Probing the Nature of Neutrinos: the Search for Neutrinoless Double- β Decay

Junting Huang

Shanghai Jiao Tong University

July 21, 2023 Vietnam School on Neutrinos ICISE center, Quy Nhon, VN

Table of Contents

1. Nature of Neutrinos

- 1.1 Neutrino Masses
- 1.2 Neutrinoless Double- β Decay

2. Experimental Design

- 2.1 Signal Signature
- 2.2 Intrinsic $2\nu\beta\beta$ Background
- 2.3 Choice of Isotopes
- 2.4 Background Challenges
- 3. Experimental Programs
- 3.1 Technology Overview
- 3.2 Experiment Review
- 3.3 Current Status and Future Prospect

4. Summary and Outlook

Neutrinos in the Standard Model

- proposed in 1930, Pauli
 discovered in 1956, reactor *v*_e, Cowan and Reines
- Lee, Yang, Wu in 1956–1957: parity violation
- Goldhaber in 1957: neutrinos are left-handed
- three light active neutrinos
 ν_e, ν_µ, and ν_τ
- *N* = 2.9840 ± 0.0082 from *Z* boson decay
- neutrinos were considered massless in Standard Model

Number of active neutrino flavors from Z decay in LEP experiments.

Discovery of Neutrino Oscillations

- Super-Kamiokande: atmospheric ν_{μ} disappearance
- SNO: ν_e flux and total neutrino $\nu_{e,\mu,\tau}$ flux from the Sun
- neutrinos have non-zero mass, 2015 Nobel Prize

Neutrino Oscillation Measurements

• ν_{α} : state with specific flavor (ν_{e} , ν_{μ} , ν_{τ})

• ν_i : state with specific mass (m_1, m_2, m_3)

• $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$, matrix U is unitary, called PMNS matrix

$$U = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & -s_{13}e^{i\delta_{CP}} \\ & 1 & & \\ -s_{13}e^{i\delta_{CP}} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} & \\ & & 1 \end{pmatrix}$$

 mass ordering and absolute masses remain unknown

Absolute Neutrino Masses

- KATRIN experiment [3]
 - end point of tritium β decay at 18.57 keV
 - $m_{\beta}^2 = \sum |U_{ei}|^2 m_i^2$
 - $m_{\beta}^{\nu} < 1.1 \,\mathrm{eV}, 2019 \,[3]$
 - ▶ $m_{\beta} < 0.8 \, {
 m eV}$, 2021 [4]
- cosmology, Planck data
 - e.g. $\sum m_i < 0.28 \, \text{eV}$ [5]
 - cosmological model dependent

Where Do Neutrino Masses Come from? [11]

seesaw requires that neutrinos are Majorana particles

Majorana Neutrinos

• Majorana in 1937:
$$\nu = \overline{\nu}$$
 [12]

$$(i\widetilde{\gamma}^{\mu}\partial_{\mu}-m)\widetilde{\psi}=0,$$

where $\widetilde{\gamma}^{\mu}$ are purely imaginary satisfying Clifford Algebra, $i\widetilde{\gamma}^{\mu}$ is real, $\widetilde{\psi}$ is a real field [13]

"The theory, however, can be obviously modified so that the β-emission, both positive and negative, is always accompanied by the emission of a neutrino." — E. Majorana [12]

 besides neutrino mass, may also help explain baryon asymmetry: leptogenesis [14], L violation induces B violation
 most promising probe: neutrinoless double-β decay

Neutrinoless Double- β Decay

- double- β (2 $\nu\beta\beta$) decay
 - first calculated by Goeppert-Mayer in 1935
 - ▶ first direct observation: ${}^{82}Se \rightarrow {}^{82}Kr + 2e^- + 2\overline{\nu}$ in a time projection chamber (TPC), Elliott, Hahn, and Moe, 1987
- neutrinoless double-β (0νββ) decay, Furry, 1939, lepton number violation process, Majorana ↔ 0νββ decay [15]

$${}^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X}
ightarrow {}^{\mathrm{A}}_{\mathrm{Z}+2}\mathrm{X} + 2e^{-1}$$

Feynman diagrams of $2\nu\beta\beta$ and $0\nu\beta\beta$ decays.

