Future Neutrino Experiments Atsumu Suzuki Kobe University

Vietnam School on Neutrino 2023/July/26

Contents

- **0. SK-Gd (not a future experiment but we expect new results)**
- **1. Accelerator related experiments**
 - 1-1. Hyper-Kamiokande (HK)
 - **1-2. DUNE**
 - 1-3. ESSnuSB
 - **1-4. Neutrino Factory**
- 2. Reactor Neutrino Experiment (JUNO)
- 3. Atmospheric & Astrophysical ν Measurements
- 4. $0\nu\beta\beta$ Decay Experiments
- **5. Sterile Neutrino Experiments**
- 6. High statistic v_r Experiment (SHiP)

0. SK-Gd

Super-Kamiokande Gadolinium Project

We dissolved Gadolinium $(Gd_2(SO_4)_3)$ in the SK water in Aug. 2020 (0.01 %) in the first time and added more in 2022 (0.03 %) successfully.

Target Gd concentration is 0.1 % and fruitful results will be expected in near future.

Super-Kamiokande

Why gadolinium?

- Gd has the large cross section σ for thermal neutrons (< σ_{Gd} >= 49.7 kb >> σ_{H} = 0.33 b, 1 b = 10⁻²⁴ cm²).
- Neutrons captured by Gd emitt γ rays ($E_{total} = 8$ MeV)
- We can tag $\overline{v_e}$ by delayed coincidence technique in IBD:

 $\Delta T \sim 30 \,\mu s$ Vertices within 50 cm

Physics Targets

Physics targets:

- *(1) Supernova relic neutrino (SRN)
 - (2) Improve pointing accuracy for galactic supernova
- *(3) Precursor of nearby supernova by Si-burning neutrinos
 - (4) Reduce proton decay background
 - (5) Neutrino/anti-neutrino discrimination (Long-baseline and atm nu's)
 - (6) Reactor neutrinos

*(1) SRN: All the neutrinos which have ever been emitted by every supernova since the onset of stellar formation suffuse the universe.

*(3) Approximately a week before exploding, the turn-on of silicon fusion in the core would raise the temperature of the star sufficiently and electron-positron annihilations within its volume would begin to produce $\sqrt{V_e}$ just above inverse beta threshold.

Improvement of pointing accuracy for galactic SN

Direction distribution reconstructed by neutrinos from SN at 10 kpc distance (simulation)

Improvement of proton decay

- ~ 50 % background events are rejected with neutron=0.
- ~ 7.5 % of p → e⁺π⁰ are accompanied with neutron from deexcitation of nucleus.→
 only a few % reduction of selection efficiency.

Improvement for T2K

Number of tagged neutrons in T2K energy range

 v_e contamination in the \overline{v}_e enhanced sample: 30 % \rightarrow 13 % |

1-1. Hyper-Kamiokande(HK)

Physics goals

HK Long Baseline Project

- J-PARC v beam: 500 kW → 1.3 MW
 2.5° off-axis, peak energy @~600 MeV (oscillation maximum)
 → narrow band beam suppresses NC-π⁰ and CC-nQE contamination
- ND280 should continue its operation for HK w/ upgrades (SFGD & HA-TPC).
- FD:SK → HK will realize high statistic v data
- Intermediate Water Cherenkov Detector (IWCD) will be newly constructed at ~1 km from the neutrino source.

J-PARC beam power upgrade

\rightarrow 1.3 MW (1.16 sec cycle)

Trial for 1 MW-equivalent operation was successful !

IWCD

- ${\sim}600$ t water Cherenkov detector located at ${\sim}1 \text{km}$ from the neutrino source
- Moves vertically to measure energy spectrum at different off-axis between 1° and 4°.
- Potential to load with Gd to enhance neutron detection
- Multi-PMT units will be used. → good reconstruction despite small detector

(1) Measurement of CP asymmetry

- Comparison between the probabilities: $P(v_{\mu} \rightarrow v_{e})$ vs $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$
- Up to $\sim \pm 30$ % variation at $\delta_{CP} = -90^{\circ}$ in NH (or 90° in IH) wrt $\sin \delta_{CP} = 0$

