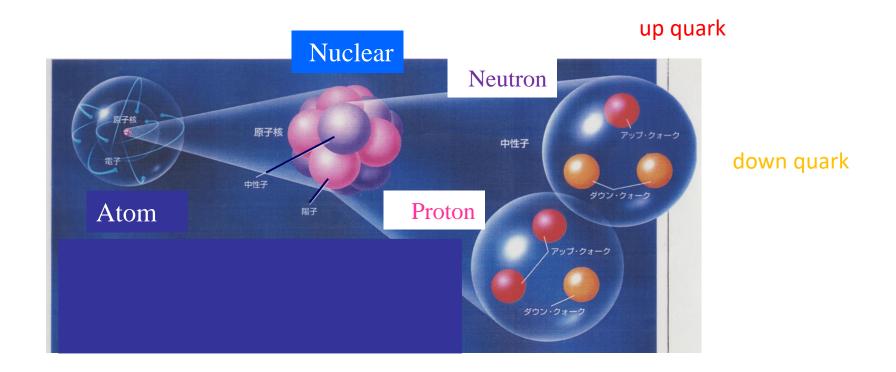
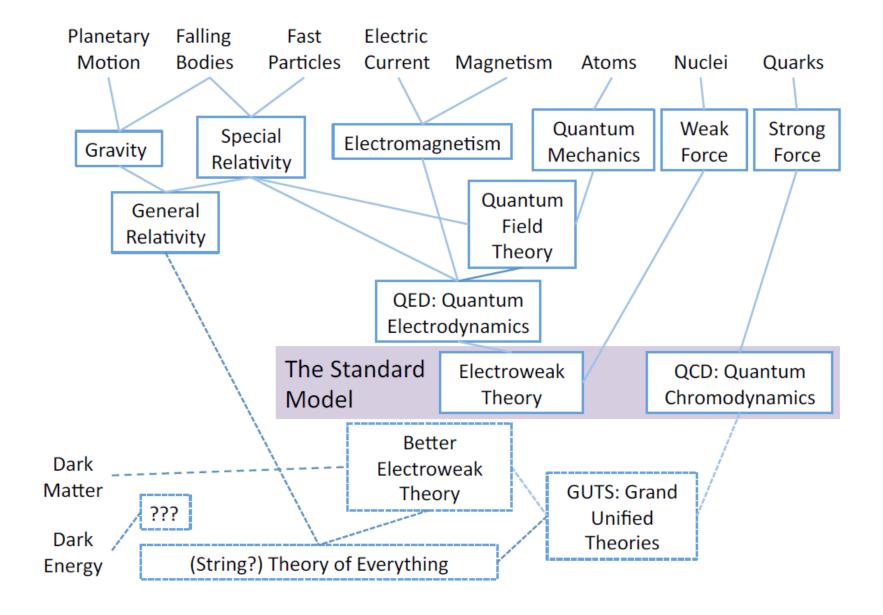
Hyper-Kamiokande and proton decay

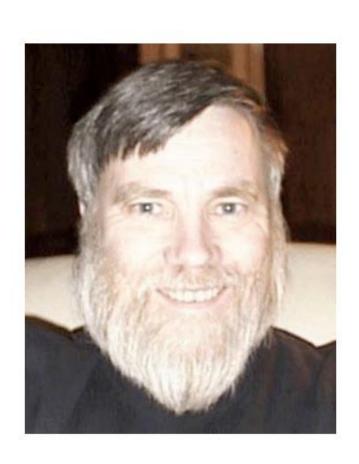

2022/07/19

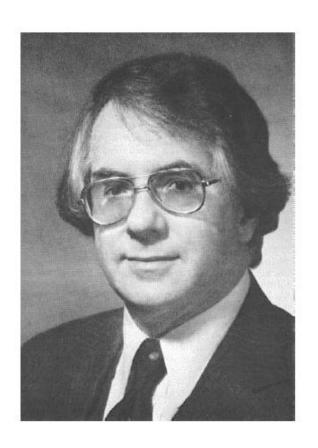
M.Miura

Kamioka observatory, ICRR, UTokyo

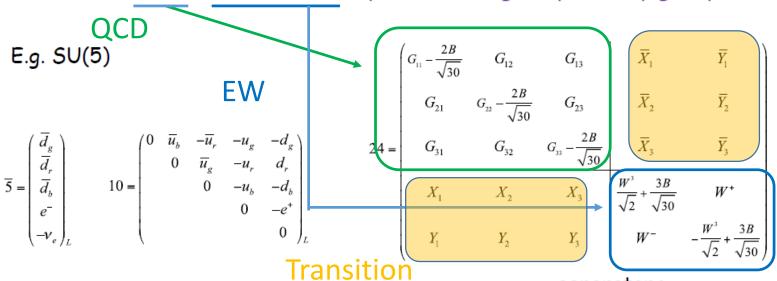

1. Does Proton Decay?

Nucleus consists of protons and neutrons.




- It is well known that neutron decays spontaneously as β -decay: $n \rightarrow p+e^-+\frac{\nu}{\nu_e}$
 - \triangleright Note that $M_n > M_p$.
- People thought proton is stable because of baryon number conservation.
 - n,p has baryon number 1.
 - > We have never observed phenomena with baryon number violation.
 - > Proton is the lightest baryon in the world.
 - ➤ 1929: Weyl suggests absolute stability of proton
- But is it really true?

Can we explain everything by a single theory?

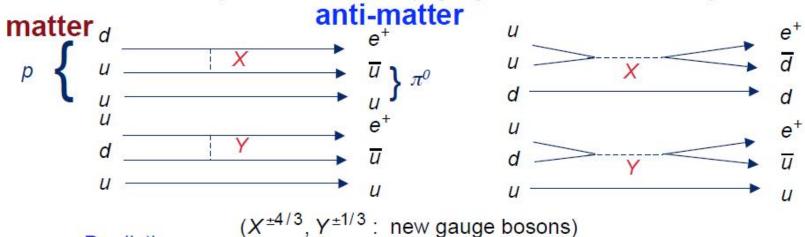

3U(5) by Georgi and Glashow (1974)

Grand Unified Theories

Assume $SU(3)\otimes SU(2)\otimes U(1)$ is part of a larger symmetry group

Consequences:

Single (unified) coupling


between lepton and quark!

- Charge quantization: $Q_d = Q_e/3$, $Q_u = -2Q_d \Rightarrow Q_p = -Q_e$
- New gauge interactions (X, Y bosons) ⇒ proton decay

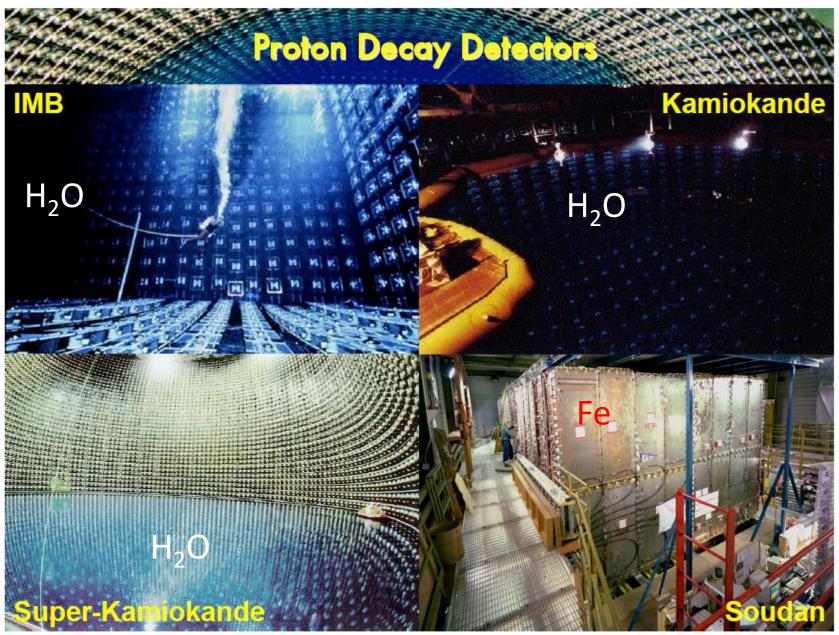
Proton Decay in SU(5) By Georgi and Glashow (197

Decay mechanisms

dominated by the dimension=6 op. gauge boson mediated decays

Predictions

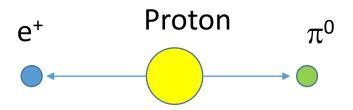
$$\tau/B$$
 (p \to e⁺ π^0) = 4 x 10^{29±1.7} years, B (p \to e⁺ π^0) \approx 40 \sim 60 %


 $p \rightarrow e^{+}\pi^{0}$ became the most famous and popular decay mode.

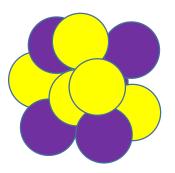
2. How to find proton decay

- Watch a proton for very long time (> 10³⁰ years).
 - \triangleright Age of the universe: $\sim 10^{10}$ years
 - Obviously impossible.

OR


- Watch many protons for (relatively) short time.
 - \triangleright Lifetime τ : N(t)=N(t=0)exp(-t/ τ)
 - Need huge detector!

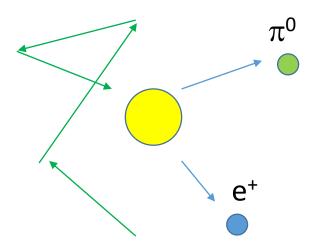
Higher sensitivity in Water Cherenkov Detectors


2. Dominant decay mode: $p \rightarrow e^+ \pi^0$

What's important for p \rightarrow e⁺ π ⁰?

