<u>Review of</u> <u>Neutrino-less double</u> <u>beta decay experiment</u>

2022 Jul. 20th Takashi lida (Univ. of Tsukuba)

The Vietnam School on Neutrinos (VSON) 2022

<u>Contents</u>

• Basic theory of DBD

- Neutrino mass
- Majorana neutrino
- Neutrino-less DBD

• Experimental review of DBD search

- Heidelberg-Moscow
- GERDA/LEGEND
- CUORE/CUPID
- NEMO-3/Super-NEMO
- KamLAND-Zen
- CANDLES

• Summary

<u>Motivation</u>

- Is neutrino Dirac particle or Majorana particle?
- Observation of Neutrino-less double beta decay $(0\nu\beta\beta)$ would prove Majorana nature of neutrinos $(\nu_e = \overline{\nu_e})$.
- This process violate lepton number conservation and is beyond the standard model of particle physics.

<u>What is Known about Neutrino</u>

is only fermion which does not have charge in the SM has extremely small mass with only left-handed chirality is discovered ⁴

<u>Fermion mass in the SM</u>

 In the standard model of particle physics (SM), fermion mass is generated by Yukawa interaction between fermion and higgs.

<u>Dirac mass</u>

$$m\overline{\psi}\psi = m\overline{(\psi_L + \psi_R)}(\psi_L + \psi_R)$$
$$= m\overline{\psi_L}\psi_R + m\overline{\psi_R}\psi_L$$

$$\overline{\psi_L}\psi_L = \overline{\psi_R}\psi_R = 0$$

Dirac mass term is described via L-R (chirality) mixing

<u>Note :</u>

Non-zero mass requires a particle to have both leftand right-handed chirality. Coupling strength between fermion and higgs is mass.

Yukawa coupling

<u>Neutrino helicity</u>

neutrino/anti-neutrino by Goldhaber et.al. (1958)

M. Goldhaber, L. Grodzins, and A. W. Sunyar, Phys. Rev. 109, 1015

<u>Neutrino mass in the SM</u>

- Right-handed neutrino has not been discovered.
- Dirac mass term can't be constructed only with left-handed state.

• In other words, if neutrino has mass left-handed can be transformed to right-handed by Lorenz boost.

Discovery of neutrino oscillation

• Neutrino flavor mixing was found in Super-K, SNO and KamLAND...

• Neutrino oscillation arises from mixing between the flavor and mass eigenstates of neutrinos. $P_{\alpha \to \alpha} = \left| \left\langle v_{\alpha} | v_{\alpha}(t) \right\rangle \right|^2 = 1 - \sin^2(2\theta) \sin^2 \left(1.27 \frac{\Delta m^2 [eV^2] L[km]}{E_{\omega} [GeV]} \right)$

Neutrino oscillation revealed the existence of neutrino mass!

<u>Neutrino mass measurements</u>

<u>Neutrino mass vs other fermions</u>

<u>Majorana neutrino</u>

- Note that, it is possible to construct Dirac mass by assuming the existence of undiscovered right-handed neutrino.
- However, it requires extremely small Yukawa coupling.
- E. Majorana introduced extended Lagrangian including Majorana mass term.

Ettore Majorana

Enrico Fermi said Majorana is one of the geniuses, like Galilei and Newton.

Extended Lagrangian

$$\mathcal{L}_m = -\frac{1}{2} \begin{pmatrix} \overline{(\nu_L)^c} & \overline{\scriptscriptstyle N\!R} \end{pmatrix} \begin{pmatrix} m_L & m_D \\ m_D & m_R^* \end{pmatrix} \begin{pmatrix} \nu_L \\ (N_R)^c \end{pmatrix} + \mathrm{h.c.}$$

Dirac mass term: $m_D \overline{\nu_B} \nu_L$ Majorana mass term:

$$m_L(
u_L)^C
u_L$$

- Neutrino is chargeless, so it can be its own antiparticle.
- Mass is generated via particle-antiparticle mixing .
- In this case, Mass term can be assembled only with left-(right-) handed particles.