Expected events in HK LBL project

Expected signals & BG's : 10 years (1.3 MW × 10⁸ s), 1 tank, $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$, & $\nu : \overline{\nu} = 1 : 3$

for $\delta_{CP} = 0$	Signal v _µ →v _e CC	Wrong sign appearance	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	Beam $\nu_{e}/\overline{\nu}_{e}$ contamination	NC
u beam	1,643	15	7	259	134
$\overline{ u}$ beam	1,183	206	4	317	196

Significance to exclude $\delta_{CP} = 0$ (CP conservation) For ~70 (50) % region, CP conservation is excluded at > $3\sigma(5\sigma)$

Accuracy on measurement for $\delta_{CP} = 0^{\circ}$ and -90°

(2) Mass hierarchy determination

*See Miura-san's lecture in detail.

(3) Neutrino astrophysics

SN burst

- ~9 13 events for M31 (Andromeda)
- 50 80 k events/SN @ 10 kpc
- Time & energy profiles with high statistics
 - → Dynamics of SN central engine, explosion mechanism, NS/BH formation
- 1° pointing for SN @ 10 kpc
 → Multi-messenger measurement with optical, GW, etc.

(3) Neutrino astrophysics

SN relic v

- 1st discovery by SK-Gd
- HK will measure the spectrum.

(3) Neutrino astrophysics-solar v-

(3) Neutrino astrophysics

Neutrino fluxes at Kamioka as a function of neutrino energy. Precision measurements for solar, SN(R), and atmospheric neutrinos can be done with high statistics.

Indirect DM search:

Hyper-Kamiokande detects the neutrinos generated by the interaction of dark matters in the Sun or the earth.²³

(4) Proton decay search

1200

*See Miura-san's lecture

800

600

3σ discovery sensitivity

Almost BKG free measurement !

Invariant Proton Mass (MeV/c²)

1000

$0 < p_{tot}$	$<100~{\rm MeV}/c$	$100 < p_{tot} < 250~{\rm MeV}/c$		
ϵ_{sig} [%]	Bkg [/Mton·yr]	ϵ_{sig} [%]	Bkg [/Mton·yr]	
18.7 ± 1.2	0.06 ± 0.02	19.4 ± 2.9	0.62 ± 0.20	

(SK: 0.18) (SK: 1.1)

3σ discovery sensitivity : τ_p/Br = 10³⁵ years for 20 year operation.

Detector Location

*See Miura-san's lecture

- Under Mt. Nijugo(25)-yama (mountain)
- \sim 8km south from SK
- Overburden ~650m (~1755m w.e.)
- Identical baseline (295 km) and off-axis angle (2.5 $^\circ$) to T2K

Timeline

- 2022-2027: Construction, 2027-: Operation
 - No change of schedule since the approval of project in 2020

Cavern excavation status

- Access tunnel (~2 km) completed in Feb. 2022
- Excavation of the main cavern started in fall 2022 and is proceeding as scheduled 20

Detector component (some production starting)

PMTs (x 2 better photodetection eff.)

ID mockup

Underwater electronics:

20 x 50 cm ID PMTs + 12 x OD PMTs

PMT cover

Multi-PMT module: Outer detector: PMT+WLS plate

Feedthroughs for ID and OD

1-2. DUNE

(Deep Underground Neutrino Experiment)

Introducing DUNE

- 1,300 km beamline
- 70 kt LArTPC far detector 1.5 km underground
- Primary physics goals:
 - (1) v oscillations (δ_{CP} , θ_{23} , θ_{13} , mass ordering)
 - (2) SN burst v's and astrophysics
 - (3) Proton decay

ν source

MW-scale wide band beam

Long Baseline Neutrino Facility (LBNF)

Near Detector (ND)

- Located 574 m from the beam target
- ND-LAr: pixelated LArTPC
- ND-GAr (in Phase II): high-pressure GAr TPC surrounded by ECAL and 0.5 T magnet
- SAND (System for on-Axis Neutrino Detection): tracker surrounded by ECAL and 0.6 T magnet
- ND-LAr/ND-GAr can move to off-axis up to 33m modifying the energy spectrum (<u>DUNE-PRISM</u>)