Decay Half-Life

decay half-life

Experimental Design

Signal Signature

- mono-energetic peak at $Q_{\beta\beta}$
- background free

 $T_{1/2}\propto\epsilon Mt$

where M is mass, t is running time, ϵ is efficiency

with background

$$T_{1/2} \propto \epsilon \sqrt{\frac{Mt}{B\Delta E}}$$

- B: background index, in keV⁻¹ kg⁻¹ yr⁻¹
- ΔE: energy resolution

The two-electron energy spectrum for the $2\nu\beta\beta$ and $0\nu\beta\beta$ decays. For example, $Q_{\beta\beta} = 2039.06 \text{ keV}$ for ⁷⁶Ge.

Intrinsic $2\nu\beta\beta$ Background

- $T_{1/2}^{2
 u} \ll T_{1/2}^{0
 u}$, 2
 uetaeta decay is a potential ultimate background
- the fraction of the $2\nu\beta\beta$ counts in the peak region [16]

 $F\propto \left(\Delta E/Q_{etaeta}
ight)^6$

Signature of $0\nu\beta\beta$ decay in the observed spectrum of electron energy normalized by the Q value $(Q_{\beta\beta})$ [16].

Choice of Isotopes

- high abundance: lower cost in enrichment, or without enrichment, e.g. ¹³⁰Te
- high Q_{ββ}: low intrinsic 2νββ background, low background of radioactivity

isotope	natural abundance (%)	$\mathit{Q}_{etaeta}(MeV)$	
⁴⁸ Ca	0.187	4.263	
⁷⁶ Ge	7.8	2.039	
⁸² Se	8.7	2.998	
⁹⁶ Zr	2.8	3.348	
¹⁰⁰ Mo	9.8	3.035	
¹¹⁶ Cd	7.5	2.813	
¹³⁰ Te	34.08	2.527	
¹³⁶ Xe	8.9	2.459	
¹⁵⁰ Nd	5.6	3.371	

Nuclear Matrix Element and Phase Space Factor

• larger $|M^{0\nu}|^2$ and $G^{0\nu}$, easier for $0\nu\beta\beta$ decay to happen

$$1/T_{1/2} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2 / m_e^2$$

• uncertainty in $|M^{0\nu}|^2$ due to nuclear models

Phase factors [17] and nuclear matrix elements [18].

Background Challenges

- cosmic rays and cosmogenic activation, e.g. ⁷⁷Ge, ¹³⁷Xe
- radioactivity of detector materials, e.g. ²³⁸U, ²³²Th, ⁶⁰Co
- ▶ anthropogenic, e.g. ¹³⁷Cs, ^{110m}Ag
- neutrinos: $\nu + e^- \rightarrow \nu + e^-$

Experimental Programs

Main Approaches

- source \neq detector
 - source on a foil
 - event energy and topology
 - low resolution and efficiency
- source = calorimeter
 - measure double- β energy
 - high resolution and efficiency
 - no event topology
- source = calorimeter = tracker
 - high pressure gas TPC
 - high efficiency and resolution, event topology
 - large volume, weak self-shielding

Bottom figure taken from [20] based on simulation.

Detector Signals

- signals come in form of heat (bolometer), light (scintillator), and charge (semiconductor, etc.)
- non-exhaustive list, selectively introduce them clockwise

CUORE Experiment

- Cryogenic Underground Observatory for Rare Events, at LNGS
- ▶ bolometers, ultra-cold ¹³⁰TeO₂
- ▶ 988 TeO₂ crystals, 206 kg of ¹³⁰Te, 11.8 mK
- ▶ 7 keV FWHM at $Q_{\beta\beta}$

CUORE 2022 Results

- ▶ Nature 2022: $T_{1/2} > 2.2 \times 10^{25} \, \mathrm{yr}$ [21]
- ▶ 1 t yr exposure, background $1.49 \times 10^{-2} \text{ keV}^{-1} \text{ kg}^{-1} \text{ yr}^{-1}$
- ▶ 90% background near $Q_{\beta\beta}$ from α , ⁶⁰Co peak at 2505.7 keV

CUPID Experiment

- CUPID: CUORE Upgrade with Particle Identification
- separate α from β/γ with the same energy
- CUPID-0: scintillating bolometers Zn⁸²Se crystals
- CUPID-Mo: Li₂ ¹⁰⁰MoO₄, chosen for CUPID ton-scale
- PRL 126, 181802 (2021), 1.17 kg yr, 7.6 keV FWHM

