Hardware orientation & Training Son Cao (IFIRSE)

6th Vietnam School on Neutrinos, July 12, 2022

Time allocated for Hardware training

W29	Jul 10, 2022 Students/Lecturers check into b	Mon 11	Tue 12	Wed 13	Thu 14	Fri 15
1pm						
		1:20pm Experimental Neutrino Physics concepts in a Nutshell (Son Cao (IFIRSE))	1:20pm Super-Kamiokande detector (Makoto Miura (ICRR, Uni. of Tokyo))	1:20pm 🗇 Hardware training and mini-projects (Son Cao (IFIRSE) et al)	1:20pm 🗇 Hardware training and mini-projects (Son Cao (IFIRSE) et al)	1:20pm Software training (SK event identification) (Makoto Miura (ICRR, Univ. of Tokyo))
2pm						
3pm		2:50pm ∯ Break	2:50pm ¢ Break			
		3:10pm Students' self-intro	3:10pm Hardware orientation (Son Cao (IFIRSE))			
4pm			3:55pm Student grouping and Mini-projects (Son Cao 4:10pm Student group working			
5000						
Shu						

- 45 mins. for hardware orientation
- 4.0 hours x 2 (sec., Wed. And Thu.) for hand-on experience in total

 - Each time, we manage to have $2 \operatorname{groups} \rightarrow 2 \operatorname{hours} x 2$ (sec.) for each person

• But the lab is small and we are lack of human power to have all four groups trained at the same time.

Student grouping & protocol for hardware training Same grouping scheme as software training

- Detail of student grouping will be discussed in next section
- Students are divided into 4 groups: Group-A, Group-B, Group-C, and Group-D
- We prepare two independent setups. They are not identical but the concept is similar
- Training protocol (for Wed. and Thu. Afternoon section)
 - 1. Group A + B go for hardware training (13:20 15:00) while Group C+D work on miniprojects
 - 2. 20 minus break (15:00-15:20)
 - 3. Group C+D go for hardware training projects

3. Group C+D go for hardware training (15:20 - 17:00) while Group A+B work on mini-

Hardware training

Study place for mini-project

Goals of hardware training

• • • • •

especially in particle and nuclear physics

- Did you use multimeter before?
- Did you use oscilloscope before?
- Did you use NIM modules before?
- Did you use photosensor (not including smartphone' *camera*) before?

Provide some hands-on experience w/ hardwares used in real Neutrino Detector

Vietnamese students lack skills with hardware,

Goals of hardware training

Provide some hands-on experience w/ hardwares used in real Neutrino Detector

- What we can see is with the *cosmic ray* muon (big brother/sister of neutrinos)

• But ... We won't see the neutrino interaction in the lab. You will need big detector and place near the huge source of neutrino for this. Also real-time identification of neutrino interaction is quite challenging

High energy astrophysical particles (eg. hydrogen & helium from the Sun) interact with the Earth's atmosphere >produce vast amount of muons $\sim 1 \, \text{muon/cm}^2/\text{s}$

Muon can be used for a practical application

https://www.nature.com/articles/nature24647

called: muon radiography technique

Color is corresponding to intensity of muons. Red is with more muons detected

8 7 6 5 3 2

How can we see muons and measure their characteristics with what we have in the lab?

Tracking the charged particle w/ scintillator

When passing through the scintillator, charged particles (μ , π , e,...) deposits energy and excite the scintillation photons, which are collected and guided to the photosensor for converting to the electrical signals (more convenient to manipulate) for data recording.

Tracking the charged particle w/ scintillator

When passing through the scintillator, charged particles (μ , π , e,...) deposits energy and excite the scintillation photons, which are collected and guided to the photosensor for converting to the electrical signals (more convenient to manipulate) for data recording.