Far Detector (FD)

v Oscillation Prospect

^{2 3 4 5 6 7 8} Reconstructed Energy (GeV)

Order 1000 appearance events in 7 years

Order 10,000 disappearance events in 7 years

Sensitivity Over Time

- CPV discovery if true $\delta_{CP} = -\pi/2$ in ~7 years
- CPV discovery for 50 % of true δ_{CP} values in \sim 10 years
- In 2 years, mass ordering will be determined w/ 5σ regardless δ_{CP}
Other mixing parameter measurements

- θ_{13} measurement will be comparable with reactor experiments after ~15 years.
- Significant improvement in precision measurement of atmospheric parameters.

* NuFIT provides:

An updated global analysis of neutrino oscillation measurements determining the leptonic mixing matrix and the neutrino masses in the framework of the Standard Model with 3 massive neutrinos and some of its extensions.
 Graphical and numerical bounds on the parameters.

Supernova v's

- A core collapse SN produces an intense burst of neutrinos
- ~10000 neutrinos from a SN in our galaxy over a period of 10 seconds.
- In argon (uniquely), the largest sensitivity is

 $\nu_e + {}^{40}\mathrm{Ar} \rightarrow e^- + {}^{40}\mathrm{K}^*$

DUNE: Schedule & Plans

- Far site construction is underway.
- Near site preparation is also in progress.
- Physics should begin this decade.

(European Spallation Source neutrino super-beam)

Nest-to-next CPV precision measurement experiment at the 2nd oscillation maximum

Why 2nd maximum ? (1)

Why 2nd maximum ? (2)

ESSnuSB neutrino baseline

Zinkgruvan mine, 360 km from the source partly covernig 1st and 2nd maximum

25

Layout of the ESSvSB components

- 5 MW average beam power
- 14 Hz \rightarrow 28 Hz
- 3 GeV \rightarrow 3.5 GeV
- $> 2.7 \times 10^{23}$ POT/year •

To Far Detector

Near Detector

Oscillation coverage

NINJA-like water-emulsion detector (1 t fiducial)

Near detectors

Far detectors

Design

- 2 x 270 kt fiducial volume (~2x HyperK)
- Readout: 2 x 38k 20" PMTs
- 30% optical coverage
 - design here for 40% with an option that ¹/₄ PMTs will not be installed

Can also be used for other purposes:

- Proton decay
- Astroparticles
- Galactic SN v
- Diffuse supernova neutrino background
- Solar Neutrinos
- Atmospheric Neutrinos

1-4. Neutrino Factory

Neutrino Factory serves high luminosity, in particular also at high energies, both muon and electron flavor content, well known neutrino energy spectra and very well determined beam intensity.

Composition of v Factory

Pion capture by high magnetic field solenoid.

Suppression of transverse momentum of pions

- Deceleration by absorbers
- Acceleration by RF

- Immediate acceleration by a muon accelerator with high repetition (~50 Hz)
- High intensity & energy ν_{μ} ($\overline{\nu}_{\mu}$) & $\overline{\nu}_{e}$ (ν_{e}) beams simultaneously from the straight part of the muon storage ring

Some future plans

NuMAX (Neutrino from Muon Accelerator complex) @FNAL site

BNL-205756-2018-JAAM

2. Reactor Neutrino Experiment (JUNO)

*See Huang-san's lecture

● 开平 ● 近门中微子察验 > 運门

)江门

合山核电站

Jiangmen Underground Neutrino Observatory

深明

● 胸紅核电站 大亚湾核电站 大亚湾中微子实

JUNO Layout

• Source: 6+2 reactors

(Yangjiang and Taishan NPP)

- Baseline: 53 km
- Detection channel: inverse βdecay

$$\overline{v_{e}} + p \rightarrow e^{+} + n$$

- **Target:** single volume 20-kt liquid scintillator
- Detection technique: system of photomultiplier tubes (18k 20'' PMTs + 25k 3" PMTs)
- Overburden: 700 m

