VIETNAM SCHOOL ON NEUTRINOS (VSON 7)

Introduction to Neutrino Interactions

Nguyen Thi Hong Van

Institute of Physics

Vietnam Academy of Science and Technology

References

- K Zuber, "Neutrino Physics", Institute of Physics Publishing, 2004.
- C. Giunti and C.W.Kim, "Fundamentals of Neutrino Physics and Astrophysics", Oxford University Press, 2007.
- Ulrich Mosel, "Neutrino Interactions with Nucleons and Nuclei: Importance for Long-Baseline Experiments", arXiv:1602.00696v3
- Kevin McFarland, "Neutrino Interactions", arXiv:0804.3899v1
- Kevin McFarland, "Interactions of Neutrinos", lectures at INWS 2015, Brasil, August 2015.
- Steve Boyd, Lecture of "*Neutrino Physics*"
- Neutrino Interactions Thesis Daniel I. Scully

Contents

- Introduction to neutrinos and neutrino interactions
- Weak interaction in Standard Model
- Weak interaction for neutrinos
- Neutrino Electron scattering
- Neutrino Nucleons scattering
- Neutrino Nucleus scattering
- Neutrino Event Generators

Introduction to neutrinos

Standard Model of Elementary Particles

Why study neutrino interactions?

- Neutrino interaction is a signature of neutrino existence
- Study neutrino interactions to understand the weak interaction and electroweak unification theories.
- Neutrino interactions give information for neutrino mass and neutrino mixing,...
- In experiments: better understanding of neutrino interactions → more precise measuring neutrino oscillations.

Weak Interactions of SM

$$L_{\rm int} = i \frac{g}{\sqrt{2}} \Big[j_{\mu}^{(+)} W^{\mu} + j_{\mu}^{(-)} W^{\mu+} \Big] + i \frac{g}{2\cos\theta_{W}} j_{\mu}^{(Z)} Z^{\mu}$$

- Charged Current (CC) interactions: (mediated by W bosons)
- Neutral Current (NC) interaction: (*mediated by Z boson*)
- Weak mixing angle:

$$\frac{g_W}{g_Z} = \cos \theta_W$$

Coupling strength $j_{\mu}^{\pm} = \bar{u} \frac{-ig_{W}}{2\sqrt{2}} \gamma^{\mu} \left(1 \pm \gamma^{5}\right) u$ Dirac spinors

$$j^0_{\mu} = \bar{u} \frac{-ig_Z}{2} \left(g_V \gamma^{\mu} - g_A \gamma^{\mu} \gamma^5 \right) u$$

Particles	$\mathbf{g}_{\mathbf{V}}$	g _A
Neutrinos	1/2	1/2
Charged Leptons	$\frac{1}{2} + 2\sin^2\theta_W$	-1/2
Up-type Quarks	$\frac{1}{2} - \frac{4}{3}\sin^2\theta_{\rm W}$	1/2
Down-type Quarks	$-\frac{1}{2} + \frac{2}{3} \sin^2 \theta_{\rm W}$	-1⁄2

Parity violation by weak interaction

Parity symmetry

$$\begin{array}{cccc} \vec{E}(\vec{x},t) & \stackrel{P}{\rightarrow} & -\vec{E}(-\vec{x},t) \\ \vec{B}(\vec{x},t) & \stackrel{P}{\rightarrow} & \vec{B}(-\vec{x},t) \\ \vec{j}(\vec{x},t) & \stackrel{P}{\rightarrow} & -\vec{j}(-\vec{x},t) \\ \nabla & \stackrel{P}{\rightarrow} & -\nabla \end{array}$$

Example of Parity symmetry violation

Lecture for CERN summer student Given by Tatsuya Nakada

NTH Van - VSON 7

Parity violation by weak interaction

- Vector current (odd parity): $\hat{P}(\bar{\psi}\gamma^{\mu}\psi) = -(\bar{\psi}\gamma^{\mu}\psi)$
- Axial-vector current (even parity): $\hat{P}(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi) = \bar{\psi}\gamma^{\mu}\gamma^{5}\psi$
- Weak current is a mixture of vector and axial vector currents:

$$j_{\mu}^{\pm} = \bar{u} \frac{-ig_{W}}{2\sqrt{2}} \gamma^{\mu} \left(1 \pm \gamma^{5}\right) u$$

 → Parity of a system is violated by weak force! (first postulated by Lee & Yang in 1950)

Parity violation confirmed by experiment

• Helicity operator: projection of spin on the momentum direction.

$$H = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|} \xrightarrow{P} \frac{\vec{\sigma} \cdot (-\vec{p})}{|\vec{p}|} = -H$$

 Parity violation appeared in the the asymmetry of polarized ⁶⁰Co (by Wu in 1957):

$${}^{60}Co \rightarrow {}^{60}Ni^* + e^- + \overline{V}_e$$

More electrons emitted in direction opposite to 60 Co spin \rightarrow parity violation!

