T2K near detectors and upgrade

Tatsuya Kikawa (Kyoto University)

6th Vietnam School on Neutrinos - VSON2022 July 21, 2022

Outline

- Introduction of T2K
- T2K near detectors
 - INGRID
 - ND280
 - WAGASCI-BabyMIND
- ND280 upgrade
 - Super-FGD
 - High-angle TPC
- ND280 upgrade++

Questions in neutrino oscillations

- There are still many questions about neutrino.
- Precise measurement of neutrino oscillations will give us answers.
 - CP violation in lepton. Is $sin\delta_{CP} \neq 0$?
 - Atmospheric mixing. Is $\theta_{23} = 45^{\circ}$?
 - Mass ordering. Is v_3 the heaviest or lightest?

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 - \sin \theta_{23} \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta_{CP}} 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} 0 \\ -\sin \theta_{12} \cos \theta_{12} 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Flavor
eigenstate
PMNS matrix
eigenstate

T2K experiment

- Long-baseline neutrino oscillation experiment.
- v_{μ} or \overline{v}_{μ} beam generated by J-PARC accelerator and precisely measured by near detector.
- Observe the oscillated neutrinos with Super-Kamiokande 295km away from J-PARC.

Neutrino oscillations in T2K

- Muon (anti)neutrino disappearance is sensitive to $\sin^2 2\theta_{23}$ and Δm_{32}^2 .
- Electron (anti)neutrino appearance is sensitive to δ_{CP} and mass ordering through matter effect as well as $\sin^2 2\theta_{13}$, $\sin^2 \theta_{23}$ and Δm_{32}^2 .

$$P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right)$$

$$+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{2} \\ - 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23})\sin^{2}\frac{\Delta m_{31}^{2}L}{4E}$$

$$C_{ij} = \cos \theta_{ij},$$

$$S_{ij} = \sin \theta_{ij},$$

$$\Phi_{ij} = \Delta m_{ij}^2 L/4E$$

1.5

 E_{v} (GeV)

0.5

T2K near detectors

- INGRID (on-axis)
 - Measure neutrino event rate and beam direction.
- ND280 (2.5 deg. off-axis)
 - Measure neutrino beam to Super-K direction before oscillation.
 - Measure neutrino interactions.
- WAGASCI (1.5 deg. off-axis)
 - Measure neutrino interaction at different off-axis angle. (different flux)

WAGASCI-BabyMIND

INGRID detector

- 14 identical modules arranged in a cross shape covering ±5m area from beam center.
- Measure beam direction with < 1 mrad precision and event rate stability with < 1% precision.

Module structure

• Each module has a sandwich structure of 9 iron target plates and 11 scintillator tracking planes.

8

• Surrounded by veto planes to reject charged particles from outside.

Signal readout

- Scintillation light is collected by wavelength shifting fiber and converted from blue to green.
- Light travels through the fiber by total reflection and is detected by MPPC (semiconductor photosensor) at the end of the fiber.

MPPC and its acceptance surface

Event reconstruction and selection

- Track and vertex reconstruction. \rightarrow Select muon tracks.
- Vertex in fiducial volume.
- Veto plane cut.

- Reject muons from outside.

 99.5% purity and 58.6% efficiency for neutrino events in INGRID.

Reconstruction of neutrino beam profile

11

- Neutrino beam profile is reconstructed from the number of detected neutrino events in each module.
- Beam center is determined from Gaussian fitting.

Beam stability measurement

ND280

- Dipole magnet provide 0.2T magnetic field to bend charged particles to measure charge and momentum.
- Several sub-detectors are placed in the magnet to measure the neutrino flux and cross section precisely.

Role of ND280 in T2K oscillation analysis

• ND280 fit plays a very important role in T2K oscillation analysis to reduce the systematic error.

Oscillation parameters

Fine Grained Detector (FGD)

- Tracking detector which consists of 8448 scintillator bars (1cm×1cm×2m).
- Fiber-MPPC readout as with INGRID.
- Used as neutrino interaction target and reconstruct tracks from neutrino interactions.

Fully active FGD (FGD1)

- Two FGD modules.
- FGD1 is a fully-active tracking detector which consists of only scintillators.

FGD with water (FGD2)

- FGD2 is sandwich structure of scintillator layers and water tank.
- Measure neutrino interaction on water which is neutrino interaction target in Super-K.

Time Projection Chamber (TPC)

- Gaseous time projection chamber.
- Precisely reconstruct 3D tracks of particles from neutrino interactions in FGD.
- From the curvature of tracks in magnetic field, charge and momentum of the particles are reconstructed.

Signal readout in TPC

• Electron-ion pairs are generated by charged particles.

19

- Electrons drift to anode and are amplified in a high electric field (~27 kV/cm) formed by micromesh.
- Amplified signal is read out by pads.

Particle identification with TPC

- dE/dx is measured from the signal size.
- Proton can be separated from muon/pion by dE/dx and momentum.
- Electron can be separated from muon by the likelihood. (shower like or track like)

p separation from μ/π using dE/dx and momentum

20

Other sub-detector in ND280

- P0D
 - Measure neutrino interactions producing π^0 .
- ECal
 - Measure energy of electromagnetic shower (γ-rays or electrons)
- SMRD
 - Measure the high-angle muons which do not enter TPC.
- They are all scintillator detector with fiber-MPPC readout.

ND280 measurement

- Select CC events (muon from FGD to TPC) and classify the events into three groups:
 - CC0π (mainly CCQE events)
 - CC1π (mainly CC resonant events)
 - CC-other (mainly CC DIS events)

 Muon momentum-angle distribution of MC with flux and cross section parameters are fitted to data.