*a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth

Physics goals

$\overline{\nu}_{e} \text{ survival probability in vacuum}^{*}$ $P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} = 1 - \cos^{4} \theta_{13} \overline{\sin^{2} 2\theta_{12}} \sin^{2} \frac{\Delta m_{12}^{2} L}{4E}$ $- \frac{\sin^{2} 2\theta_{13}}{\cos^{2} \theta_{12}} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} + \sin^{2} \theta_{12} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$

Mass ordering (main goal)

- The energy resolution is one of the key factors for determining neutrino mass ordering.
- 3σ MO sensitivity within 6 years with only JUNO data

Oscillation parameters

• Sub-% accuracy for θ_{12} , Δm_{21}^2 , & Δm_{31}^2

* Oscillation in matter with effective oscillation parameters (j.physletb.2020.135354).

JUNO Detector

Calibration room LS Filling room Pure water room Precision muon tracking - 3 plastic scintillator layers Covering half of the top area Acrylic sphere: Ø35.4m Central detector Top Tracker SS latticed shell **Double calorimetry** Acrylic sphere PMT ~18,000 20" PMTs + Stainless steel latticed shell: Ф40.1m ~25,000 3" PMTs: Pool Liquid scintillator coverage :78 % 20 kton, high purity (> 20 m att. Length) Water Cherenkov 700m Water pool: Ф43.5m 35 kton pure water underground 2,000 20" veto PMTs

Δ*E*/*E* = 3% @ 1 MeV

Taishan Antineutrino Observatory (TAO)

Physics potential

- ✓ Precise measurement of antineutrino spectra
- ✓ Sterile neutrino searches
- Provide a reference spectrum for JUNO, nuclear databa

etc.	arXiv: 2005.08745
2.8 ton GdLS detector	
Baseline	~30 m
Reactor Thermal Power	4.6 GW
Light Collection	SiPM
Photon Detection Efficiency	>50%
Working Temperature	<mark>-50 ℃</mark>
Dark Count Rate [Hz/mm ²]	~100
Coverage	~94%
Detected Light Level [PE/MeV]	<mark>4500</mark>
Energy resolution	< 2% @ 1 MeV

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17

- ✓ 10 m² SiPM is used to achieve high light yield with ~94% coverage
 → 4500 PEs/MeV & energy resolution < 2% @ 1 MeV
- ✓ Gd-LS works at -50℃ to lower the dark noise of SiPM

25

19th neutrino workshop @ IFIRSE July 2023

Physics	Sensitivity
Neutrino Mass Ordering	3σ (~1 σ) in 6 yrs by reactor (atmospheric) \overline{v}_e
Neutrino Oscillation Parameters	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{32} < 0.5\%$ in 6 yrs
Supernova Burst (10 kpc)	${\sim}5000$ IBD, ${\sim}300$ eES and ${\sim}2000$ pES of all-flavor neutrinos
DSNB	3σ in 3 yrs
Solar neutrino	Measure Be7, pep, CNO simultaneously, measure B8 flux independently
Nucleon decays $(p \rightarrow \overline{v}K^+)$	8.3×10 ³³ years (90% C.L.) in 10 yrs
Geo-neutrino	~400 per year, 5% measurement in 10 yrs

Neutrino2022

3. Atmospheric & Astrophysical Neutrino Measurements

Future Plans

• Optical Detection of Cherenkov Radiation

- IceCube -Upgrade & Gen 2- @ South Pole
- P-ONE @ Pacific Ocean
- Trinity (candidate site:not decided yet)
- Baikal GVD @ Lake Baikal

• Radio Technique (Askaryan effect)

- RNO-G (Greenland)

IceCube – Upgrade & Gen 2 –

- Located in the South Pole
- Ice is used as a Cherenkov detector.
- IceCube provides astrophysical neutrino measurements.

Gentoo penguin

IceCube : Upgrade & Gen2

IceCubeGen 2 (design phase)

- Optical array ~8 × Gen 1
 New sensor (Gen 2 LOM) will be used.
- •Increase statistics around the PeVregion

Gen 2 LOM (= D-Egg+mDOM)

IceCubeUpgrade

Testbed for new sensor types \rightarrow

mDOM

D-Egg

 Improved detector calibration/ ice model characterization

4. $0\nu\beta\beta$ Decay Experiments

*See Huang-san's lecture in detail

Double beta decay

Forbidden in SM (Lepton number violation) **Possible if** v **is Majonara**

How to detect

• Catch 1 electron pair emitted !