Majorana particle = fermion that is its own antiparticle

<u>See-Saw mechanism</u>

Extended Lagrangian

$$\mathcal{L}_m = -\frac{1}{2} \begin{pmatrix} \overline{(\nu_L)^c} & \overline{NR} \end{pmatrix} \begin{pmatrix} m_L & m_D \\ m_D & m_R^* \end{pmatrix} \begin{pmatrix} \nu_L \\ (N_R)^c \end{pmatrix} + \text{h.c.}$$

Observable masses are eigen values of the mass matrix

diagonalization
$$M_1, M_2 = \frac{m_L + m_R}{2} \pm \sqrt{\frac{(m_R - m_L)^2}{4} + m_D^2}$$

Let's assume m_L=0, m_D \sim 10 GeV and GUT scale (\sim 10¹⁶ GeV) m_R>>>>m_D

$$M_1 \sim \frac{{m_D}^2}{{m_R}}, \qquad M_2 \sim m_R$$

~ O(meV) ~ O(GUT scale)

- Small neutrino mass can be naturally explained.
- Right-handed neutrino is not discovered due to its heavy weight. (matches experimental fact.)

<u>Leptogenesis scenario</u>

Matter (baryon) in the universe are generated by neutrino??

- Leptogenesis requires lepton CP-violation and Majorana neutrinos.
- CP-violation is being studied by T2K, and thus we need to investigate ¹³ the Majorana nature of neutrinos.

Double beta decay

Neutrino-less double beta decay ($0\nu\beta\beta$) is only practical way • to prove Majorana neutrino.

theoretical history

- 1930 light neutral particle (W.Pauli)
- 1933 β decay theory (E.Fermi)
- 1935 $2\nu 2\beta$ (M.Goeppert-Mayer)
- 1937 Majorana neutrino (E.Majorana)
- 1939 $0\nu 2\beta$ (W.H.Furry)

W.Pauli

E.Fermi M.Goeppert-Mayer E.Majorana W.H.Furry

$2\nu\beta\beta$: (Z, A) \rightarrow (Z+2, A) + 2 e⁻ + 2 ν_e

Second order process of weak interaction.

$0\nu\beta\beta$: (Z, A) \rightarrow (Z+2, A) + 2 e⁻

Beyond the SM (lepton number violation) = New physics l_4

<u>Double beta decay</u>

- Double beta decay (DBD) is observable when single beta decay is forbidden.
- Two-neutrino double beta decay is measured in more than 10 isotopes.

Isotope	Ave. $2v$ half-life [yr]	Discovery year
⁴⁸ Ca	(5.3 ^{+1.2} 0.8) × 10 ¹⁹	1996
⁷⁶ Ge	(1.88 \pm 0.08) $ imes$ 10 ²¹	1990
⁸² Se	(0.93 \pm 0.05) $ imes$ 10 ²⁰	1987
¹³⁰ Te	(7.91 \pm 0.21) $ imes$ 10 ²⁰	2003
¹³⁶ Xe	(2.18 \pm 0.05) $ imes$ 10 ²¹	2011
¹⁵⁰ Nd	(8.4 \pm 1.1) $ imes$ 10 ¹⁸	1993

"Average and recommended half-life values for two-neutrino double beta decay: upgrade-2019",

A.S. Barabash, AIP Conf.Proc. 2165 (2019) 1, 020002 15

<u> Half-life of Neutrino-less DBD</u>

 $G_{0\nu}(Q,Z)$: Phase space factor $M_{0\nu}$: Nuclear matrix element

$$\left\langle m_{\beta\beta} \right\rangle = \sum_{i}^{3} U_{ei}^{2} m_{i}$$

$$M_{0\nu} = g_A^2 M_{0\nu}^{GT} - g_V^2 M_{0\nu}^F$$

Nuclear Matrix Element

Engel and Menéndez, Rep. Prog. Phys. 80, 046301 (2017)

- Factor 2-3 discrepancy between models
- Uncertainty comes from difficulty to consider interaction between nucleons and many body system etc..
- Measurement by multiple target nucleus needed to reduce model uncertainty.

A representative compilation of nuclear matrix element calculations with an unquenched $g_A = 1.27$ for different isotopes (see Reference 87, and references therein, for details). Abbreviations: EDF, energy-density functional; IBM, interacting boson model; NME, nuclear matrix element; QRPA, quasi-particle random-phase approximation; SM, Standard Model. 17