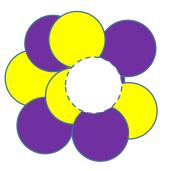
In "free" proton case, e^+ and π^0 emit in back-to-back. Energy corresponding to proton mass is fully used.

Nucleus

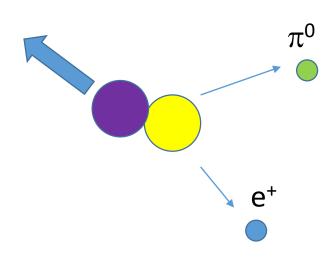


What happens if a bound proton in nucleus decays?

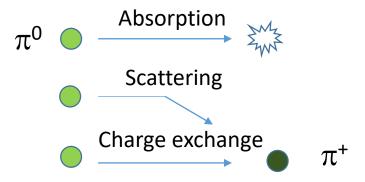
Inefficiencies and uncertainties of proton decay search come from nuclear effect!


Key 1: Proton never stops in nucleus

 Protons don't exist locally in nucleus. It is always moving in the nuclear potential (Fermi motion, p_f ~ 225 MeV/c).

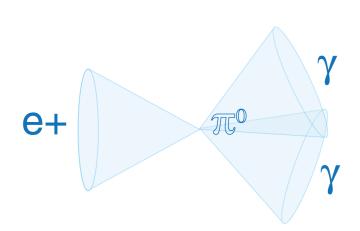

Key 2: Binding energy

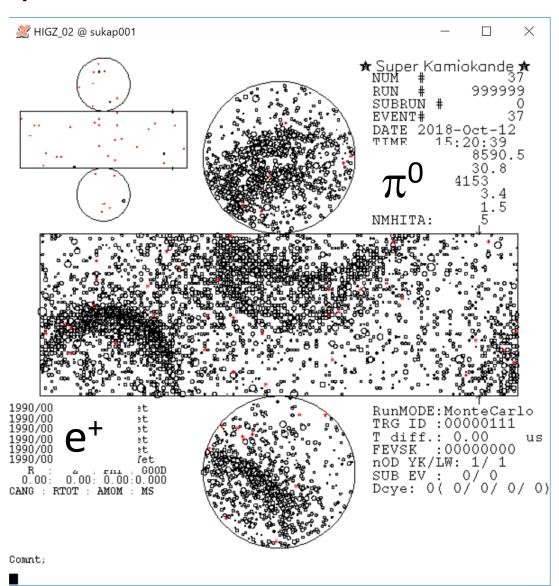
 Energy corresponding proton mass should be used for compensating its binding energy (sstate: ~40 MeV, pstate:15 MeV in Oxygen).


Key 3: Proton strongly binding to other nucleus

 ~ 20% protons are strongly binding to other nucleon which also bring energy when the proton decays (correlated decay)

Key 4: π interacts in nucleus


 Mesons (π,K, e.t.c.) in decay products are affected in nuclear interactions before exiting nucleus.


Why water is used for proton decay search?

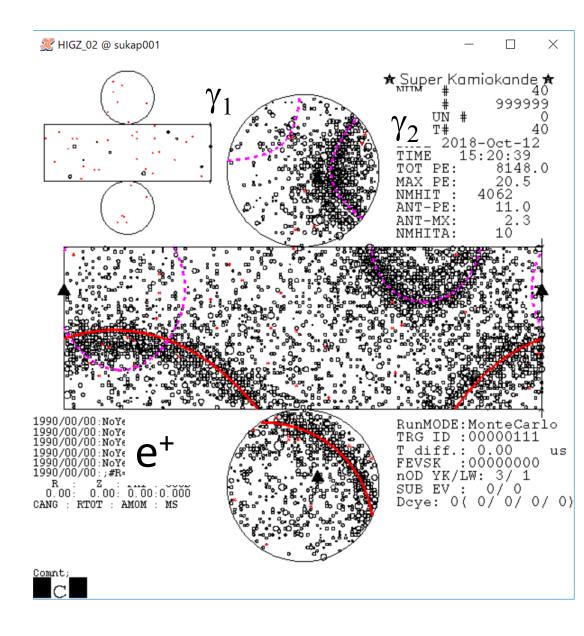
- Easy to construct larger detector.
 - Much cheaper than iron.
 - ➤ You can find large water tank everywhere (common technology).
- High efficiency and low uncertainty.
 - > H₂O has two hydrogens which are not affected by nuclear effect. They are regarded as "free" proton.
 - ✓ Bound proton: $\sim 200 \text{ MeV/c} \sim 0.2 \text{c} = 6 \text{x} 10^7 \text{ m/s}$
 - ✓ velocity of molecular in liquid ~ 10² m/s
 - Free protons contribute high selection efficiency and low uncertainty.

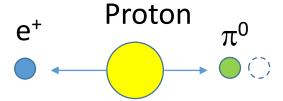
How look like p \rightarrow e⁺ π ⁰ in SK?

Three e-like rings should be observed.

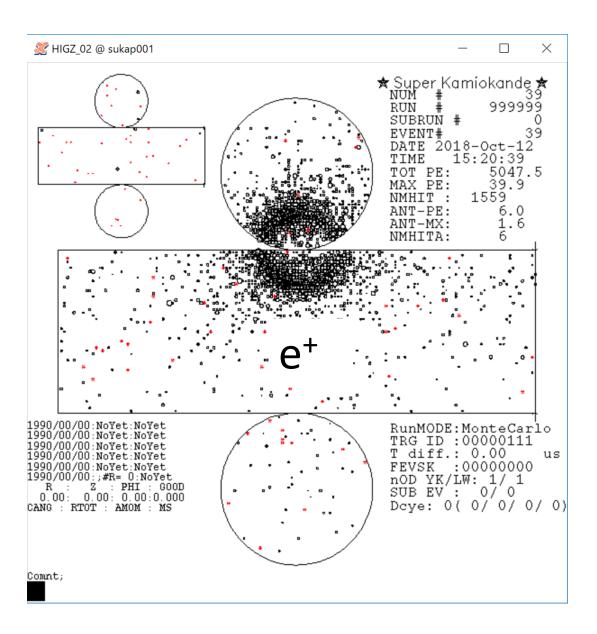
Stopped π^0 case

$$\pi^{0}$$

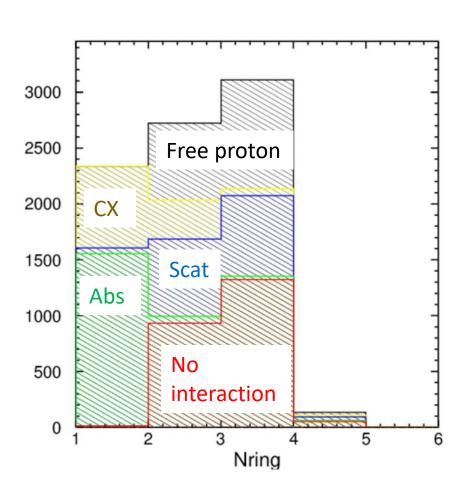

$$\gamma_{1} \sim \gamma_{2}$$


$$E_{1} = E_{2}$$

If a γ is emitted π^0 direction


$$E_1 < E_2$$

Sometimes one γ is failed to reconstruct and observed only two rings.



If π^0 is absorbed before exiting nucleus, only e⁺ is observed (one ring).

Observed number of ring for p \rightarrow e⁺ π^0

Free proton: H in H₂O

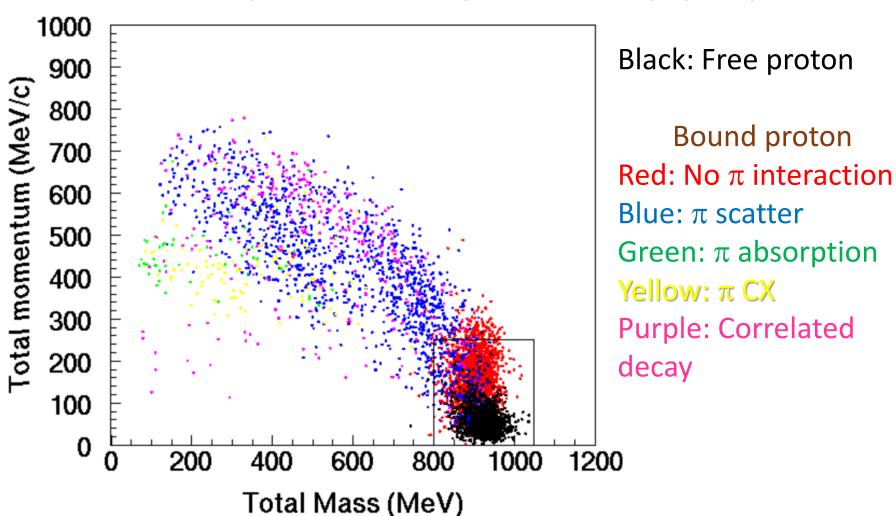
No interaction in Nucleus

Abs: π^0 absorption in Nucleus

Scat: scattered

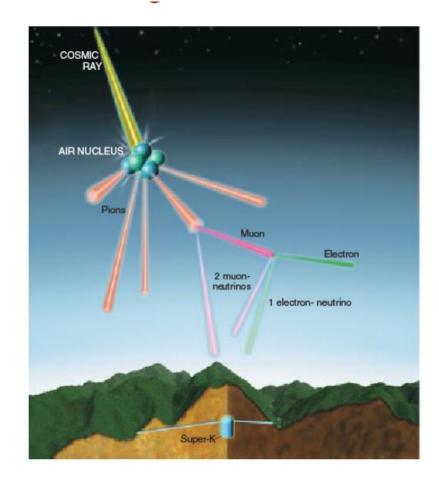
CX: charge exchange

 $(\pi^0 \rightarrow \pi^{\pm}, \text{ below threshold})$

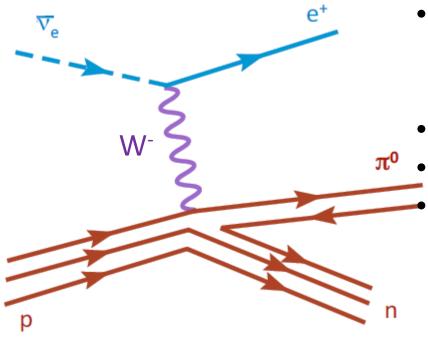

Choose 2 or 3 rings.