Constraints on flux and cross section

 By fitting flux and cross section parameters are varied to optimal values and their uncertainties are constrained.

Neutrino flux parameters

Cross section parameters

Correlation of parameters

 ND280 fit also gives the correlations among the flux and cross section parameters.

Systematic error reduction by ND280

 Systematic errors are significantly reduced in all the samples in Super-Kamiokande thanks to the ND280 fit.

Systematic errors on the number of events in Super-Kamiokande before ND280 fit

	1R		MR BUG GGL + BUG		DUC		
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC $CC1\pi^+$	FHC/RHC
Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5
Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5
SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6

Systematic errors on the number of events in Super-Kamiokande after ND280 fit

	1R		MR	1Re			
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

Cross section measurement with ND280

27

 ν_{μ} and $\bar{\nu}_{\mu}$ CC0 π double differential cross In addition to the section with ND280 systematic error Total Uncertainty (stat+syst) Systematic Uncertainty Total Uncertainty (stat+syst) Systematic Uncertainty GENIE LFG+2p2h NEUT LFG+2p2h GENIE LFG+2p2h NEUT LFG+2p2h reduction in the - - GiBUU NuWro LFG+2p2h GiBUU NuWro LFG+2p2h $0.98 < \cos\theta_{\mu}^{true} < 1.0$ $0.98 < \cos \theta_{\mu}^{true} < 1.0$ oscillation analysis, ND280 also measures $0.94 < \cos\theta_{\mu}^{true}$ < 0.98 $0.94 < \cos \theta_{\mu}^{\text{true}} < 0.98$ the neutrino-nucleus $0.9 < \cos \theta_{\mu}^{true} < 0.94$ $0.9 < \cos\theta_{\mu}^{true} < 0.94$ cross section. Ŧ **E** dσ [cm² lp_µdcosθ_µ[[]nucleon GeV/c[]] $0.85 < \cos\theta_{\mu}^{\text{true}} < 0.9$ $0.85 < \cos \theta_{\mu}^{true} < 0.9$ ν_{μ} ($\bar{\nu}_{\mu}$) CC0 π interaction $0.8 < \cos\theta_{\mu}^{true} < 0.85$ $0.8 < \cos\theta_{\mu}^{true} < 0.85$ $\nu_{\mu} (\overline{\nu}_{\mu})$ $\mu^{-}(\mu^{+})$ $0.7 < \cos\theta_{\mu}^{\text{true}} < 0.8$ $<\cos\theta_{\rm u}^{\rm true} < 0.8$ $0.6 < \cos \theta_{\mu}^{\text{true}} < 0.7$ $0.6 < \cos\theta_{\mu}^{\text{true}} < 0.7$ $0.2 < \cos \theta_{\mu}^{true} < 0.6$ $0.2 < \cos \theta_{\mu}^{\text{true}} < 0.6$

 $0\overline{0}$

N'

N

0.2

0.4

0.6 0.8

1.0

 p_{tme}^{μ} [GeV/c]

1.2

1.4

1.6 1.8)

0.2

0.4

0.8

 p_{true}^{μ} [GeV/c]

0.6

1.0

WAGASCI-BabyMIND detector

- Newly installed in 2019.
- Scintillator-based detectors in the bottom floor of near detector hall corresponding to 1.5° off-axis.
- Water and plastic target neutrino detectors.
- Surrounding muon range detectors, one magnetized.

WAGASCI-BabyMIND detector

- Neutrino interaction is strongly dependent on its energy.
- Energy distribution of the neutrino flux changes when the detector position changes.
- WAGASCI-BabyMIND will measure the neutrino interaction for higher energy neutrinos than ND280.

Weak points of ND280

- Efficiency is low for
 - Large-angle scatted particles.
 - Short track particles (mainly low momentum protons)
- ν_e cross section cannot be measured precisely because of γ-ray backgrounds from outside.

Muon momentum-angle distribution in ND280 and Super-Kamiokande

ND280 upgrade

- P0D will be removed and new detectors will be installed.
 - Super-FGD
 - High-angle TPC
 - TOF counters
- Construction is ongoing to start beam data taking from 2023.

- Two million scintillator cubes (1cm×1cm× 1cm).
- Readout along wave-length shifting fiber in three directions.
- Photon detection by MPPC.

Super FGD scintillator

Angular acceptance of Super-FGD

- Tracks are observed as projections in three directions.
- Sensitive to particles going to every direction.

Event display in Super-FGD by simulation

Efficiency as a function of muon angle

Short track detection with Super-FGD

- Tracks must penetrate six layers for reconstruction in case of FGD.
- In case of Super-FGD, tracks can be reconstructed from only three scintillator cubes.
- Efficiency for low momentum particle is high.

v_e measurement with Super-FGD

- γ-ray backgrounds for the v_e measurement can be reduced looking at the conversion point.
- v_e cross section can be precisely measured.

Upgraded ND280 (preliminary)

High-angle TPC

- New TPCs will be placed top and bottom of Super-FGD in addition to the downstream one.
- Measure the large-angle scattered particles precisely.

ND280 upgrade++

- Remaining weak point of ND280 is that it cannot precisely measure the neutrino-water cross section.
- Discussing the further upgrade for Hyper-Kamiokande experiment with new technologies.
 - Water-based liquid scintillator
 - 3D printed scintillator

Water-based liquid scintillator

JINST 15 10, p10019 (2020)

3D printed scintillator

Summary

- Near detector plays essential role in the long-baseline neutrino oscillation experiments.
- There are three kinds of near detectors in T2K.
 - INGRID
 - ND280
 - WAGASCI-BabyMIND
- They have significantly reduce the systematic error in the T2K oscillation analysis.
- Upgrade of ND280 is ongoing for more precise measurements of neutrino interactions.