

STERILE NEUTRINOS

Kirsty Duffy UKRI Future Leaders Fellow, University of Oxford Vietnam School of Neutrinos 2022

Run 3469 Event 53223/ Oct

- Neutrino oscillation is a well-understood theory, and almost all oscillation parameters have now been measured
- However, a lot remains that we don't understand: anomalous experimental results in many different channels
- Sterile neutrinos have been proposed as a solution to many of these anomalies
- But the picture isn't clear: can they really explain all the experimental data?

3

Electron neutrino appearance

$$\begin{aligned} \mathbf{c}_{ij} &= \cos \theta_{ij} \\ \mathbf{s}_{ij} &= \sin \theta_{ij} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \end{aligned}$$
flavour

Four free parameters: Three mixing angles θ_{12} , θ_{23} , θ_{13} One phase δ_{CP} Each mixing angle describes mixing
 between two mass states (3c2 = 3)

Probability to detect a neutrino of a given flavour **oscillates** as:

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}$$
$$\times [1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}]\sin^{2}\frac{\Delta m_{32}^{2}L}{4E}$$
$$+ (\text{solar, matter effect terms})$$

Kirsty Duffy

- Because there are two mass-squared splittings (that we know of!), that gives us two oscillations
- BUT many experiments are designed with L/E such that they are mostly sensitive to one
- In some cases we can approximate as one two-flavour oscillation

HOWEVER...

There have been a number of anomalies observed in the past 20+ years that don't quite fit with the three-neutrino picture we know and love

	Experiment	Туре	Anomaly	
	LSND	DAR	$\overline{\mathbf{v}}_{e}$ appearance	
	MiniBooNE	SBL accel.	V _e appearance	
	MiniBooNE	SBL accel.	$\overline{\mathbf{v}}_{e}$ appearance	
	GALLEX/SAGE/BEST	Source - e capture	V _e disappearance	
	Reactors	Beta decay	$\overline{\nu}_{e}$ rate	ot an
			$\overline{\mathbf{v}}_{e}$ shape	ler: ne list!
See also: R. Guennette, "Sh G. Karagiorgi, "Sh	ort-Baseline Neutrinos'', APS-DPF 201	9 link phenomenology", INSS 2019 link	Disclanexha	ustive

K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph] (2012) link

HOWEVER...

There have been a number of anomalies observed in the past 20+ years that don't quite fit with the three-neutrino picture we know and love

Many of these anomalies have motivated people to think about adding one or more **additional neutrinos**

→ new neutrino oscillations could explain some of these results

But I should warn you: it's **not a clear picture!**

I'm going to talk about the experimental evidence in the second part of this lecture, but first I want to talk about what a **theory of more than 3 neutrinos** might look like

3+1 NEUTRINO OSCILLATION

14

THE BIGGER PICTURE?

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \vdots \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \dots & U_{en} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \dots & U_{\mu n} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \dots & U_{\tau n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ U_{s1} & U_{s2} & U_{s3} & \dots & U_{sn} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \vdots \\ \nu_{n} \end{pmatrix}$

WHY WE THINK THERE ARE 3 NEUTRINOS

 $\sigma(Z \rightarrow had) = \sigma(Z_{total}) - \sigma(Z \rightarrow lep) - \sum_{i} \sigma(Z \rightarrow v_i \overline{v}_i)$

- Three flavours that can be produced in decays of Z boson
- → three "active" flavours
- → any new flavours must be sterile (not interact with the weak force) or too heavy for $Z \rightarrow v_i \bar{v}_i$ decay!