KamLAND-Zen

- multi-ton scale experiment, light from liquid scintillator
- liquid scintillator loaded with 3.1% Xe, 745 kg, 91% enriched
- ^{110m}Ag from Fukushima (2011)
- 270 keV FWHM

1879 17-inch and 20-inch PMTs

Kamland-Zen in 2022 Results

- ▶ $T_{1/2} > 2.3 \times 10^{26} \text{ yr at } 90\%$ C.L., world leading [22]
- entering inverted mass ordering region!

SNO+

- ► SNOLAB, 5890 mwe
- 780 tons liquid scintillator loaded with 0.5% natural Te, about 1300 kg ¹³⁰Te
- 7000 tons water for shielding, ~ 9300 PMTs

Expected spectrum [23].

EXO-200, nEXO, DARWIN, PandaX-30T

- liquid Xe TPC
- EXO-200 (Enriched Xenon Observatory)
 - 110 kg of Xe, enriched to 80.6% in 136 Xe
 - finished, PRL 123, 161802 (2019), 67 keV FWHM
- nEXO (next EXO), plann to use 5 ton of Xe, barium tagging
- DARWIN: 50t Xe for dark matter searches, 3.6t of ¹³⁶Xe [24]
- PandaX-30T, expect similar sensitivity

NEXT and PandaX-III

- high pressure gas Xe TPC: high resolution (< 25 keV FWHM), topology to reject α, β and γ
- NEXT: electroluminescent amplification + PMTs
 - NEXT-White: 5 kg Xe at 15 bar
 - NEXT-100: 100 kg, under construction
- PandaX-III: fine-pitch Micromegas, running a 20 kg prototype at 5 bar, aim for 200 kg modules

SuperNEMO

- built upon the success of NEMO-3
- \blacktriangleright thin foil enriched in double- β isotope, flexibility in isotope type
- wire-chamber tracker: measure particles' trajectories, background rejection
- segmented calorimeter: energy and timing

GERDA, MAJORANA, and LEGEND

- ▶ $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^{-}$
- source is also detector, high efficiency
- best energy resolution and lowest background index in all 0νββ decay experiments
- commercial technology, modest cryogenic requirements

GERDA Experiment

- LNGS, Italy, 3500 wme, 10⁶ reduction of cosmic rays
- water tank: 10 m diameter, muon veto, shielding
- LAr veto: 0.5 m diameter, 2 m high, veto, shielding, cooling
- about 40 detectors, enriched to about 87%, 35.6 kg

Detector Array and Liquid Argon Veto Instrumentation

- detectors mounted on 6 strings, nylon cylinder
- liquid argon veto: TPB reflector, PMTs, wavelength shifting fibers + SiPMs

Energy Calibration

- ²²⁸Th, weekly calibration
- between calibrations: test pulses injected every 20 s, stable operating conditions for physics analysis is about 80%

An example of the GERDA Phase II calibration data.

Calibration Curve

- after each calibration, find the position of the gamma lines
- fit a linear function as the calibration curve (ADC to keV)
- energy resolution determined from width of Gaussian

Energy Resolutions

- resolution changes over time due to hardware changes
- partition the dataset based on stability, one resolution for each of the partition

Background Reduction

- liquid argon veto + pulse shape discrimination + cosmic veto
- first in the field to operate in background-free regime
- ▶ signal efficiency: 46% for coaxial, 61% for BEGe, 66% for IC

Pulse Shape Discrimination

- A is the maximum current amplitude, E is the energy
- ▶ too small A/E: multi-site and n^+ electrode

Candidate pulse traces taken from data for a single-site event (SSE), multi-site event (MSE), p^+ electrode event and n^+ surface event [25].

Energy Spectrum

- analysis cut: liquid argon veto, pulse shape discrimination
- ▶ at low energy, dominated by $2\nu\beta\beta$ decay of ⁷⁶Ge
- $Q_{etaeta}\pm 25\,\mathrm{keV}$ for blind analysis

Calibrated energy spectrum after all event selections.