Weak interaction and chirality

• CC weak interaction:

$$j_{\mu}^{\pm} = \bar{u} \frac{-ig_{W}}{2\sqrt{2}} \gamma^{\mu} \left(1 \pm \gamma^{5}\right) u$$

 $u = u_L + u_R$

 Chirality: Lorentz invariant
 but not directly measurable!:

 $u_L = \frac{1}{2} \left(1 - \gamma^5 \right) u$ $u_R = \frac{1}{2} \left(1 + \gamma^5 \right) u$

$$j_{\mu}^{-} = \frac{-ig_{W}}{2\sqrt{2}}\bar{u}\left(1+\gamma^{5}\right)\gamma^{\mu}\left(1-\gamma^{5}\right)u = \frac{-ig_{W}}{2\sqrt{2}}\bar{u}_{L}\gamma^{\mu}u_{L}$$

Vector current interacting only with the left-handed particle, or right-handed anti-particle

Weak interaction for neutrinos

- In case of neutrinos, both CC and NC interactions can be viewed as a vector current interacting only with the left-handed particle, or right-handed anti-particle
- Neutrinos only participate in weak interaction, they are produced in a left-handed eigen-state (chiral).
- If neutrinos are consider as no mass:
 - Chirality and helicity are the same
 - Neutrinos are always in left-handed state and no right-handed neutrinos exist!
- In fact neutrinos are massive, right-handed neutrino exists, e.g. as sterile neutrinos.

Details of Neutrino Interactions

Convenient variables used

• 4-momentum transfer:

 $Q^2 = -q^2$

• Bjorken scaling variable:

$$x = \frac{-q^2}{2P_{\text{target}} \cdot q}$$

• Invariant hadronic mass:

$$W = \sqrt{\left(q + P_{\text{target}}\right)^2}$$

Neutrino – Electron Interactions

Neutrino – Electron interactions: CC

2

Threshold neutrino energy required:

$$E_{\nu} \geq m_l - m_e$$

Total cross-section in the center of mass frame (neglecting mass of electron and neutrino):

$$\sigma = \frac{1}{8\pi} \frac{g_W^4 E_{\nu}^2}{M_W^4} \left(1 - \frac{m_{\mu}^2}{4E_{\nu}^2}\right)$$

Fermi's coupling: $\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8M_W^2}$

 $\nu_{\mu}(1)$ $\mu^{-}(3)$ W $\nu_{e}(4)$

Inverse muon decay

Measurement in Charm II: $\sigma(v_{\mu}e^{-}) = (1.651 \pm 0.093) \times 10^{-41} \left(\frac{E}{1 \, GeV}\right) cm^{2}$

Neutrino – electron interactions: NC

- Incoming neutrinos can be: ν_e , ν_μ and $\nu_{ au}$
- There is no change in mass \rightarrow threshold-less interaction!

• Total cross-section (*9% of the inverse muon decay*):

$$\sin^{2} \theta_{W} = 0.2324 \pm 0.0058 \pm 0.0059 \qquad \text{e}^{-(2)} \qquad \text{e}^{-(4)}$$
$$\sigma_{TOT} = \frac{G_{F}^{2} s}{\pi} \left(\frac{1}{4} - \sin^{2} \theta_{W} + \frac{4}{3} \sin^{4} \theta_{W} \right) = 1.4 \times 10^{-42} \, \text{cm}^{2} \, / \, \text{GeV} \cdot E_{v} (\text{GeV})$$

NC electron elastic scattering

Ζ

 $v_{\alpha}(3)$

ν_α(1)

Neutrino – electron interactions: CC & NC

• In case of incoming neutrino v_e

→In addition to NC, there is the second contributing, CC scattering.