<u>Double beta candidate nuclei</u>

Isotope	Q-value [keV]	Natural Abundance	Good / Bad	Experiment
⁴⁸ Ca	4268	0.19%	Large Q, Small N.A.	CANDLES
¹⁵⁰ Nd	3367	5.7%		NEMO-3
⁹⁶ Zr	3348	2.8%		
¹⁰⁰ Mo	3034	9.4%		NEMO-3
⁸² Se	2996	8.7%		Super-NEMO
¹¹⁶ Cd	2814	7.5%		
¹³⁰ Te	2527	34.1%	Large N.A.	CUORE, SNO+
¹³⁶ Xe	2458	8.9%	Easy to enrich	EXO, KL-Zen
¹²⁴ Sn	2288	5.8%		
⁷⁶ Ge	2039	7.6%	Ge semiconductor	HDM, GERDA
¹¹⁰ Pd	2018	7.5%		

<u>Energy spectrum of DBD</u>

- In the search for "neutrino-less double beta decay", "twoneutrino double beta decay" is the background.
- It is necessary to separate them with high energy resolution.

<u>Sensitivity of DBD experiment</u>

(Expected background events in ROI < 1 for given $M \times \text{time}$)

$$T_{1/2}^{0v}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \frac{M \cdot \text{time}}{n_{CL}}$$

Slide from Y. H. Kim @Taup2019

<u>How to increase sensitivity</u>

$$(T_{1/2}^{0\nu}) \propto \begin{cases} a M \varepsilon t & \text{bac} \\ a \varepsilon \sqrt{\frac{Mt}{B \Delta E}} & \text{wit} \end{cases}$$

background free,

with background,

I. Volume

- Large detector mass
- Enrichment of $\beta\beta$ isotope

II. Background

- Low radioactive material
- Background ID by PSD, Active VETO, Heat/Light ratio etc.

III. Energy resolution

- Detector technology dependence
- Semiconductor \gtrsim Bolometer > TPC > Scintillator

<u>Sensitivity for <m_bb}</u>

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q,Z)|M_{0\nu}|^2 < m_{\beta\beta} >^2$$

We have two possible choices!!

Source \neq Detector \bigcirc Low BG other than $2\nu\beta\beta$ \bigcirc Multiple target \bigotimes Worse E resolution \bigotimes Low scalability

Source = Detector
☺ Large volume
☺ Better E resolution
☺ Many detector choices
(Semicon., Bolom., Scint...)
☺ BG rejection

<u>Semiconductor</u>

- Electron-hole pairs, generated by radiation, are swept toward the appropriate electrode by the electric field.
- Ge semiconductor detector including ⁷⁶Ge isotope has been used for DBD experiment taking advantage of its excellent energy resolution.

- CdZnTe or CMOS are also the choice for future DBD experiment.
- However, they are still under early feasibility study stage.

<u>Heidelberg-Moscow</u>

Our final result for the half life of neutrinoless double beta decay is:

T = (2.23 ^{+0.44} _{-0.31}) x 10²⁵ years (99.97% C.L.)

- The Heidelberg-Moscow Experiment was operated with 10.9 kg Ge enriched to 86% in the ββ-emitter ⁷⁶Ge.
- The experiment was located at the Gran Sasso Laboratory in Italy.
- Part of collaboration claimed a detection of $0\nu\beta\beta$ in 2001 (KK claim).
- This measured half-life was excluded by many experiment later.

Heidelberg-Moscow				
Technology	Ge semiconductor			
Site	Gran Sasso			
Volume	10.9 kg			
$T_{1/2}^{0 u}$ limit	$1.9 imes 10^{25}$ yr			

<u>GERDA</u>

GERmanium Detector Array

@ Gran Sasso

arXiv: 1212.4067

Phase I : 18 kg of enriched Ge (~86%) from 2011
 Phase II: Added 20 kg of enriched Ge from 2015

Low BG techniques in GERDA

 $T_{1/2}^{0\nu}$ < 2.1 × 10²⁵ yr (21.6 kg) $T_{1/2}^{0\nu}$ < 3.0 × 10²⁵ yr (past combined) \rightarrow <m_{ββ} > < 0.16 – 0.25 eV

The GERDA-I result refuted the KK-claim of $0\nu\beta\beta$ observation.