Final GERDA Results: PRL 125 (2020), 252502

▶ half-life limit: $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% C.L.

• world's lowest background: $B = 5.2 \times 10^{-4} \text{ cts}/(\text{keV kg yr})$

Comparison: Background vs. Exposure

• keys to $0\nu\beta\beta$ experiments: background and exposure

extreme background requirements for LEGEND, nEXO, etc.

A summary of background and exposure for various experiments [26].

Current Status

- ▶ leading constraints on $m_{\beta\beta}$ comes from ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe
- region above the inverted mass ordering is mostly excluded

isotope	experiment	year	half-life limit (yr)	m_{etaeta} (meV)	reference
⁷⁵ Ge	GERDA	2020	$1.8 imes10^{26}$	79-180	[27]
¹³⁶ Xe	KamLAND-Zen	2022	$2.3 imes10^{26}$	36-156	[22]
¹³⁶ Xe	EXO	2019	$3.5 imes10^{25}$	93-286	[28]
¹³⁰ Te	CUORE	2022	$2.2 imes10^{25}$	90-305	[21]

Future Prospect

- ► cover inverted ordering region: $m_{\beta\beta} \sim 10 \text{ meV}$, use larger mass, further reduce background
- CUPID, nEXO, KamLAND2-Zen, NEXT, etc.
- LEGEND: 1 ton of ⁷⁶Ge, run for 10 yr, 10²⁸ yr, first phase LEGEND-200 with 200 kg ⁷⁶Ge is ongoing at LNGS

Future Projects in China

- PandaX-III, PandaX-30T (SJTU): xenon TPC [29, 30]
- ▶ JUNO (IHEP): load ¹³⁶Xe or ¹³⁰Te in liquid scintillator [31]
- CUPID-China (Fudan) [32], CDEX (Tsinghua) [33], and NvDEx (IMP) [34]

Relation with Other Neutrino Experiments

- mass ordering measurement
 - ▶ NOvA + T2K: no preference with 2020 results [35]
 - JUNO: data taking starts in 2023, 6 years, 3-4 σ
 - DUNE: $> 5\sigma$, 1.2 MW beam in 2026 with 20 kt mass (1/2)
- precision measurement of mixing parameters [36]
- absolute mass from beta decay, sum of neutrino masses

Figure adapted from [37].

Summary and Outlook

 Majorana neutrinos may solve several fundamental issues in particle physics and cosmology

origin of neutrino mass, why it is small

why the universe is dominated by matter

 \blacktriangleright neutrinoless double- β decay is the most promising probe

keys: exposure, energy resolution, and background

- technologies: bolometers, scintillators, TPCs, semiconductors
- most of the parameter space above the inverted mass ordering region are excluded, results led by ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe
- the goal of next generation experiment is to reach below the inverted mass ordering region, ton-scale, lower background

References I

- ¹ Y. Fukuda et al., "Evidence for oscillation of atmospheric neutrinos", Phys.Rev.Lett. **81**, 1562–1567 (1998).
- ² Q. Ahmad et al., "Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory", Phys.Rev.Lett. 89, 011301 (2002).
- ³ M. Aker et al., "Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN", Phys. Rev. Lett. **123**, 221802 (2019).
- ⁴ M. Aker et al., "Direct neutrino-mass measurement with sub-electronvolt sensitivity", Nature Phys. 18, 160–166 (2022).
- ⁵ S. Roy Choudhury and S. Choubey, "Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios", JCAP 09, 017 (2018).

References II

- ⁶ P. Minkowski, " $\mu \rightarrow e\gamma$ at a Rate of One Out of 10⁹ Muon Decays?", Phys. Lett. B **67**, 421–428 (1977).
- ⁷ T. Yanagida, "Proc. workshop on unified theory and the baryon number in the universe", KEK Report No. 79-18 **95** (1979).
- ⁸ M. Gell-Mann, P. Ramond, and R. Slansky, "Complex Spinors and Unified Theories", Conf. Proc. C **790927**, 315–321 (1979).
- ⁹ S. L. Glashow, "The Future of Elementary Particle Physics", NATO Sci. Ser. B **61**, 687 (1980).
- ¹⁰R. N. Mohapatra and G. Senjanovic, "Neutrino Mass and Spontaneous Parity Nonconservation", Phys. Rev. Lett. 44, 912 (1980).
- ¹¹H. Murayama, "The origin of neutrino mass", Phys. World **15**, 35–39 (2002).