Selection criteria for p \rightarrow e⁺ π^0

- 1. Event vertex should be located 2 m inward from the tank wall (fiducial volume cut, 22.5kton).
- 2. 2 or 3 ring event.
- 3. All ring should be e-like (Particle IDentification).
- 4. No Michel electrons.
- 5. Reconstruct π^0 mass for 3 ring events. It should be $85 < M\pi^0 < 185$ MeV/c²
- 6. Reconstruct total mass and momentum should be $800 < M_{tot} < 1050 \text{ MeV/c}^2$, $P_{tot} < 250 \text{ MeV/c}$.

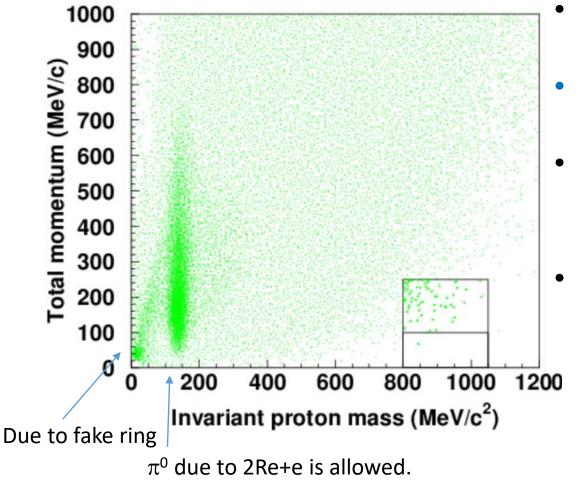

Total mass vs Total momentum for p \rightarrow e⁺ π^0

- Selection efficiency ~ 40 %
- Inefficiency is dominated by unavoidable physics processes.

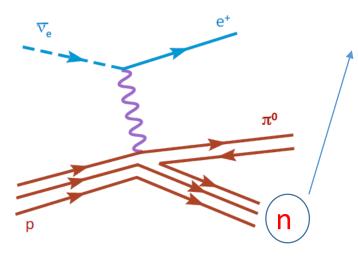

2-2. What's Background events for proton decay searches?

- Atmospheric neutrino is dominant backgrounds for proton decay searches.
 - Visible energy ~ 1 GeV.
 - \triangleright Solar or SN ν is too low energy.
 - Cosmic ray μ are rejected by outer detector.

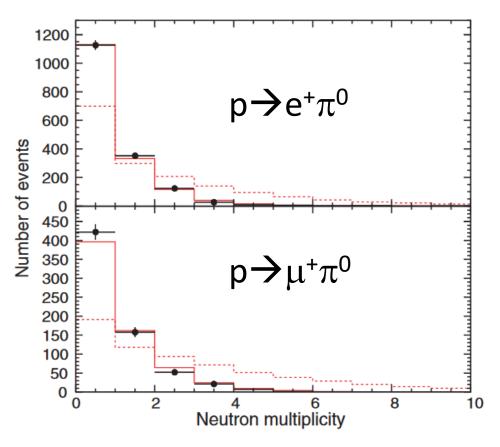
Typical background for p \rightarrow e⁺ π^0


Charged current π^0 production

- Exchange W boson between v and proton (charged current interaction).
- ν changes to e⁺.
 - π^0 and neutron are produced.
 - Because neutron doesn't emit Chrenkov light, visible particles after the reaction are same as $p \rightarrow e^+ \pi^0$


Total mass vs Total momentum for atmospheric v background MC

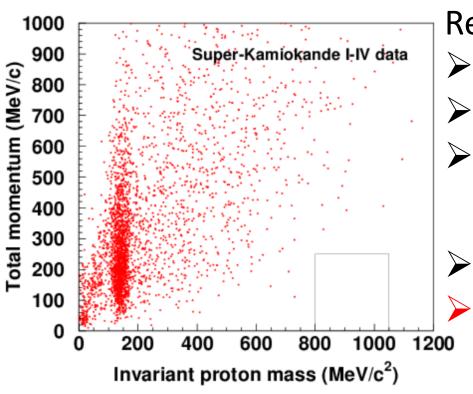
(After all cuts except for total mass and momentum)


- Generate huge atm.n MC, 2000 year of SK!
- Expected BG: ~1.3 ev/Mton*yr
- Neutrino events tend to have higher total momentum.
- Almost background free in lower momentum region (<100 MeV/c).
 - The region corresponds to free proton decay.

Further background reduction

- Neutron doesn't emit Chrenkov light.
- However, neutron is thermalized in water and finally captured by hydrogen (~200 μs);
 n + p → d +γ (2.2 MeV)
- If we can detect delayed 2.2 MeV γ ray, we can reduce background more.
- Neutron capture is also important for SN Relic v and separate v and vbar interactions in atmospheric n oscillation analysis.

How powerful to reject background



- Sample: out of signal box in M_{tot} vs P_{tot} plot.
 - > Dot: data,
 - ➤ Histogram: Atm.v MC (solid: reconstructed, dash: true)
 - ~ 50 % background events are rejected with neutron=0.
- On the other hand, ~ 7.5 % of p→e+π⁰ are accompanied with neutron from deexcitation of nucleus.

 Neutron tagging reduces a few % in selection efficiency.

2-3. SK result (so far)

We have not find any evidences of nucleon decays!

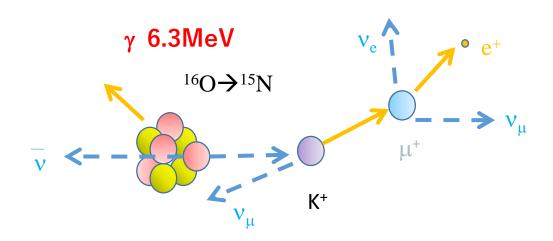
Result of p \rightarrow e⁺ π^0

- Exposure: 450 kton · year
- Efficiency: 38.6 % (SK-IV)
- Expected BG: 0.63 events
 - 0.05 evetns in P_{tot} <100MeV/c
 - 0.58 events in 100 ~ 250 MeV/c
- Observed: 0 event
 - Lower limit of proton life time: $> 2.4 \times 10^{34}$ years

3. SUSY favored decay mode: $p \rightarrow vK^+$

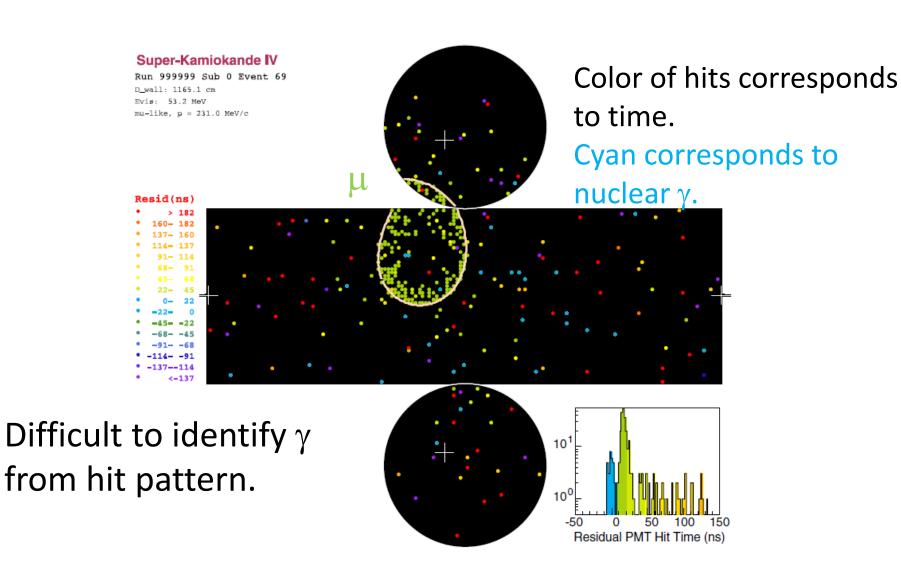
3-1 How to find p $\rightarrow v$ K⁺ in Water Cherenkov detector

- K⁺ has low momentum, most of them stop in water and decay with 12 nsec lifetime.
- Major K⁺ decay mode

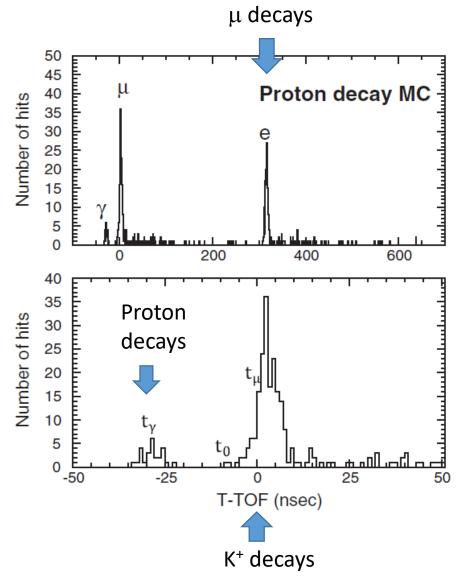

```
\rightarrow K<sup>+</sup> \rightarrow \nu\mu^+: 64 %
```

- Fightharpoons K+ ightharpoons $\pi^+\pi^0$: 21 %
- "Stopping K+" means two body decay products of K+ should have monochromatic momentum as seen in the previous question!

```
> K<sup>+</sup> \rightarrow \nu \mu^+: 236 MeV/c
> K<sup>+</sup> \rightarrow \pi^+ \pi^0: 206 MeV/c
```


• Using this property, Water Cherenkov detector can search for $p \rightarrow vK^+$.