Agostini M, et al. Phys. Rev. Lett. 111:122503 (2013)

GERDA Phase-II

- Added totally 20 kg of new Ge detectors.
- Improved BG level by

60-80 mm

Coaxial Ge

BE Ge

65-80 mm

p-type

Ge

p⁺ electrode

(read-out)

0 V

p-type Ğe

70-110 mm

25-50 mm

- Broad Energy Ge detector,
- Better light collection of LAr veto,

[chn] 4000

FADC

350

250

200 150

1000 500

- Low radioactivity of detector components.
- Typical energy resolution of 3-4 keV (FWHM) @Q_{BB}

Coaxia

n⁺ electrode

3-4 kV

BEGe

$$\rightarrow$$
 $\beta\beta$ > < 79 – 180 meV

Agostini M, et al. Phys. Rev. Lett. 125:252502 (2020)

<u>GERDA Results</u>

GERDA	Phase-I	Phase-II	
Technology	Enriched Ge semiconductor		
Site	Gran	Sasso	
E res @Q _{ββ} FWHM	4-6 keV (Coaxial)	3-4 keV (BEGe)	
BG [/keV/kg/yr]	2×10^{-2}	5.2×10 ⁻⁴	
Size	17.8 kg	35.8 + 9 kg	
$T^{0 u}_{1/2}$ limit	$3.0 imes10^{25}\mathrm{yr}$	$1.8 imes10^{26}~ m yr$	

<u>LEGEND</u>

GERDA and Majorana join forces to start LEGEND experiment!

LEGEND-200:

- 200 kg, upgrade of existing GERDA infrastructure at Gran Sasso
- 2.5 keV FWHM resolution
- Background goal
 < 0.6 cts/(FWHM t yr)
 < 2x10⁻⁴ cts/(keV kg yr)
- Now in commissioning, physics data starting in 2022

LEGEND-1000:

- 1000 kg, staged via individual payloads (~400 detectors)
- Timeline connected to review process
- Background goal <0.025 cts/(FWHM t yr),<1x10⁻⁵ cts/(keV kg yr)
- Location to be selected

Sensitivity $T_{1/2}^{0\nu} \simeq 10^{28}$ yr

<u>Time projection chamber</u>

- Time projection chamber (TPC) is an attractive choice of $0\nu\beta\beta$ search.
- Good scalability and background rejection capability.
- Ionization + Scintillation. Particle ID by signal ratio.
- Liquid TPC offer large density and gas TPC offer tracking.

<u>EXO-200</u>

Enriched Xenon Observatory

- EXO-200 is a prototype project located Waste Isolation Pilot Plant (WIPP) in US.
- Liquid Xe TPC to search for $0\nu\beta\beta$ of ¹³⁶Xe (80% enriched ~200 kg).
- Event reconstructed using two signals
 - Ionization signal drifted to crossed wire planes
 - Scintillation (175 nm) collected by APD

Phys. Rev. Lett. 120, 072701 (2018)

NEXT Neutrino Experiment with a Xenon TPC

The NEXT TPC Concept

136Xe

15 bar gas

<u>Bolometer</u>

• The bolometric technique was first proposed for $0\nu\beta\beta$ searches in 1984*.

*Fiorini E, Niinikoski TO. Nucl. Instrum. Methods A 224:83 (1984)

- Operated at ~10 mK.
- The typical rise in temperature is of the order of ~0.1 mK per MeV of deposited energy.
- Due to high statistics of phonon counting, good energy resolution can be achieved comparable to that of semiconductor.
- Extremely low temperature makes it difficult to develop a large size detector.

<u>CUORE</u>

Cryogenic Underground Observatory for Rare Events @Gran Sasso

• Bolometer detector using TeO₂ crystals.

19 towers 988 detectors 741 kg of TeO₂ 204 kg of ¹³⁰Te

Powerful ³He-⁴He dilution refrigerator cooling power: 5 µW at 10 mK

Result of CUORE

- 0vββ search taking advantage of large natural abundance of ¹³⁰Te (34%) and good energy resolution (~7 keV @Q_{ββ}).
- Peak at ~2500 keV is from ⁶⁰Co.

D. Q. Adams et al., Phys. Rev. Lett. 124, 122501

CUORE				
Technology	Bolometer TeO ₂			
Site	Gran Sasso			
E resolution	7 keV FWHM @ $Q_{\beta\beta}$			
BG /keV/kg/Yr	$1.38 imes 10^{-2}$			
Volume	741 kg			
$T_{1/2}^{0 u}$ limit	$3.2 imes10^{25}\mathrm{yr}$			

→ $< m_{\beta\beta} > < 75 - 350 \text{ me}_{\sqrt{3}}$

<u>CUPID</u>

• Upgrade with PID in order to reduce background level.