11

Tracking the charged particle w/ scintillator

- ${\rm O}$ Muon deposits ~ 2MeV per 1cm path in the plastic scintillator
- 2MeV deposit energy will produce ~ 10,000 photons
- Assume the probability for WLS catching the photons is about 1%, then ~ 100 photons are capture and change to green photons
- Detection of photosensor is about 20-40%, so will have about
 20-40 photoelectrons observed
 - Sometime you can get lower due to the aging of scintillator,
 attenuation in the WLS or light loss from imperfect coupling
 between the WLS and photosensor

Trace of neutrinos: (typically) very faint flash of light

500 1000 1500 Times (ns)

A ~ 9MeV solar neutrino candidate 123 p.e. counted in 103 PMT in few 100ns; ~1 p.e. per hit PMT

In a blinking of LED

....~10¹⁵ photons are generated

"Experimental neutrino experiment in the nutshell"

1000

Times (ns)

1500 2000

500

Typically, signature of the comic ray muons is also faint

We need a very good "Eyes"

Photosensors: Extremely important to extend particle frontiers (precision, sensitivity, intensity...)

https://hub.hamamatsu.com/us/en/technical-note/WITS-guide-detector-selection/index.html

14				a series and the second of the second s
Characteristic	PMT	PD	APD	SiPM
Spectral coverage [nm]	115-1,700	190-13,000	190-1,700	320-900
Peak QE (η) [%]	< 40	< 90	< 90	< 40 (<i>PDE</i>)
Active area [mm ²]	< 12,000	< 100	< 100	< 10
Gain (µ)	10 ⁵ -10 ⁶	1	< 100	10 ⁵ -10 ⁶
NEP [W/√Hz]	> 2x10 ⁻¹⁷	> 6x10 ⁻¹⁶	> 1x10 ⁻¹⁵	> 6x10 ⁻¹⁶
Rise time [ns]	> 0.15	> 0.23	> 0.35	> 1
Bandwidth [Hz]	< 2x10 ⁹	< 1.5x10 ⁹	< 1x10 ⁹	NA
Time jitter [ns]	> 0.05	NA	> 0.2	> 0.2

Marcel Proust

"The real voyage of discovery consists, not in seeking new landscapes, but in having new eyes"

Photon detection principle w/ Silicon photomultiplier (SiPM)

- Based on photoelectric effect: photon strikes and produce a pair of electron/hole
- Various types, selection depending on the measurement
- "Breakdown" here mean both hole and electron play roles in avalanche process

17

MPPC: a type of SiPM, developed by Hamamatsu

Hamamatsu S13360-1325CS

https://www.hamamatsu.com/us/en/product/type/S13360-1325CS/index.html

Array of pixels

 $C_{_{D}}$: diode capacitance $R_{_{S}}$: silicon substrate serial resistor $V_{_{BD}}$: breakdown voltage

25um Pixel

Main toys/ so-called MPPC, a SiPM type

MPPC applications

https://www.hamamatsu.com/jp/en/product/optical-sensors/mppc/application.html

Distance Measurement (LiDAR)

PET (Positron Emission Tomography)

KACCC0598EA

And many other applications

We will have two setups

One is with single MPPC and the other is with MPPC arrays

Setup with single MPPCs (Group A and group C)

Setup with MPPC array (Group B and Group D)

Really LEGO is using...

Additional tools: Light manipulation

Use for group A and group C

Can reach ~few 10ns optical pulse and level of few photons 25

Use for group B and group D

Day 1, July 13th (Wed.)

- Familiar with hardwares
- Explore MPPC properties
 - Observe single photoelectrons w/ oscilloscope
 - Optical cross talk
 - Charge integration and electric gain calculation
- Signal processing
 - Threshold setting
 - Discriminator
 - Coincidence
 - Counter

What we will explore (detail will be explained on whiteboard during the training)

Day 2, July 14th (Thu.)

- Setup with scintillator and wavelength shifting fiber
- Observe cosmic ray muons
- Calculate the rate of muon (*how many* trigged muon-like events per cm² of scintillator per second)
- Compute the light yield of muons (how many photons captured when a muon pass through 1cm thickness of plastic scintillator)

Mechanics

We will touch very small part of it.

Material science

PN physics

Neutrino detection is a complicate, interdisciplinary field

"Experimental neutrino experiment in the nutshell"

Additional mentors

- Dr. Dung Nguyen
- M.Sc. Quyen Phan, B.Sc. Bao Ton
- Some students may be familiar with the setup

https://ifirse.icise.vn/nugroup/internship/index.html

Time is very limited to play with hardware. You won't satisfy, I'm sure. If you want to play more, please work with us or apply internship

We thank for your donation

KEK

Without their generosity, this hardware training is impossible.

YOKOHAMA National University