5. Sterile Neutrino Experiments

- JSNS² II
- PROSPECT-II
- IsoDAR

Why sterile neutrino ?

JSNS² II

(J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

- 24 m from the Hg target.
- 17 t GdLS
- 96, 10" PMTs for ID & 24, 10" PMTs for OD

- 48 m from the Hg target
- 32 t GdLS
- 228 PMTs
- Under construction

Sensitivity of JSNS²-II

- Each background simulation was done based on the JSNS² data.
- The sensitivity becomes better in the low Δm^2 region.

Construction schedule of JSNS²-II

PROSPECT-II

Original PROSPECT Design

https://arxiv.org/abs/2107.03934

- High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
- Segmented ⁶Li-doped liquid scintillator
- IBD detection of protons on LS, 1.8 MeV threshold
- Prompt (positron annihilation, 1-8 MeV) + delayed (n + $^{6}Li \rightarrow \alpha$ + t + 4.8 MeV)
- Slightly higher ⁶Li loading (0.08 % → 0.1% by mass)
- Larger segment length 118 cm
 → 145 cm → IBD rate increases to roughly 1150/day

ISODAR (Isotope Decay At Rest)

Beam Line

- Underground facility at Mt. Yemi in Korea
- > 1000 m overburden (cosmic ray shielding)

Target

- 60 MeV proton cyclotron
- p^+ + Be \rightarrow spallation neutrons
- $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li}^* \rightarrow {}^{8}\text{Be} + e^- + \bar{\nu}_e$

Sensitivities

6. High statistic v_{τ} Experiment (SHiP)

SHiP

(Search for Hidden Particles)

- to explore the domain of hidden particles, such as Heavy Neutral Leptons (HNL), dark photons, light scalars, supersymmetric particles, axions etc., with masses below O(10) GeV
- Large amount of v's, especially v_{τ} 's with three orders of magnitude more statistics than available in previous experiments combined.

SHiP: experimental site

Fixed target facility @ CERN SPS
400 GeV protons
4 × 10¹³ POT/spill in every 7 sec → 2 × 10²⁰ POT in 5 years

Emulsion Film

https://doi.org/10.1007/JHEP04(2021)199

Basic unit of the SND & the ECC brick

Emulsion Film

Nuclear emulsion

- Kind of photo film.
- Contains small grains of AgBr.
- Ag grains are remained after charged particle pass.
- We can detect the track after the development.
- Position resolution is $\sim 1\mu$ m (still the best in all detectors).

Discovery of V₇ **DONUT experiment, 2000** (Direct Observation of NeUtrino Tau ,Fermilab. E872) Nagoya Univ., Kobe Univ., et al

DONUT Detector

Creating a Tau Neutrino Beam

v physics @ SHiP

- Production of large amounts of neutrinos
 Study v_τ and v_r properties (ex. Cross sections, etc)
 Test lepton flavor universality by comparing v_μ to v_τ interactions
 - $\blacksquare v_e$ study in high energy range.

	CC DIS interactions
N _{ve}	8.6×10^{5}
$N_{\nu_{\mu}}$	2.4×10^{6}
$N_{\nu_{\tau}}$	2.8×10^4
N _{ve}	1.9×10^{5}
$N_{\overline{\nu}_{\mu}}$	5.5×10^{5}
$N_{\overline{v_{\tau}}}$	1.9×10^4

Expected CC DIS interactions in the SND assuming 2×10^{20} protons on target

Summary

- There are many interesting and fascinating future v experiments.
- Introduced today are

(SK-Gd,) HK, DUNE, ESSnuSB, v-factory, JUNO, IceCube Gen 2 & atmospheric v experiments, $0v\beta\beta$ experiments, sterile v experiments, and SHiP.

Thank you !

01-10

n Dùng Ngo