E. Armengaud et al, Phys. Rev. Lett. 126, (2021) 181802

CUPID: baseline

- Li₂¹⁰⁰MoO₄ scintillating bolometers
- α rejection using light signal
- Enrichment > 95%
- \bullet 1596 crystals and 240 kg of $^{100}\mathrm{Mo}$
- FWHM <10 keV at $Q_{\beta\beta}$ (3034 keV)

```
Background goal: 10<sup>-4</sup> cnts/(keV kg yr)

Discovery sensitivity at 3\sigma:

T_{1/2}(^{100}Mo) = 10^{27} yr

m_{\beta\beta} \sim 12-20 meV

Slide from A. Zolotarova @Neutrino2022
```


<u>Tracking detector</u>

- Tracking detector use a thin source material surrounded first by a low-pressure gas tracking layer to track the two β-rays, and then a calorimetric layer to measure energy.
- Track information gives excellent BG rejection capability and measurement of opening angle of two β-rays.
- Many different isotopes can be measured using same system, although a scalability of system is limited by thin foil.

Neutrino Ettore Majorana Observatory

@Fréjus Underground laboratory (LSM)

He + 4% ethyl alcohol + 1% Ar + 0.1%H₂O

<u>Result of NEMO-3</u>

 $0\nu\beta\beta$ search result with 7 kg $^{100}\text{Mo}\,\times\,$ 5 years

<u>Result of NEMO-3</u>

2vββ Results

Isotope	Mass (g)	Q _{ββ} (keV)	T _{1/2} (2v) (10 ¹⁹ yrs)	S/B	Comment	Reference
⁸² Se	932	2996	9.6 ± 1.0	4	World's best!	Phys.Rev.Lett. 95(2005) 483
¹¹⁶ Cd	405	2809	2.8 ± 0.3	10	World's best!	
¹⁵⁰ Nd	37	3367	0.9 ± 0.07	2.7	World's best!	Phys. Rev. C 80, 032501 (2009)
⁹⁶ Zr	9.4	3350	2.35 ± 0.21	1	World's best!	Nucl.Phys.A 847(2010) 168
⁴⁸ Ca	7	4271	4.4 ± 0.6	6.8 (h.e.)	World's best!	
¹⁰⁰ Mo	6914	3034	0.71 ± 0.05	80	World's best!	Phys.Rev.Lett. 95(2005) 483
¹³⁰ Te	454	2533	70 ± 14	0.5	First direct detection!!!	Phys. Rev. Lett. 107, 062504 (2011)

<u>SuperNEMO demonstrator</u>

Almost half of NEMO-3

More than an order of magnitude lower than that of NEMO-3.

Prospect of SuperNEMO

Asian DBD experiments

I focus on these two experiments due to the lack of time

¹³⁶Xe **KamLAND-Zen** Xe-loaded liq. scintillator Japan ⁴⁸Ca CANDLES CaF₂ inorganic scintillator Japan ZICOS ⁹⁶Zr Japan Zr-loaded liq. scintillator ¹³⁶Xe Xe gas TPC AXEL Japan DCBA/MTD 150Nd **Tracking detector** Japan ¹³⁶Xe PandaX-III China Xe gas TPC 100Mo AMORE **Scintillating bolometer** Korea

Scintillation detector

- Scintillation detector is one of the most major radiation detectors. Organic liquid scintillator and inorganic crystal scintillator exist.
- Injected radiation particles excite electrons inside the scintillator and de-excited electron emit scintillation light which can be detected by PMT.
- Energy resolution depends on photon statistics and is not good compared with semiconductor or bolometer.
- Simple detector setup is superior in scalability.

<u>KamLAND-Zen</u>

- Reuse the existing large KamLAND detector at Kamioka.
- Low RA of U, Th \rightarrow ~5x10⁻¹⁸ g/g, 1.3x10⁻¹⁷ g/g

136**Xe** Noble gas

Centrifugal enrichment possible $Q_{\beta\beta}=2459 \text{ keV}$ (below ²⁰⁸Tl 3198-5001 keV)

Advantages of using KamLAND

I low cost and quick start

 (running detector)

 I BG can be identified
 (full active thick shielding)

 (full active thick shielding)
 In-situ purification possible
 (liquid media)
 On/Off measurements possible
 (xenon is removable)
 multi-purpose
 (geo-neutrino)
 easily scalable

(mini-balloon)

KL-Zen 800 first result

- 745 kg of ¹³⁶Xe enriched Xe dissolved into LS.
- World best $0\nu\beta\beta$ search limit was obtained.
- First search result in inverted ordering region.