→The cross section is much bigger than the case of

$$v_{\mu} \text{ and } v_{\tau}$$
From
$$\sigma(v_e e^-) = \frac{G_F^2 s}{\pi} \left[\left(\frac{1}{2} + \sin^2 \theta_W \right)^2 + \frac{1}{3} \sin^4 \theta_W \right] = 0.96 \times 10^{-41} \left(\frac{E_v}{1 \text{ GeV}} \right) cm^2$$

Neutrino – electron interactions: Application

Known Interaction (Standard Candle)

• To constraint neutrino flux using the uncertainty of cross-section Flux constraining using nu-e (spectrum)

Neutrino – Nucleons Interactions

Neutrino – Nucleons interactions

- 1. Charged current quasi-elastic scattering: \mathcal{V}_{μ} + **n** $\rightarrow \mu^{-}$ + **p**
- 2. Neutral current elastic scattering:
- 3. Single π, η, K resonance productions:
- 4. Coherent pion productions:
- 5. Deep inelastic scattering :

 $\begin{aligned} \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{N} & \rightarrow \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{N} \\ \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{N} & \rightarrow \boldsymbol{l} + \mathbf{N'} + \pi (\eta, \mathbf{K}) \\ \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{X} & \rightarrow \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{X} + \pi_{0} \\ \boldsymbol{\mathcal{V}}_{\mu} + \mathbf{N} & \rightarrow \boldsymbol{l} + \mathbf{N'} + \mathbf{m}\pi(\eta, \mathbf{K}) \\ \boldsymbol{l: lepton; N, N': nuclons; m: integer} \end{aligned}$

Neutrino – Nucleons interactions

- Nucleon target gives much more crosssection than electron target.
- Elastic interactions:
 - Dominate at small Q²
 - Nucleon recoil intact
 - CC interactions are referred to as "quasi elastic" (change of charge and the mass transfer to the lepton in the final state).
- Inelastic scattering:
 - > At low Q², resonance production is dominated.
 - > At high Q², DIS production is dominated

Neutrino – Nucleons interactions

 $NC - Z^0$ exchange Elastic Scattering Target unchanged $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}+n\to\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}}+n$ Coherent/Diffractive production Target unchanged $v_{\mu} + N \rightarrow v_{\mu} + N + \pi^{0}$ Nuclear resonance production Target goes to excited state and decays $v_{\mu} + N \rightarrow v_{\mu} + N + \pi (N^* \text{ or } \Delta)$ Deep Inelastic Scattering Target breaks up $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}} + quark \to \nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}} + quark$

NC Elastic and CC QE interactions

- In these processes of neutrino-nucleon interaction, a single lepton and a single nucleon are produced in which the nucleon recoils intact.
- In case of NC, for all flavours of neutrinos and antineutrinos, we have "*NC elastic*" scattering: $\nu + N \rightarrow \nu + N$

• In case of CC interaction, when neutrinos acquire sufficient energy:

 $\mathcal{V}_l + n \rightarrow p + l^-$

→ Need energy to create the lepton's mass → this is referred to as "*CC Quasi-elastic*" (CC QE) scattering.

CC QE interactions

- CC QE interactions is an important channel for v oscillation experiments:
 - QE gives largest contribution to the cross-section of neutrino-nucleon interaction in a low region energy of neutrino (< 1 GeV).
 - QE is two body reaction → the incident neutrino energy can be reconstructed from kinematics of the charged lepton → for measuring oscillation parameters.

Resonance production

• This production obtained with higher Q² transfer (or neutrino's energy,

 $0.5 \, \text{GeV} < E < 10 \, \text{GeV}$

 \rightarrow inelastic scattering!

- The lepton part is alsmost the same as in the case of elastic scattering.
- In the hadronic part, the target nucleon is knocked into a baryon resonance →then decay into a nucleon + a single pion (mostly) or multi pions or Kaons or a radiative photon.

Single pion production

Single pion production $v + N \rightarrow \ell(v) + N^*$ $\longrightarrow \pi(\gamma) + N'$

Main background of the nucleon decay:

Particles in the final state are the same as the ones from nucleon decay

Main background for the search of $v_{\mu} \rightarrow v_e$ at T2K

In the NC scattering, π^0 and γ production can mimic ν_e

Major contamination to the energy spectrum measurement

In the CC scattering, π production can be absorbed in the nucleus:

- π can be considered as missing energy,
 - \rightarrow background in searching for $v_{\mu} \rightarrow v_{\mu}$ disappearance
- CC1pi can be mimicked as CCQE.

n

Charged Current

Neutral Current

W⁺

 u_{μ}

 ν_{μ}

Single pion production cross-section

Coherent Interactions (nuclear target)

- Pion production without breaking the target nucleus.
- Cross-section is smaller than the resonancemediated production.
- At low range of E_{ν} : NC scattering: $\nu + X \rightarrow \nu + X + \pi_0$
- Recently, cross-section of **charged current** coherent pion production $(v + {}^{12}C \rightarrow l^{\pm} + {}^{12}C + \pi^{0})$ was found to be very small in ~ < GeV region.
- CC experimently observed in higher E_{ν}

Deep Inelastic Scattering

- DIS process appears from E > few GeV
- Nucleons are made of quarks. •
- Understood as neutrino quark interaction.
- E_{y} is calculated as energy of lepton + energy of hadrons.