3-2. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$



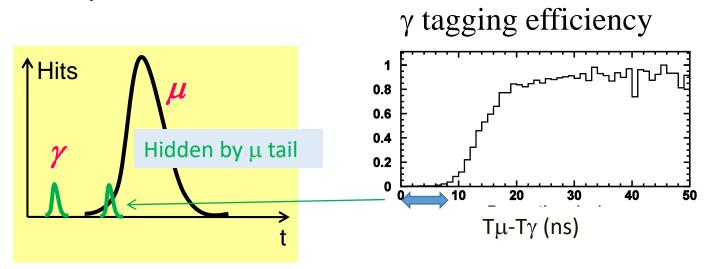
- Visible particle is only μ^+ with Michel electron.
- Search for data excess around 236 MeV/c of μ comparing with atmospheric ν MC.
- After proton decay, 40 % of remaining nucleus emits 6 MeV γ for deexcitation. It is useful to reduce background.

Example of p $\rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$ with γ

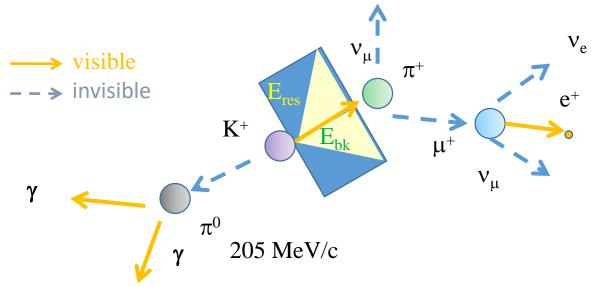
Time structure with nuclear γ

- 3 hit clusters in time should be observed in case of signal.
- The event is triggered by μ hits.
- γ signal is much smaller than μ and easily hidden by tail of μ hits.
- Make 12 nsec time window and slide it toward left from t_0 (end of μ tail) to search for maximum hit cluster.

Selection criteria for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

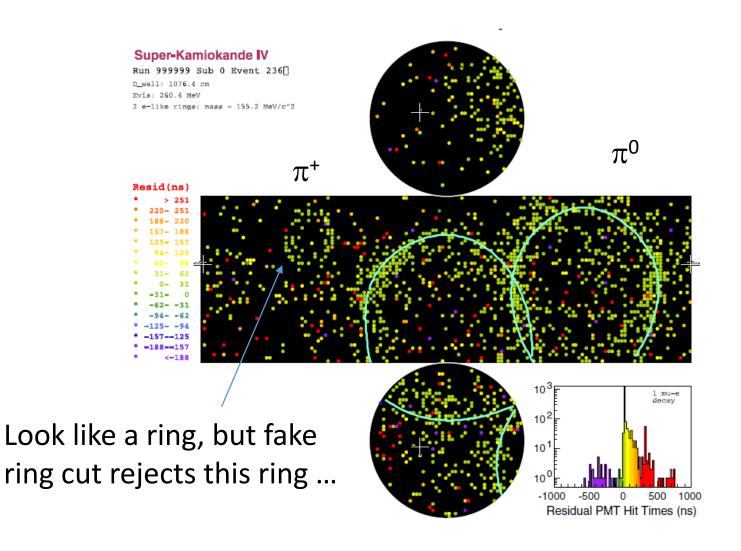

- 1 μ -like ring with Michel electron
- $215 < P\mu < 260 \text{ MeV/c}$
- Proton rejection cuts
- Search Max hit cluster Reduce background by 5x10⁻⁴!

by sliding time window (12ns width);

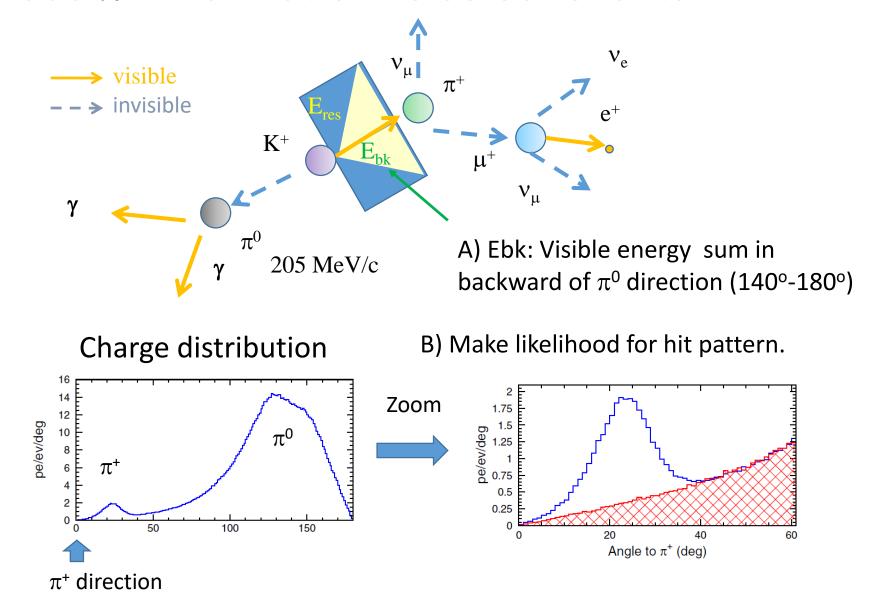

- \rightarrow 4 < N γ < 30 hits
- $ightharpoonup T_{\mu}$ - T_{γ} < 75 nsec
- No neutron
- Selection efficiency = (selected events)/(proton decay in fiducial volume):
 9 %
 - \triangleright Br(K⁺→ν μ ⁺)= 64 %, only 40 % emits nuclear γ → 26 % even if detector is perfect.

Remark for this analysis

- This analysis is limited by time resolution of PMTs.
 - \triangleright If γ is close to μ , γ peak is hidden by μ hits.
 - ➤ Time resolution of SK PMT is 2.2 nsec at 1 photoelectron.
 - \triangleright If μ peak becomes sharper, the selection efficiency will be improved.



3-3. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$



- Both π^+ and π^0 has 205 MeV/c in momentum. This is just above Cherenkov threshold for π^+ , thus it is not identified as a ring in most of case.
- π^+ decays into μ (invisible) and ν , μ decays into $e\nu_e\nu_\mu$.
- π^0 decays into 2 γ s.
- Search for 206 MeV/c π^0 with Michel electron.

Example of p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

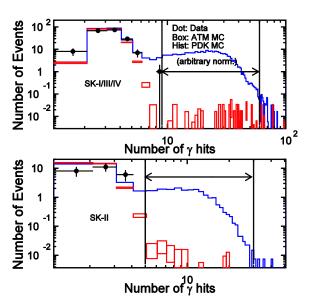
Use π^+ information to select events

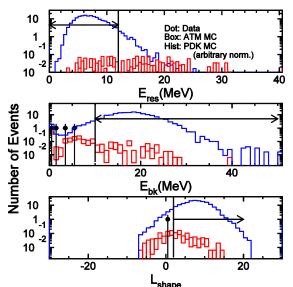
Selection criteria for p $\rightarrow v$ K⁺, K⁺ $\rightarrow \pi$ ⁺ π ⁰

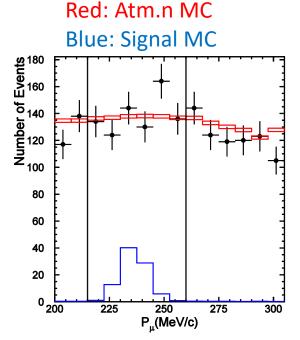
- 1 or 2 e-like rings with decay-e. • $85 < M\pi^0 < 185$ MeV. • $175 < P\pi^0 < 250$ MeV/c. • E_{bk} : visible energy sum in 140-180 deg. of π^0 dir, E_{res} : in 90-140 deg, E_{res} : Likelihood based on charge profile $10 < E_{bk} < 50$ MeV $E_{res} < 12$ MeV (20 MeV for 1ring) $E_{shape} > 2.0$ (3.0 for 1ring)
- No neutrons
- Selection efficiency: 10 % (Br(K+ $\rightarrow \pi^+\pi^0$)=21 %)

Background for $p \rightarrow vK^+$

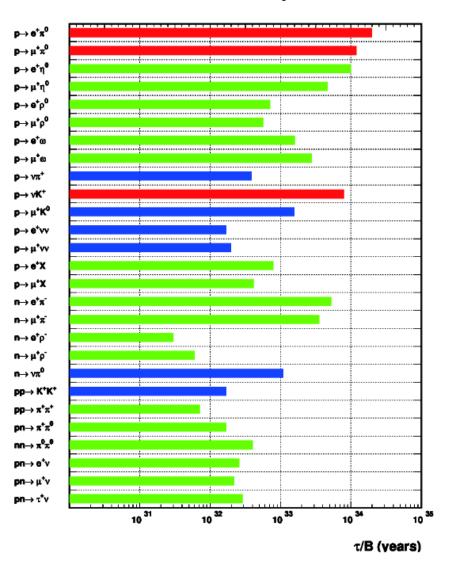
- Dominant background is K⁺ production by neutrino interactions.
 - $\rightarrow vp \rightarrow v\Lambda K^+$, $\Lambda \rightarrow p\pi^-$ (BR:64 %, mostly invisible in WCD)
 - \triangleright Emit nuclear γ as same as the signal.
- It is also rare interaction and we had poor information from very old bubble chamber. Large uncertainty.
- Recently MINERvA measures K⁺ production. It is very useful information for this analysis.


