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Neutrino Sources

Figure 1: Neutrino sources and their energies. Figure taken from [1].
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Nuclear Reactor
▶ nuclear fission, first reactor is Chicago Pile-1, Fermi, 1942

▶ a typical nuclear reactor produces O(1 GW) of electricity
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Reactor Neutrinos

▶ 99.9% of νe from fission isotopes of 235U, 238U, 239Pu, 241Pu

▶ per fission decay chain: 200MeV, 6 neutrinos, pure νe

▶ 2× 1020 GW−1 s−1 reactor neutrinos
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Neutrino Flux and Neutrino Detection

▶ inverse-beta decay (IBD): prompt signal, Ee+ = Eν − 0.8MeV

▶ neutron capture: delayed signal
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Fuel Evolution
▶ evolution of reactor core fuel
▶ antineutrino flux depends on fission fraction

Figure 2: Evolution of reactor core fuel in Daya Bay [2].
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Discovery of Neutrinos:

Cowan and Reines Experiment
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Original Plan of Cowan and Reines to Detect Neutrinos
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Early Reactor Neutrino Measurement

▶ neutrino rate: from 1018 cm−2 s−1 near atomic bomb site, to
1014 cm−2 s−1 at a reactor

▶ initial measurement using the nuclear reactors at Hanford
(Washington State) in 1953

▶ inverse beta decay

νe + p → n + e+ (1)

▶ liquid scintillator (LS) with cadmium dissolved in it

n + 108Cd → 109mCd → 109Cd+ γ (2)

▶ coincidence of positron annihilation and neutron capture
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Detector at Hanford
▶ 28 inches in diameter, 30 inches in height, 300-liter capacity
▶ 90 2-inch PMTs, “Herr Auge”

Figure 3: The scintillation detector for the 1953 neutrino detection
experiment at Hanford.
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Detecting IBD
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Moving to Savannah River
▶ “it was felt that an identification of the free neutrino had

probably been made.”

▶ moved experiment to Savannah River Plant (South Carolina)

▶ a detector tank containing more than 1 ton of scintillation
fluid in a crawling convoy of 5 over-sized trucks
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Experimental Setup at Savannah River

▶ club-sandwich setup
▶ bread layers: 0.6m thick, 1.9m long, 1.4m wide

▶ triethylbenzene solution of terphenyl (scintillator C18H14) and
POPOP (wavelength shifter)

▶ 110 5-inch PMTs in total, res. at 0.5MeV is 30% FWHM

▶ meat layers: water solution of cadmium chloride

▶ parafin and lead shield, underground room
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Data Acquisition

▶ trigger on pulse amplitudes and coincidences

▶ pulses on the triple-beam oscilloscopes were recorded
photographically

▶ short delay (up to 17 µs): good signal-to-background ratio

▶ calibrations: copper-64 positron source, plutonium-beryllium
neutron source, and cosmic ray
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Background
▶ pulses in all three traces

▶ strange signals

▶ accidental background: radio-activities from materials
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Cowan and Reines
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Experimental Results
▶ total running time: 1371 hours = 57 days
▶ cross section 6.3× 10−44 cm2 (about right)
▶ in one run, neutrino signal rate was 0.6 counts per hour,

signal is 20 times the accidental background due to reactor
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1995 Nobel Prize

▶ Cowan passed way at 54 in
1974. Reines received Nobel
price in 1995 in both their
names.

▶ “for pioneering experimental
contributions to lepton
physics” jointly with one
half to Martin L. Perl “for
the discovery of the tau
lepton” and with one half to
Frederick Reines “for the
detection of the neutrino”

▶ among 79 / 116 Nobel
Prizes in particle physics
(1901—2022)
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θ12 and ∆m2
21 Measurement:

KamLAND Experiment
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Discovery of Neutrino Oscillations
▶ Super-Kamiokande: atmospheric νµ disappearance

▶ SNO: νe flux and total neutrino νe,µ,τ flux from the Sun

▶ neutrinos can change flavor as they travel

▶ non-zero masses, 2015 Nobel Prize

(a) Super-Kamiokande, 1998 [3] (b) SNO, 2002 [4]
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Standard Neutrino Oscillation Model
▶ να: state with specific flavor (νe , νµ, ντ )
▶ νi : state with specific mass (m1, m2, m3)
▶ |να⟩ =

∑
i Uαi |νi ⟩, matrix U is unitary, called PMNS matrix

U =

 1
c23 s23
−s23 c23

 c13 −s13e iδCP

1
−s13e iδCP c13

 c12 s12
−s12 c12

1


▶ 2-flavor example: P(να → νβ) = sin2(2θ) sin2

[
∆m2

ij(L/4E )
]