Deep Inelastic Scattering

DIS process dominates for $E_v > 10$ GeV and increases linearly with E_v until W, Z mass!

Neutrino – Nucleus Interactions

Neutrino – nucleus interactions: motivation

- Limitation of neutrino electron interaction:
 - Well-understood but cross-section is much smaller than neutrino nucleon interactions
 - Impossible to create a target made of only free electrons in the reality.
- Experiments think of neutrino nucleons interaction:
 - Impossible to construct a target made of pure neutrons
 - Hydrogen target containing only proton → CC QE interaction is only for anti-neutrinos with lower cross-section.
 - Deuterium made of proton and neutron is a good target but it is light \rightarrow low interaction rate.
- Neutrino-nucleus interactions:
 - Give higher interaction rate
 - In experiments, detectors are build using heavier nuclei such as carbon, oxygen or iron
 - Nuclear effects are present making complication in understanding interactions observed in detectors!

Neutrino-nucleus interactions: nuclear effects

• Initial state of the nucleons:

- Nucleons in a nucleus move around inside the nuclear potential, changing their momentum and direction.
- The direction and momentum of the nucleon affects the kinematics of any interaction
- The initial momentum spectra of nucleons is not well known.
- \rightarrow Need models to describe this.
- Final State Interaction (FSI)
- Nuclear effects become more important at low energy region.
- Nuclear effects are simulated by MC generators.

The nucleon momentum distributions from a RFG and a SF (both for Carbon)

Lepton kinematics

Introduction to Neutrino Event Generators

Tasks of Neutrino event generators

- Simulate neutrino interactions: each generator is expected to simulate all possible interactions using appropriate models.
- Simulate signals and backgrounds observed in the detector \rightarrow background can be extracted from real data.
- A bridge/tool to compare real data and theories in order to extract neutrino oscillation parameters.
- Reduce systematic uncertainties in measuring physics observation by reducing uncertainties caused by the understanding of neutrino interactions with nucleus.

 \rightarrow precision of the neutrino event generators is required to better understand neutrino interactions.

• Can be used to evaluate systematic uncertainties in extracting the physics results.

Neutrino event generators

• What? → Neutrino event generators are softwares simulating neutrino interactions.

Examples of Neutrino Event Generators

NEUT

- Developped initially for Kamiokande exp. then for Super-K, K2K, SciBooNE and T2K.
- Used for Super-K and T2K MC official production
- Mainly written in Fortran

GENIE

- Developed by an international collaboration
- Universal neutrino event generator
- Written in C++ and well maintained, open source

NuWro

- More theory oriented. Developed by people from Wroclaw University
- Written in C++.

Challenges with Neutrino Scattering

• \mathcal{V} beams are not mono-energetic:

 $\succ \mathcal{V}$ flux

- ➤ At a given E_v, there is contributions from multi processes
- \mathcal{V} cross-section is not well-constrained in a region interested.
- Targets used in V experiments are nucleus → nuclear effects are included in cross-section and kinematics of out-going particles:
 - → MC generators need to be included these effects.

Neutrino flux and cross-section

• Frequency of neutrino interations when the flux is uniform:

eutrino interanono ... $f = \phi \left[\frac{1}{time * area^2} \right] * N * \sigma [area^2]$ Cross-section Flux Number of scattering centers

• In reality, \mathcal{V} flux is non-monoenergetic:

$$f = \int dE_{\mathcal{V}} \, \phi(E_{\mathcal{V}}) \, * N \, * \, \sigma(E_{\mathcal{V}})$$

• Neutrino event generators are used to predict flux, to simulate detector response and to generate interactions.

Example of Neutrino flux and Event rate

Introduction to NEUT

- NEUT is a program simulating neutrino interactions with $E_v \in (100 \text{ MeV}, \sim \text{TeV})$
- Target nucleus used: primarily proton and Oxygen then also rather well tested with Carbon (at K2K, SciBooNE)

Works carried out by NEUT:

- Provides cross-sections to estimate the interaction rate or to select the interaction mode.
- Simulates primary neutrino interaction with nucleon and nucleus targets.
- Simulates meson interactions in the target, especially in detail for the low momentum pion.
- Simulates nucleon re-scattering in the target nucleus.

Thank you for you attention!