3-4. SK results (So far)


Exposure: 365 kton · year


• Expected background: 0.3 events for $K^+ \rightarrow \nu \mu$ with nuclear γ , 0.6 events for $K^+ \rightarrow \pi^+ \pi^0$.

 No candidates observed and no excess in momentum distribution.

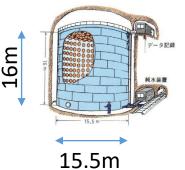

• Lower lifetime limit: > 0.8x10³⁴ year

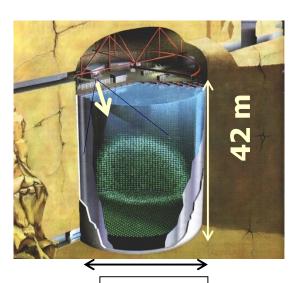
3. Summary of SK results

- Most of modes have been investigated with > 0.3 Mton · year exposure (red and green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- Many of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidence of nucleon decay has been observed.

Future prospects

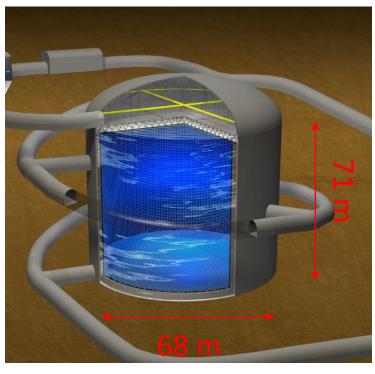
- Still no evidence has been found. Major decay modes are explored up to around 10³⁴ years.
- Proton lives longer, ~10³⁵ years ?
 - ➤ Run SK 10 times more (~200 years)? → Impossible.
- Absolutely, we need larger detector!


4. Hyper-Kamiokande project


Neutrino oscillation

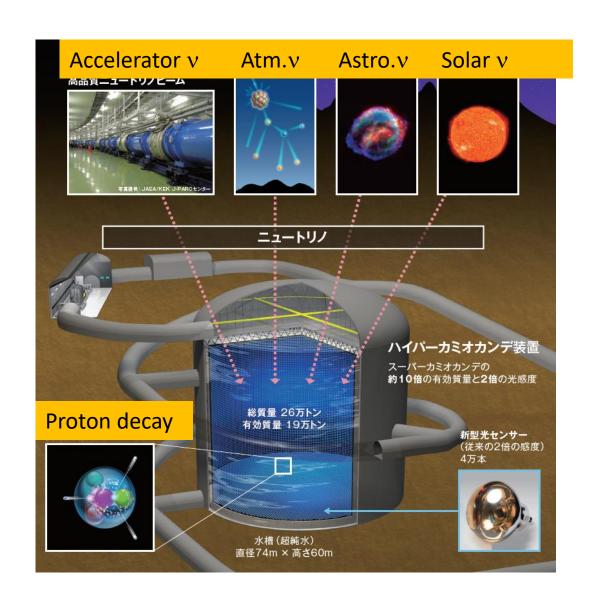
SN Neutrino

Kamiokande 3kton



39.3 m

Super-Kamiokande 50kton



Proton decay?

Hyper-Kamiokande 260kton

Hyper-K is multi-purpose detector

HYPER-K COLLABORATION:

20 countries, 99 institutes, ~500 people as of Jan 2022, and growing

Collaborating Institutes

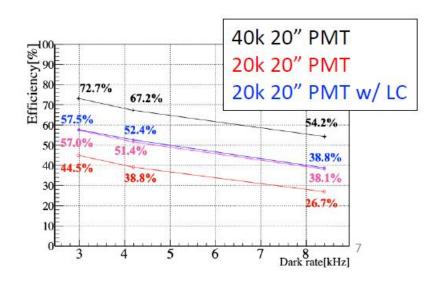
	*	*	# # # # # # # # # # # # # # # # # # #
*		-+-	

Europe	281 members
Armenia	3
Czech	4
France	27
Germany	1
Italy	55
Poland	38
Russia	22
Spain	35
Sweden	5
Switzerland	13
Ukraine	4
UK	74

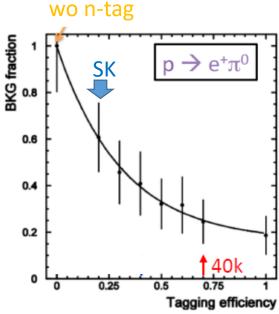
Asia	149 members
India	8
Korea	18
Japan	123

Americas	52 members
Brazil	3
Canada	32
Mexico	8
USA	9

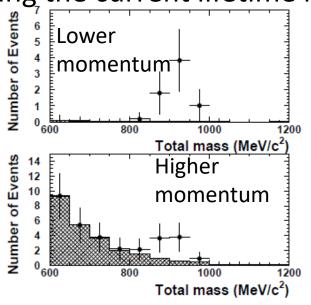
Africa	11 members
Morocco	11

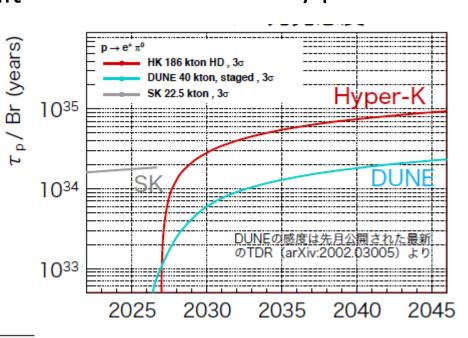

I hope Vietnam joins soon

Enhance proton decay search with HK


- Fiducial volume: 22.5kton (SK) → 190kton (HK)
- New photo sensor: Box&Line PMT
 - > 2 times better photon counting performance
 - > a half time resolution

Better photon counting contributes neutron tagging


- Neutron tagging efficiency study with several detector set up.
- Efficiency depends on dark rate.
- Achive ~ 70% in the current baseline design (black) with ~ 4kHz dark rate.

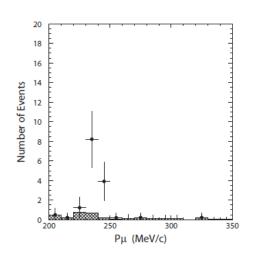

- p→e+p0 background reduction vs. Neutron tagging efficiency
- Background of HK becomes a half of SK!

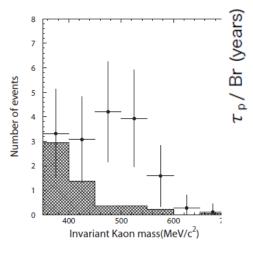
Sensitivity for p \rightarrow e⁺ π^0

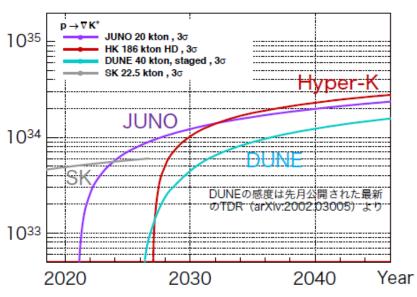
Expected signal after 10 years run assuming the current lifetime limit

3σ discovery potential

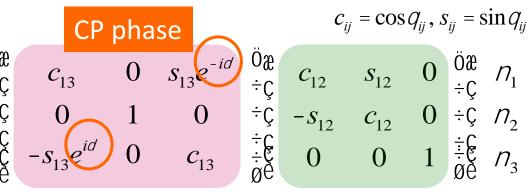
 $0 < p_{tot} < 100 \text{ MeV}/c$ $100 < p_{tot} < 250 \text{ MeV}/c$ ϵ_{sig} [%] Bkg [/Mton·yr] ϵ_{sig} [%] Bkg [/Mton·yr] 18.7 ± 1.2 0.06 ± 0.02 19.4 ± 2.9 0.62 ± 0.20


(SK: 0.18) (SK: 1.1)


Reach to 10³⁵ years!


Sensitivity for $p \rightarrow vK^+$

Expected signal after 10 years run assuming the current lifetime limit



	Prompt γ		$\pi^{+}\pi^{0}$		p_{μ} Spectrum		
_	ϵ_{sig} [%]	${\rm Bkg}~[/{\rm Mton}{\cdot}{\rm yr}]$	ϵ_{sig} [%]	${\rm Bkg}~[/{\rm Mton}{\cdot}{\rm yr}]$	ϵ_{sig} [%]	${\rm Bkg}~[/{\rm Mton}{\cdot}{\rm yr}]$	σ_{fit} [%]
	12.7 ± 2.4	0.9 ± 0.2	10.8 ± 1.1	0.7 ± 0.2	31.0	1916.0	8.0

Better sensitivity than other detectors !.

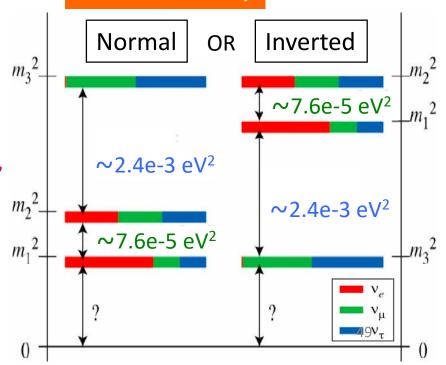
What are still unknown in v oscillation?

