called

Nambu-Goldstone boson.

Remaining shift symmetry of the Lagrangian ρ→ ρ+ vθ that
forbids a mass term for ρ
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Goldstone’s Theorem

Spontaneous breaking of continuous global symmetries implies the
existence of massless spin-0 Nambu-Goldstone bosons.
Proof given by Goldstone, Salam and Weinberg (1962)

No observed massless scalars.

What we observed are some pions with small masses.
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Spontaneous breaking of gauge symmetries (1)

The Higgs mechanism is not fairly named since the idea was contributed
from many people: Anderson, Brout, Englert, Ginzburg, Guralnik, Haga,
Kibble, Landau and Higgs.

Consider here only the Abelian gauge symmetry. For the
non-Abelian we leave it to the Standard Model discussion.

Lagriangian for complex scalar field with U(1) gauge symmetry
ϕ→ e igα(x)ϕ

L = −1

4
FµνFµν + Dµϕ

∗Dµϕ+ µ2ϕ∗ϕ− λ

4
(ϕ∗ϕ)2

where Dµ = ∂µ + igAµ and Fµν = ∂µAν − ∂νAµ.

The potential has minimum at ⟨ϕ⟩ = v√
2
with v =

√
2µ2/λ.

Expand around the VEV as

ϕ = v+σ√
2
e iρ/(v)

Consider only the term

Dµϕ
∗Dµϕ =

(v + σ)2

2

[
∂µσ

v + σ
− i

∂µρ

v
− igAµ

] [
∂µσ

v + σ
+ i

∂µρ

v
+ igAµ

]
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Spontaneous breaking of gauge symmetries (2)

Rewrite

Dµϕ
∗Dµϕ =

(v + σ)2

2

[
∂µσ

v + σ
− i

∂µρ

v
− igAµ

] [
∂µσ

v + σ
+ i

∂µρ

v
+ igAµ

]
=

(v + σ)2

2

[
(∂µσ)2

(v + σ)2
+

(
(∂µρ)

v
+ gAµ

)2
]

There is a mass term for gauge field:

v2g2

2 AµAµ

MA = vg

There is a bilinear term mixing

MA∂µρA
µ

complicates the interpretation of physical spectrum.
→ How to remove this term?
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Spontaneous breaking of gauge symmetries (3)

The remaining symmetry of the new Lagrangian is

Aµ → Aµ + 1
g ∂µα(x) and ρ→ ρ− vα(x)

Removing the bilinear term mixing by using a gauge fixing condition

Unitary gauge: ρ = 0, the Goldstone boson disappears from
theory. Physical gauge. The Goldstone boson has been eaten
by the gauge boson. Before massless gauge field has 2 dof,
now it is massive and it has 3 dof.
t’Hooft Feymann gauge: adding a gauge fixing term to the
Lagrangian

− 1
2 (∂µA

µ −MAρ)
2

In this gauge ρ has mass MA.
This gauge fixing is not gauge invariant. To restore gauge
invariance one has to add Faddeev-Popov ghost term

c̄A
δ(∂µA

µ−MAρ)
δα cA

cA, c̄A are ghost and anti-ghost field, scalars but have fermionic
properties.
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Summary of lecture 1

Gauge couplings

anomaly
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