∆m2
ij = m2

i −m2
j , L is baseline, E is energy
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Reactor Neutrino Oscillations
▶ for reactor neutrinos: νe → νµ or ντ
▶ oscillations depend on θ12, θ13, ∆m2

21, ∆m2
31

P(νe → νe) ≈ 1− sin2 (2θ12) sin
2

(
∆m2

21L

4E

)
− sin2 (2θ13) sin

2

(
∆m2

31L

4E

)
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KamLAND Experiment
▶ KamLAND: Kamioka Liquid Scintillator Anti-Neutrino

Detector, proposed in 1994, started taking data in 2002
▶ average baseline of 180 km

▶ first oscillation observation from man-made neutrino
▶ ∆m2

21 was determined to a high precision
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KamLAND Detector

▶ about 2000 PMTs, 34% photocathode coverage

▶ 18m diameter vessel, 13m diameter, 1 kton LS

▶ energy resolution: 6.4%/
√

E (MeV), position resolution
12 cm/

√
E (MeV)
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Backgrounds in KamLAND Experiment
▶ unexpected: 13C(α, n)16O, liquid scintillator purification
▶ geo-νe : cut on 2.6MeV prompt signal

▶ 9Li and 8He: 2 s veto of entire volume for showering muon or
a 2 s veto of a 3-m-radius volume around a muon track.

9Li
β−
−−→ e− + 9Be∗ → e− + α+ α+ n,

8He
β−
−−→ e− + 8Li∗ → e− + 7Li+ n.
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KamLAND Data in L/E
▶ ratio of the observed νe spectrum to the expectation for

no-oscillation as a function of L/E [5]

▶ three flavor fit, strong constraint on ∆m2
21
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Oscillation Results from KamLAND
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KamLAND-Zen

▶ in 2011, > 300 kg 136Xe loaded
in 13 ton liquid scintillator

▶ KamLAND-800: 745 kg Xe,
91% enriched, loaded with 3.1%

▶ 110mAg from Fukushima (2011)

▶ 270 keV FWHM
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θ13 Measurement: Daya Bay, RENO and

Double CHOOZ
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Significance of θ13 Measurement
▶ non-zero value of θ13 allows the measurement of δCP ,

matter-antimatter asymmetry of the universe

U =

 1
c23 s23
−s23 c23

 c13 −s13e iδCP

1
−s13e iδCP c13

 c12 s12
−s12 c12

1


▶ indications of a nonzero θ13 in 2011: T2K [6], MINOS [7],

Double Chooz [8]

▶ excluded non-zero θ13 above 5σ in 2012: Daya Bay and RENO
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Near and Far Detectors of Daya Bay Experiment
▶ 2 nuclear power plants (NPP), 6 reactor cores
▶ 4 far detectors (EH3) and 4 near detectors (EH1 and EH2)
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Detector Design
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Daya Bay Detectors in EH3
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Interior of a Daya Bay Detector
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Daya Bay Results in 2012 [9]

▶ exposure of 55 days, rate measurement

▶ determine non-zero θ13 above 5 sigma level

Figure 5: Daya Bay experimental results in 2012 [9].
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Daya Bay Results in 2023 [10]

▶ sin2 2θ13 = 0.0851± 0.0024,

▶ “The reported sin2 2θ13 will likely remain the most precise
measurement of θ13 in the foreseeable future”

▶ “crucial to the investigation of the mass hierarchy and CP
violation in neutrino oscillation”

Figure 6: Daya Bay experimental results in 2023 [10].
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RENO Experiment
▶ two detectors: near (290m) and far detectors (1380m)

▶ 16.5 t, 0.1% Gd-doped liquid scintillator

▶ pure LS (γ catcher), mineral oil (shielding), water

▶ 229 days exposure, first results in 2012 at > 4σ

Figure 7: Detector locations and design in RENO experiment [11].
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Double CHOOZ Experiment
▶ single detector operation: April 2011 until January 2013
▶ both detectors FD and ND: January 2015 until April 2016

Figure 8: Baseline and detectors of Double CHOOZ experiment [12].
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A Comparison of θ13 Measurements

Figure 9: A comparison on θ13 measurements in 2020 [12]. Double
CHOOZ 2021 [13] and Daya Bay 2023 results [10] not included.
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Sterile Neutrino Searches: STEREO, etc.
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Reactor Antineutrino Anomaly
▶ predicting νe flux from beta spectra for 235U, 239Th and 241Th