Unknow parameter

- $\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$ Solar v, KamLAND
- $\theta_{23} = 45^{\circ} \pm 6^{\circ}$ (90%CL) Atm. v, Acc. v

 θ_{23} : How close to 45°? Octant? (<45°, >45°?)

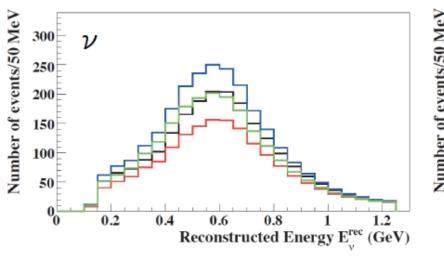
• $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$

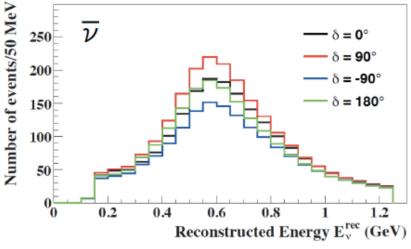

Rector, Acc. v

Indication of $\theta_{13} \neq 0$ by T2K

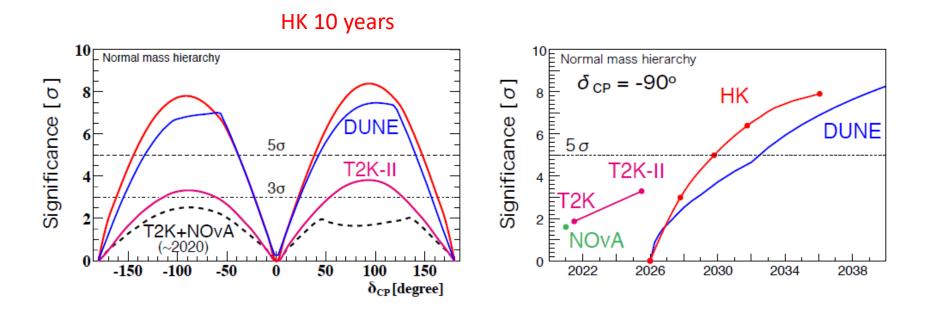
PRL107, 041801 (2011)

Later precise measurements by reactor v experiments


Mass hierarchy



Effects of unknown parameters on ν oscillation are small \rightarrow Need statistics = larger detector!


• v beam experiments: Can study CP phase by comparing v v-bar oscillation.

Expected v_e spectrum at HK (assuming 1.3 MW x 10 years)

Sensitivity of CP violation

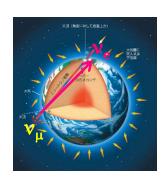
- In 60 % region in δ_{CP} , we can discovery δ_{CP} with 5σ .
- If = δ_{CP} ± 90 degree, we can discover it within 5 years.

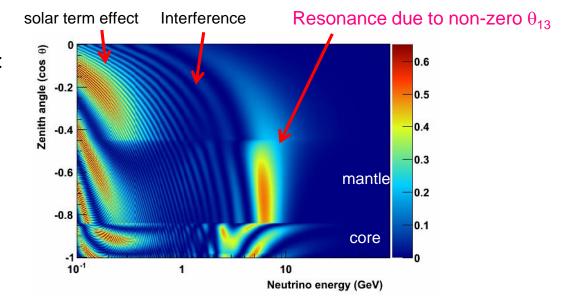
Atmospheric $v: v_{\mu} \rightarrow v_{e}$ enhancement by matter effect

 $\nu_{e}\,$ oscillation due to non-zero θ_{13} provides atm. nu. observation to investigate mass hierarch effect

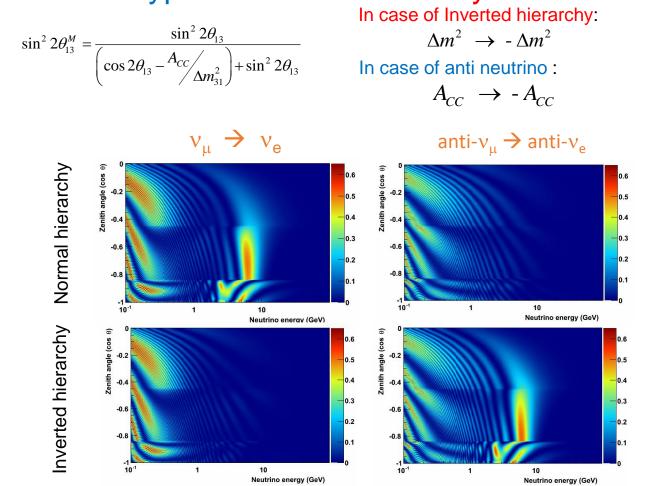
 $\nu_{\mu} \rightarrow \nu_{e}$ osc. probability in matter:

$$P(v_{\mu} \to v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13}^{M} \sin^{2}\left(\frac{1.27\Delta m_{31,M}^{2}L}{E}\right)$$

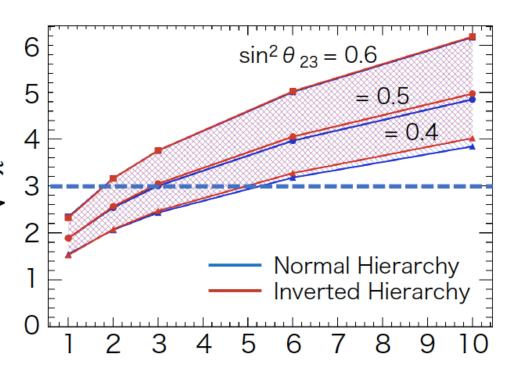

$$\sin^{2}2\theta_{13}^{M} = \frac{\sin^{2}2\theta_{13}}{\left(\cos 2\theta_{13} - \frac{A_{CC}}{\Delta m_{21}^{2}}\right) + \sin^{2}2\theta_{13}}$$


 $\sin^2\theta_{13,M}$ has resonance feature when

$$A_{CC} \sim \Delta m_{31}^2 \cos 2\theta_{13}$$
 $(A_{CC} = 2\sqrt{2}G_F N_e E)$


 $\nu_{\mu} \rightarrow \nu_{e}$ resonance in multi-GeV region

 $P(\nu_{\mu} \rightarrow \nu_{e})$ of earth-throughgoing ν :



Occurrence of resonance feature depends on neutrino type and mass hierarchy:

Possible to determine mass hierarchy!

Sensitivity to determine mass hierarchy

Beam v: sensitive to δ CP, but weak in mass hierarchy. Atm. v: large uncertainty from δ CP.

→ Combining both analysis gives good sensitivity to mass hierarchy.

 3σ determine within 2 \sim 5 years!

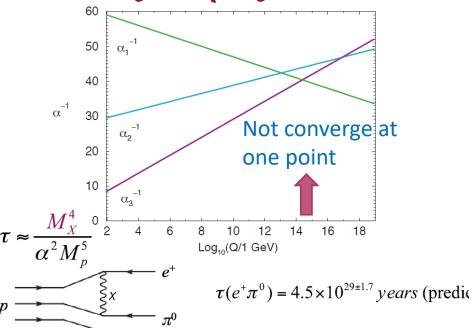
Construction of HyperK has been started!

Making entrance yard for tunnel.

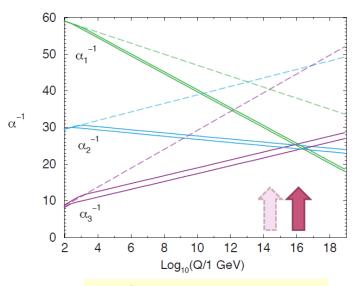
Aim to start observation in 2027!

Access tunnel has reached to the center of HyperK tank in this June!

Detector Cavern is becoming a reality



4. Summary


- Proton decay is a key phenomena of Grand Unified Theories beyond the Standard Model.
- Super-Kamiokande is the leading detector to hunt proton decays and have searched for it for more than 20 years.
- However, no evidence has been observed and the current proton lifetime limits are around 10³⁴ years.
- It may be around the corner! Hope three times lucky (3 度目の正直 in Japanese) in Hyper-Kamiokande.
- \bullet HK also can determine remaining ν oscillation parameters .

Backup

Gauge Coupling Unification

Problems solved by SUSY ...

Unification scale pushed up...

$$\tau(e^+\pi^0) \approx 10^{35-38} \text{ years}$$

SUSY GUTS

Unification scale higher than non-SUSY-GUTs ($M_x \sim 2 \times 10^{16} \text{ GeV}$) suppression of gauge boson mediated decay

$$\tau/B \ (p \to e^+ \pi^0) \approx \left(\frac{M_{\chi}}{2x10^{16} \text{GeV}}\right)^4 x \ 10^{36\pm 1} \text{ years}$$

dominated by the D=5 op. (color Higgs triplet, q=1/3) mediated decays

$$\rho \left\{ \begin{array}{l} u & \frac{\tilde{\mu}}{\tilde{g}} & \frac{\tilde{\mu}}{\tilde{g}} & \frac{\tilde{\nu}}{\tilde{g}} \\ u & \frac{\tilde{\sigma}_{3}}{\tilde{c}} & \frac{\tilde{\nu}}{\tilde{g}} \\ \end{array} \right\} K^{\frac{1}{\nu}} \qquad M_{3} \sim 3 \times 10^{16} \text{ GeV}, M_{\text{susy}} \sim 1 \text{ TeV}$$

$$\frac{\tau}{B}(p \to K^+ \overline{v}) \approx \left(0.003 / \beta_H\right)^2 \left(\frac{M_{\tilde{q}}}{1 \text{TeV}}\right)^2 \left(\frac{M_3}{10^{16} \text{GeV}}\right)^2 \left(\frac{2}{\tan \beta}\right)^2 \cdots$$

$$\times 9 \times 10^{31} \text{ years}$$

 $(\beta_{\rm H}:{\sf hadronic matrix element in GeV}^3)$

⇒ highly model dependent

 $p \rightarrow \overline{\nu}$ K⁺ is regarded as dominant mode in SUSY-GUTs.