Singles data

arXiv:2203.02139

<u>KamLAND2-Zen</u>

Future

KamLAND2-Zen

Xenon mass ~ 1 ton × 5 increase in light collection Scintillation balloon film • 1000+ kg of Xenon.

Winston cone

light collection ×1.8

high q.e. PMT 17" $\phi \rightarrow 20$ " $\phi \epsilon = 22 \rightarrow 30+\%$

> New LAB LS (better transparency)

light collection ×1.9

light collection ×1.4

LAB (Linear Alkylbenzene) H₃C(CH₂)_x (CH₂)_yCH₃

 σ (2.6MeV)= 4% \rightarrow ~2%

Sensitivity $T_{1/2}^{0\nu} \sim 2 \times 10^{27}$ yr $\rightarrow < m_{\beta\beta} > \sim 20$ meV

In 5 years ⁵⁰

<u>Further future prospect</u>

Reuse Super-Kamiokande detector after Hyper-Kamiokande started?

Super-KamLAND-Zen

in connection with Hyper-Kamiokande

target sensitivity 8 meV

Idea is interesting! But I don't know if it is realistic...

Double beta decay study by ⁴⁸Ca @Kamioka **The CANDLES experiment** 20" PMT **Acrylic LS tank** CaF₂ crystal **Collaborating Institutions Stainless** ◇ 大阪大学 Water tank RCNP 13" PMT 徳島大学 ◆ 大阪産業大学 OSAKA SANGYO UNIVERSITY 3D picture 筑波大学 T. lida University of Tsukuba

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

Double beta decay of ⁴⁸Ca

- ⁴⁸Ca is double beta decay nucleus that has largest $Q_{\beta\beta}$ -value (4.27 MeV) among all the double beta candidate isotope. \rightarrow Low BG condition.
- Since ⁴⁸Ca is double magic number (p and n) and smallest nucleus used for $0\nu\beta\beta$ search, shell model is suitable for NME calculation.
- Very small natural abundance (0.187%) and no effective enrichment technique exist.

Low BG technique in CNDLES

- CaF₂ crystal (τ ~1 μsec) 10 × 10 × 10 cm³ × 96 (305 kg & 350 g of ⁴⁸Ca)
- 2m³ Liquid scintillator (LS, τ ~10 nsec)
- Light observed by 62 PMTs
 → LY = 1,000 p.e./MeV (~2×KL-Zen)

LS active veto and Pulse shape discrimination analysis can achieve low BG!!

<u>Current result of CANDLES</u>

<u>Energy spectrum for</u> <u>clean 21 crystals</u> <u>(Th < 10µBq/kg)</u>

Livetime : 131 days Q $_{\beta\beta}$: 4170 - 4480 keV (Q $_{\beta\beta}$ -1 σ +2 σ)

S. Ajimura et al., Phys. Rev. D 103, 092008

- Background drastically reduced by LS active veto.
- After all the cuts, no event observed in $Q_{\beta\beta}$ region.

BG level : ~10⁻³ /keV/kg/Yr $T_{1/2}^{0\nu}$ > 5.6 × 10²² yr (90% CL)

Future R&D of CANDLES

Scintillating bolometer

- Scintillating bolometer detector using CaF₂ crystal is under studying (same technique as CUPID).
- Our goal is 0.5% energy resolution (FWHM) and BG free in Q-value region.

48Ca enrichment

- Laser enrichment techniques are being developed.
- 422 nm and 100 mW laser.
- 1 mol/year production in 2023...

Future prospect

<u>Summary of detector technology</u>

	Scalability	E resolution	BG rejection	Multi target
Semiconductor	0	\bigcirc	\bigcirc	×
Liq. TPC	\bigcirc	\bigcirc	0	×
Gas TPC	\bigtriangleup	0	0	×
Bolometer	\bigcirc	\bigcirc	0	\bigtriangleup
Tracker	×	×	0	\bigcirc
Scintillator	\bigcirc	\bigtriangleup	\bigcirc	×

NOTE: This is completely my personal opinion!

<u>Summary</u>

- Neutrino-less double beta decay would prove Majorana nature of the neutrinos.
- Majorana neutrino can resolve many problems in SM such as "very small neutrino mass", "left-handed neutrino" and "matter anti-matter asymmetry".
- Next generation double beta decay experiment aims to explore Inverted ordering region ($< m_{BB} > \sim 20$ meV).
- Many projects are ongoing!!

◆ If you are interested in CANDLES, you can contact me by E-mail ;)