▶ Huber–Mueller (HM) model in 2011, measured rates about
5% below prediction, reactor antineutrino anomaly

▶ sterile neutrinos: P = 1− sin2 (2θ) sin2
(
∆m2

41L/4E
)
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5 MeV “Bump”
▶ a “bump” at 5–6MeV, with an amplitude of about 10% [12]

▶ seen in the data of Daya Bay, RENO, Double CHOOZ, and
NEOS experiments

44 / 61



STEREO Experiment [14]
▶ highly enriched 235U fuel, 10m baseline, 58MW research

reactor at ILL, France

▶ shielding: lead, borated polystyrene, mu-metal

▶ started taking data in 2016, 400 neutrino events per day
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STEREO Results

▶ Nature 613, 257–261 (2023), excluded most of the reactor
anomaly parameter space

▶ agree with the prediction of Letourneau et al. [15]
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Calculations by Letourneau et al. in 2022

▶ Phys. Rev. Lett. 130, 021801 (2023) [15], summation model

▶ with a single parameter, can reproduce both norm and shape

▶ suspect that the anomalous feature could be from a shape
bias in the β− energy spectra measured at ILL
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Other Very Short Baseline Experiments
▶ NEOS: Yeonggwang, Korea, 24m [16]

▶ PROSPECT: Oak Ridge, 235U fissions, 8m, 6Li-doped LS [17]

▶ Neutrino-4, DANSS, etc. [18]

Figure 10: NEOS (left plot, 2017, [16]) and PROSPECT (right plot,
2021, [17]) results on sterile neutrinos.
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Mass Ordering Measurement:

JUNO Experiment
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JUNO Experiment

▶ JUNO: Jiangmen Underground Neutrino Observatory
▶ reactor νe → νe : neutrino mass ordering

m2

inverted ordering

m1

m3

m2

normal ordering

m1

m3

▶ sub-percent measurement of θ12, ∆m2
21 and

∣∣∆m2
31

∣∣
▶ multi-purpose detector: geoneutrinos, atmospheric neutrinos,

solar neutrinos, supernova neutrinos
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Detector Location and Baseline

▶ located at southern China, near Kaiping, Guangdong province

▶ two nuclear power plants (NPP), 53 km baseline
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JUNO Experimental Site

▶ vertical tunnel and slope tunnel (42◦)

▶ overburdens 650m (1800 w.m.e.), about 4Hz muons rate
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JUNO Detector
▶ 20 kton liquid scintillator: LAB + PPO + bis-MSB

▶ top tracker and water pool for muon veto
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JUNO PMTs

▶ 3% energy resolution at 1MeV, 78% photocathode coverage

▶ 17612 20 in PMTs: NNVT and Hamamatsu

▶ 25600 3 in PMTs: for large PMT non-linearity correction
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Detector Frame
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Acrylic Sphere
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PMT Array
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Energy Spectra
▶ signal: about 42 events per day

▶ major background: accidentals, geoneutrinos, 9Li/8He, global
reactors, with about 1 event per day each
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Mass Ordering Sensitivity
▶ data taking will start in 2024
▶ TAO, satellite detector by Taishan reactors, flux constraint
▶ 3σ (reactors only) with about 6 years × 26.6 GW exposure
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Precision Measurement of Oscillation Parameters
▶ precision of sin2 θ12, ∆m2

21 and
∣∣∆m2

31

∣∣ < 0.5% in 6 years [19]

▶ current uncertainty from PDG 2020: 4.2% for sin2 θ12, 2.4%
for ∆m2

21 and 1.3% for
∣∣∆m2

31

∣∣
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Summary

▶ reactor neutrinos: νe from 235U, 238U, 239Pu, and 241Pu,
inverse beta decay, Cd/Gd/Li for neutron capture

▶ discovery of neutrinos: Cowan-Reines experiment, 1956

▶ θ12 and ∆m2
21: KamLAND experiment 2002–2011

▶ θ13: Daya Bay, RENO, Double CHOOZ

▶ sterile neutrinos: STEREO, etc., normalization and shape
anomaly may have been solved

▶ mass ordering: JUNO, 3σ after 6 years starting 2024

▶ other topics not discussed: nuclear security, etc.
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νe Disappearance

P(νe → νe) = 1− sin2 (2θ12) cos
4 θ13 sin

2

(
∆21

2

)
− sin2 (2θ13)

[
cos2 θ12 sin

2

(
∆31

2

)
+ sin2 θ12 sin

2

(
∆32

2

)]
≈ 1− sin2 (2θ12) sin

2

(
∆21

2

)
− sin2 (2θ13) sin

2

(
∆31

2

)
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