Many Other GUTs Beyond This Simple Story

Model	Ref.	Modes	τ_N (years)
Minimal SU(5)	Georgi, Glashow [2]	$p \rightarrow e^+\pi^0$	$10^{30} - 10^{31}$
Minimal SUSY SU(5)	Dimopoulos, Georgi [11], Sakai [12]		
	Lifetime Calculations: Hisano,	$n \rightarrow \bar{\nu} K^0$	$10^{28} - 10^{32}$
	Murayama, Yanagida [13]		
SUGRA SU(5)	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$
SUSY $SO(10)$	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu}K^+$	
with anomalous		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{35}$
flavor $U(1)$		$p \rightarrow \mu^+ K^0$	
SUSY SO(10)	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$
SUSY $SO(10)$	Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
ESSM (std. $d = 5$)			$\lesssim 10^{35}$
SUSY $SO(10)/G(224)$	Babu, Pati, Wilczek [19, 20, 21],	$p \rightarrow \bar{\nu}K^+$ $p \rightarrow \mu^+K^0$	$\lesssim 2 \cdot 10^{34}$
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$	
(new d = 5)		B -	$\sim (1-50)\%$
SUSY $SU(5)$ or $SO(10)$	Pati [18]	$p \rightarrow e^{+}\pi^{0}$	$\sim 10^{34.9\pm1}$
MSSM (d = 6)			
Flipped $SU(5)$ in CMSSM	Ellis, Nanopoulos and Wlaker[22]	$p \rightarrow e/\mu^+\pi^0$	$10^{35} - 10^{36}$
Split SU(5) SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+\pi^0$	$10^{35} - 10^{37}$
SU(5) in 5 dimensions	Hebecker, March-Russell[24]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$
		$p \rightarrow e^+\pi^0$	
SU(5) in 5 dimensions	Alciati et.al.[25]	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$
option II			
GUT-like models from	Klebanov, Witten[26]	$p \rightarrow e^+\pi^0$	$\sim 10^{36}$
Type IIA string with D6-branes			

Uncertainties in the predictions:

Nuclear matrix elements updated w. IQCD, still: x10 uncertainty in lifetime

SUSY masses: ~ x100 uncertainty in lifetime

Proton life time: $10^{30} \sim 10^{35}$ years

TABLE I: Summary of the expected nucleon lifetime in different theoretical models.

Modes beyond $e^+\pi^0$, $K^+\nu$ and other antilepton + meson decays

$$p \rightarrow \mu^- \pi^+ K^+$$

$$B+L$$

$$n \rightarrow \overline{n}$$

$$\Delta B = 2$$
, TeV < scale < GUT

$$pp \rightarrow K^+K^+$$

$$\lambda_{\rm uds}^{"} < 10^{-8}$$

$$p \rightarrow e^- \pi^+ \pi^+ \nu \nu$$

6 dimensions

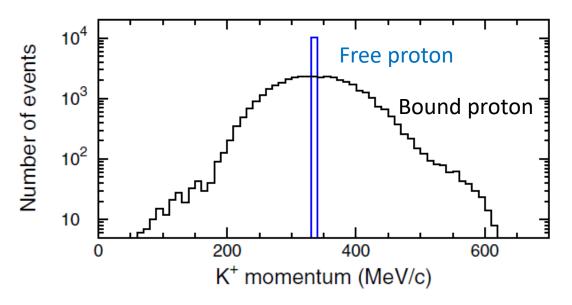
$$n \rightarrow \nu \nu \nu$$

invisible

$$p \rightarrow e^+ \gamma$$

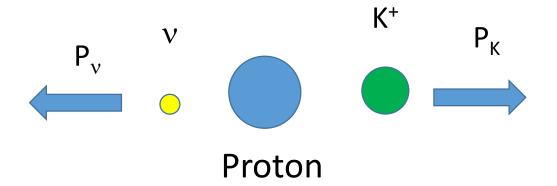
radiative

there is plenty to keep us busy ...


How to find 2.2 MeV γ

- After Time-of-Flight subtraction, search for 7 hits in 10 nsec time window. \rightarrow candidates of γ .
- Make 16 variables related to space and time information of each hits (RMS of phi, theta, hit time, e.t.c.)
- Put them into Neural Network to judge γ or not.
- Neutron tagging efficiency: 21 % (mis-tagging: 1.8 %)

3. p $\rightarrow v$ K⁺ search


Difficulty of $p \rightarrow vK^+$

- K⁺ mass: 494 MeV, relatively heavy.
- Cherenkov threshold: 560 MeV/c.
- Most of K⁺ can not emit Cherenkov light.

Q. Calculate momentum of K⁺ from free proton decay.

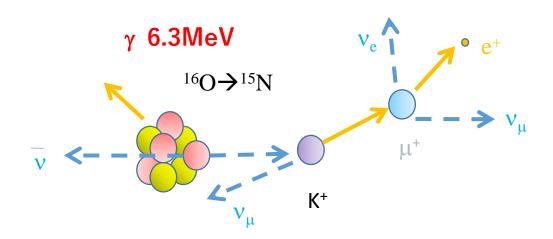
Hint: proton mass: 938 MeV, "free" means proton momentum=0.

Conservation of momentum: $P_v = P_K$ Conservation of energy: $M_P = \sqrt{M_K^2 + P_K^2} + P_V$ Proton Electron Neutrino

$$P_K = \frac{M_P^2 - M_K^2}{2M_P}$$

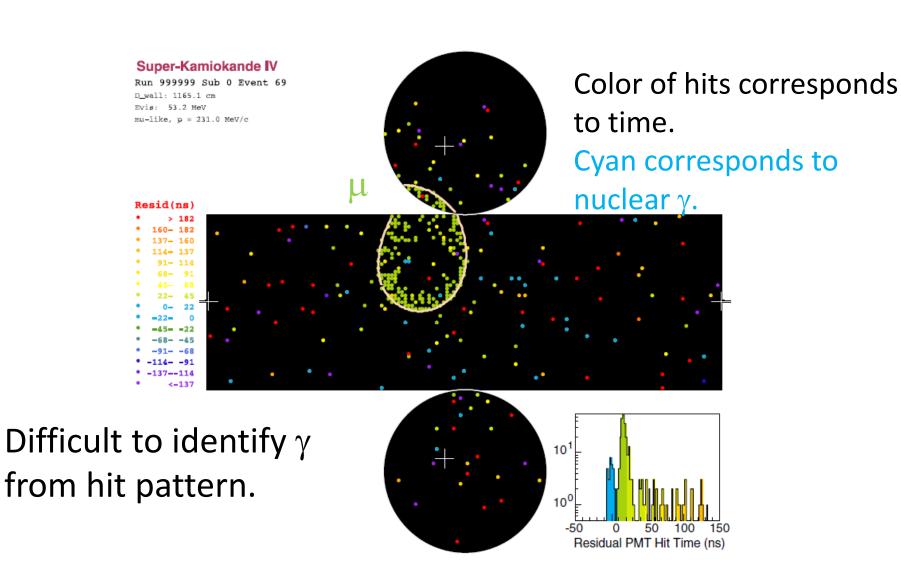
3-1 How to find p $\rightarrow v$ K⁺ in Water Cherenkov detector

- K⁺ has low momentum, most of them stop in water and decay with 12 nsec lifetime.
- Major K⁺ decay mode

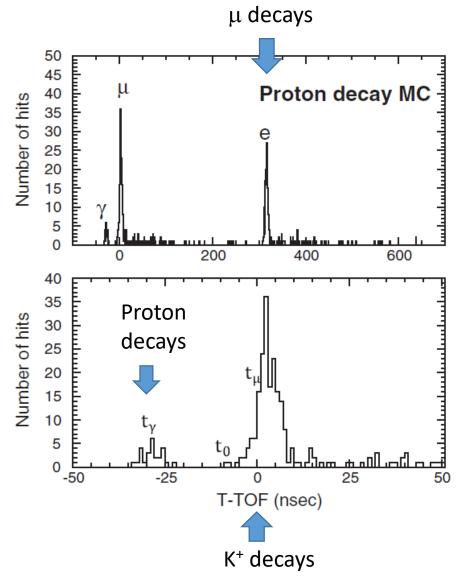

```
\rightarrow K<sup>+</sup> \rightarrow \nu\mu^+: 64 %
```

- Fightharpoons K+ ightharpoons $\pi^+\pi^0$: 21 %
- "Stopping K+" means two body decay products of K+ should have monochromatic momentum as seen in the previous question!

```
> K<sup>+</sup> \rightarrow \nu \mu^+: 236 MeV/c
> K<sup>+</sup> \rightarrow \pi^+ \pi^0: 206 MeV/c
```


• Using this property, Water Cherenkov detector can search for $p \rightarrow vK^+$.