References III

- ¹²E. Majorana, "Teoria simmetrica dell'elettrone e del positrone", Nuovo Cim. **14**, 171–184 (1937).
- ¹³F. Wilczek, "Majorana returns", Nature Physics 5, 614–618 (2009).
- ¹⁴M. Fukugita and T. Yanagida, "Baryogenesis Without Grand Unification", Phys. Lett. B **174**, 45–47 (1986).
- ¹⁵S. Bilenky and C. Giunti, "Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model", Int. J. Mod. Phys. A **30**, 1530001 (2015).
- ¹⁶S. R. Elliott and P. Vogel, "Double beta decay", Ann. Rev. Nucl. Part. Sci. **52**, 115–151 (2002).
- ¹⁷J. Kotila and F. lachello, "Phase space factors for double-β decay", Phys. Rev. C 85, 034316 (2012).

References IV

- ¹⁸J. Gómez-Cadenas and J. Martín-Albo, "Phenomenology of neutrinoless double beta decay", PoS GSSI14, 004 (2015).
- ¹⁹J.-P. Cheng et al., "The China Jinping Underground Laboratory and its Early Science", Ann. Rev. Nucl. Part. Sci. **67**, 231–251 (2017).
- ²⁰P. Ferrario et al., "Demonstration of the event identification capabilities of the NEXT-White detector", JHEP **10**, 052 (2019).
- ²¹D. Q. Adams et al., "Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE", Nature **604**, 53–58 (2022).
- ²²S. Abe et al., "First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen", (2022).
- ²³Sno+ homepage,

https://falcon.phy.queensu.ca/SNO+/index.html.

References V

- ²⁴F. Agostini et al., "Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of ¹³⁶Xe", Eur. Phys. J. C 80, 808 (2020).
- ²⁵M. Agostini et al., "Pulse shape discrimination for GERDA Phase I data", Eur. Phys. J. C **73**, 2583 (2013).
- ²⁶M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, "Toward the discovery of matter creation with neutrinoless double-beta decay", (2022).
- ²⁷M. Agostini et al., "Final Results of GERDA on the Search for Neutrinoless Double-β Decay", Phys. Rev. Lett. **125**, 252502 (2020).
- 28 G. Anton et al., "Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset", Phys. Rev. Lett. **123**, 161802 (2019).

References VI

- ²⁹X. Chen et al., "PandaX-III: Searching for neutrinoless double beta decay with high pressure¹³⁶Xe gas time projection chambers", Sci. China Phys. Mech. Astron. **60**, 061011 (2017).
- ³⁰K. Ni et al., "Searching for neutrino-less double beta decay of ¹³⁶Xe with PandaX-II liquid xenon detector", Chin. Phys. C 43, 113001 (2019).
- ³¹ J. Zhao, L.-J. Wen, Y.-F. Wang, and J. Cao, "Physics potential of searching for $0\nu\beta\beta$ decays in JUNO", Chin. Phys. C **41**, 053001 (2017).
- ³²A. Giuliani, J. J. Gomez Cadenas, S. Pascoli, E. Previtali, R. Saakyan, K. Schäffner, and S. Schönert, "Double Beta Decay APPEC Committee Report", (2019).
- ³³W. H. Dai et al., "Search for Neutrinoless Double-Beta Decay of ⁷⁶Ge with a Natural Broad Energy Germanium Detector", (2022).

References VII

- ³⁴Y. Mei, X. Sun, and N. Xu, "Topmetal CMOS direct charge sensing plane for neutrinoless double-beta decay search in high-pressure gaseous TPC", (2020).
- ³⁵K. J. Kelly, P. A. N. Machado, S. J. Parke, Y. F. Perez-Gonzalez, and R. Z. Funchal, "Neutrino mass ordering in light of recent data", Phys. Rev. D **103**, 013004 (2021).
- ³⁶S.-F. Ge and W. Rodejohann, "JUNO and Neutrinoless Double Beta Decay", Phys. Rev. D 92, 093006 (2015).
- ³⁷M. Agostini et al., "Probing Majorana neutrinos with double- β decay", Science **365**, 1445 (2019).