3-2. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$



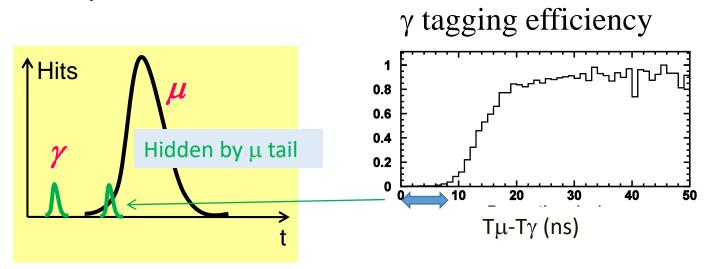
- Visible particle is only μ^+ with Michel electron.
- Search for data excess around 236 MeV/c of μ comparing with atmospheric ν MC.
- After proton decay, 40 % of remaining nucleus emits 6 MeV γ for deexcitation. It is useful to reduce background.

Example of p $\rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$ with γ

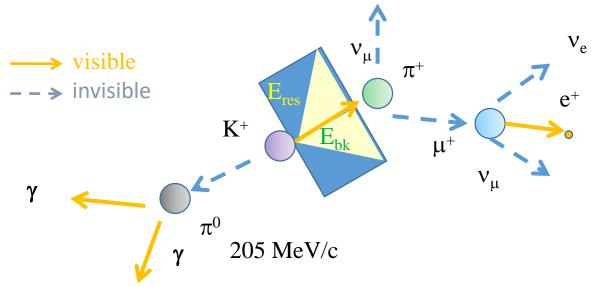
Time structure with nuclear γ

- 3 hit clusters in time should be observed in case of signal.
- The event is triggered by μ hits.
- γ signal is much smaller than μ and easily hidden by tail of μ hits.
- Make 12 nsec time window and slide it toward left from t_0 (end of μ tail) to search for maximum hit cluster.

Selection criteria for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

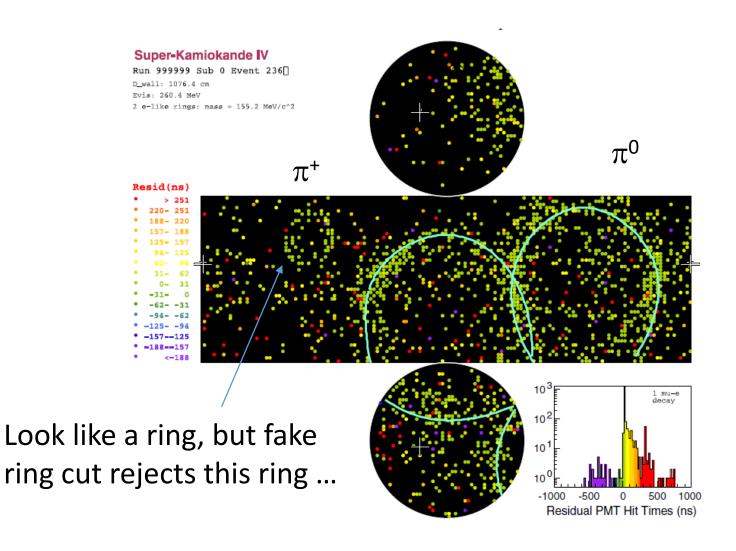

- 1 μ -like ring with Michel electron
- $215 < P\mu < 260 \text{ MeV/c}$
- Proton rejection cuts
- Search Max hit cluster Reduce background by 5x10⁻⁴!

by sliding time window (12ns width);

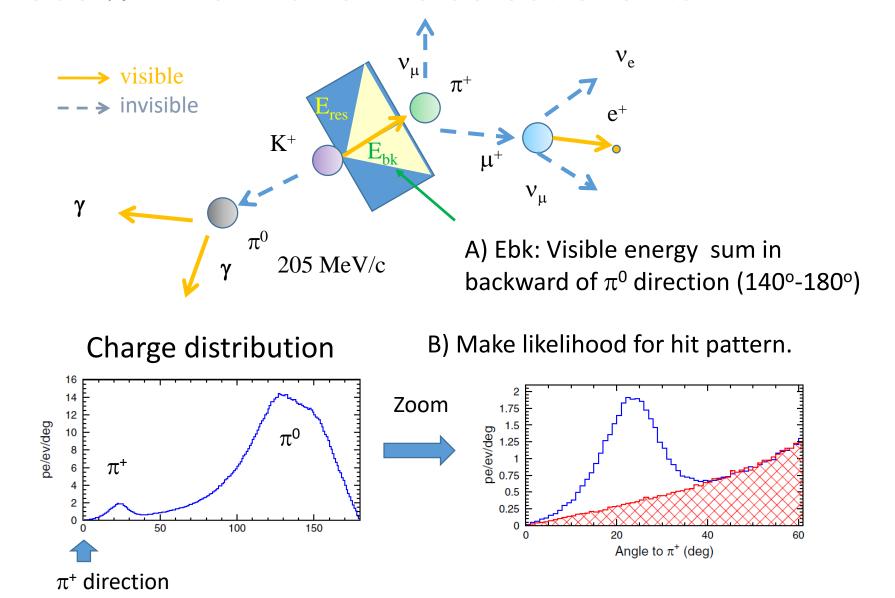

- \rightarrow 4 < N γ < 30 hits
- $ightharpoonup T_{\mu}$ - T_{γ} < 75 nsec
- No neutron
- Selection efficiency = (selected events)/(proton decay in fiducial volume):
 9 %
 - \triangleright Br(K⁺→ν μ ⁺)= 64 %, only 40 % emits nuclear γ → 26 % even if detector is perfect.

Remark for this analysis

- This analysis is limited by time resolution of PMTs.
 - \triangleright If γ is close to μ , γ peak is hidden by μ hits.
 - ➤ Time resolution of SK PMT is 2.2 nsec at 1 photoelectron.
 - \triangleright If μ peak becomes sharper, the selection efficiency will be improved.



3-3. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$



- Both π^+ and π^0 has 205 MeV/c in momentum. This is just above Cherenkov threshold for π^+ , thus it is not identified as a ring in most of case.
- π^+ decays into μ (invisible) and ν , μ decays into $e\nu_e\nu_\mu$.
- π^0 decays into 2 γ s.
- Search for 206 MeV/c π^0 with Michel electron.

Example of p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

Use π^+ information to select events

Selection criteria for p $\rightarrow \nu$ K⁺, K⁺ $\rightarrow \pi$ ⁺ π ⁰

```
• 1 or 2 e-like rings with decay-e. 

• 85 < M\pi^0 < 185 MeV. 

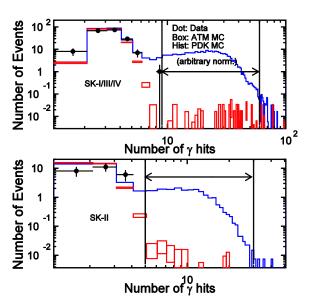
• 175 < P\pi^0 < 250 MeV/c. 

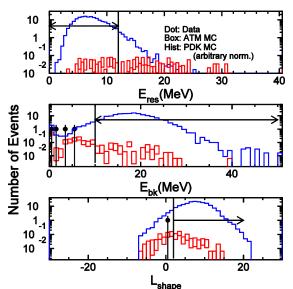
• E_{bk}: visible energy sum in 140-180 deg. of \pi^0 dir, E_{res}: in 90-140 deg, E_{res}: Likelihood based on charge profile 10 < E_{bk} < 50 MeV E_{res} < 12 MeV (20 MeV for 1ring) E_{shape} > 2.0 (3.0 for 1ring)
```

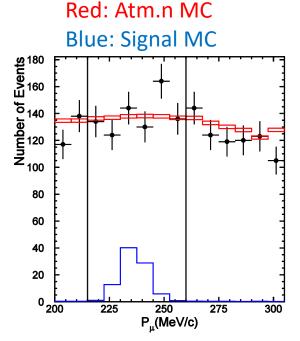
- No neutrons
- Selection efficiency: 10 % (Br(K+ $\rightarrow \pi^+\pi^0$)=21 %)

Background for $p \rightarrow vK^+$

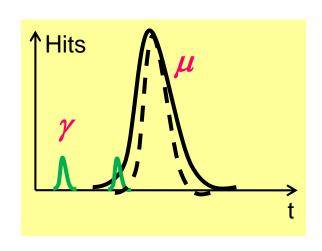
- Dominant background is K⁺ production by neutrino interactions.
 - $\rightarrow vp \rightarrow v\Lambda K^+$, $\Lambda \rightarrow p\pi^-$ (BR:64 %, mostly invisible in WCD)
 - \triangleright Emit nuclear γ as same as the signal.
- It is also rare interaction and we had poor information from very old bubble chamber. Large uncertainty.
- Recently MINERvA measures K⁺ production. It is very useful information for this analysis.

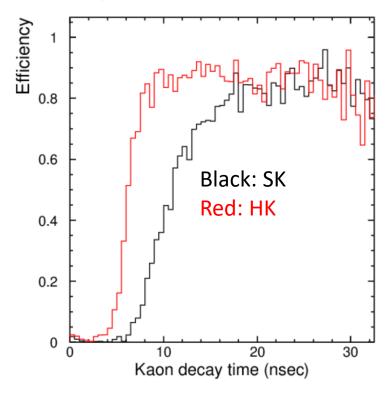

3-4. SK results (So far)


Exposure: 365 kton · year


• Expected background: 0.3 events for $K^+ \rightarrow \nu \mu$ with nuclear γ , 0.6 events for $K^+ \rightarrow \pi^+ \pi^0$.

No candidates observed and no excess in momentum distribution.


• Lower lifetime limit: > 0.8x10³⁴ year



Faster PMT response improves nuclear γ tagging in p $\rightarrow v$ K⁺

- Time resolution: 2.2nsec (SK)
 →1.1 nsec (HK).
- Sharper time distribution of μ $\rightarrow \gamma$ close to μ cab be identified!

 γ tagging efficiency

(Better photon counting also contributes improvement)