STERILE NEUTRINOS

sterile neutrino

/ˈstɛrʌɪl/ /njuːˈtriːnəʊ/ 🌗

Additional neutrino flavour states which **do not experience weak interactions** (through the standard model W/Z bosons)

The additional mass states associated with them are assumed to be **produced through mixing** with the standard model neutrinos → can affect neutrino oscillation through mixing

Add one new mass state, v4

The PMNS matrix will be expanded with **three new parameters:** θ_{14} , θ_{24} , and θ_{34} (and some new CP-violating phases)

But if we make the 2-flavour approximation, we can define some new mixing angles that make the calculations much simpler

Ve disappearance probability:

 $P(v_e \rightarrow v_e) = 1 - \sin^2 2\vartheta_{ee} \sin^2(1.27\Delta m^2 L/E)$ $\downarrow \qquad 4|U_{e4}|^2 (1 - |U_{e4}|^2)$

$v_{\boldsymbol{\mu}}$ disappearance probability:

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^{2} 2\vartheta_{\mu\mu} \sin^{2}(1.27\Delta m^{2}L/E)$ $\downarrow 4 |U_{\mu4}|^{2} (1 - |U_{\mu4}|^{2})$

V_e disappearance probability:

 $P(v_e \rightarrow v_e) = 1 - \sin^2 2\vartheta_{ee} \sin^2(1.27\Delta m^2 L/E)$ $\downarrow \qquad 4|U_{e4}|^2 (1 - |U_{e4}|^2)$

 v_{μ} disappearance probability:

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^{2} 2\vartheta_{\mu\mu} \sin^{2}(1.27\Delta m^{2}L/E)$$

$$\downarrow \qquad 4 |U_{\mu4}|^{2} (1 - |U_{\mu4}|^{2})$$

$v_{\mu} \rightarrow v_{e}$ "appearance" probability:

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\vartheta_{\mu e} \sin^{2}(1.27\Delta m^{2}L/E)$$

$$\downarrow \quad 4|U_{e4}|^{2}|U_{\mu 4}|^{2}$$

EXPERIMENTAL ANOMALIES Ve disappearance

GALLIUM ANOMALY: GALLEX AND SAGE

- Solar neutrino experiments using Gallium for neutrino detection
- Used ⁵¹Cr and ³⁷Ar radioactive sources to calibrate V_e detection efficiency
- Measured 2.8σ deficit of V_e
- Could be explained by sterile neutrino with $\Delta m^2 > 0.35 eV^2$ (best fit $\Delta m^2 \sim 2 eV^2$)
- SAGE: "A probable explanation for this low result is that the cross section ... has been overestimated"

Phys. Rev. C 80, 015807 (2009)

μBooNE

Kirsty Duffy 25

GALLIUM ANOMALY: GALLEX AND SAGE

- Solar neutrino experiments using Gallium for neutrino detection
- Used ⁵¹Cr and ³⁷Ar radioactive sources to calibrate V_e detection efficiency
- Measured 2.8σ deficit of V_e
- Could be explained by sterile neutrino with $\Delta m^2 > 0.35 eV^2$ (best fit $\Delta m^2 \sim 2 eV^2$)
- SAGE: "A probable explanation for this low result is that the cross section ... has been overestimated"

Phys. Rev. C 80, 015807 (2009)

GALLIUM ANOMALY: BEST

- BEST collaboration recently presented a new result: gallium measurement using a chromium-51 source
- Inner target: R=0.791±0.05 <L_{in}> = 52.03±0.18 cm
- Outer target: R=0.766±0.05 <L_{out}> = 54.41±0.18 cm
- Gallium anomaly reaffirmed with significantly smaller error bars
- Favours △m²>leV² (best fit: 3.3eV²)

Phys. Rev. Lett. 128, 232501 (2022)

ANOMALIES: REACTOR $\overline{\mathbf{v}}$ e RATE

- Recalculation of neutrino flux from nuclear reactors by multiple groups* in 2011: ~3 σ (3.5%) deficit in \bar{v}_e
- Could be explained by neutrino oscillation Δm²~0.12eV²
- However...

*Mueller et. al., Phys. Rev. C 83, 054615 (2011), Huber Phys Rev C 84, 024617 (2011)

µBooNE

ANOMALIES: REACTOR $\overline{\mathbf{v}}$ e RATE

Updated models reduce deficit \rightarrow tension with Gallium anomaly

C. Giunti et. al., arXiv:2110.06820 [hep-ph]

Phys. Rev. D 104, 032003 (2021)

ANOMALIES: REACTOR $\overline{\mathbf{v}}_{e}$ Shape

Neutrino-4

- 6-12m from
 centre of active
 zone of the
 SM-3 reactor
- Spectrum ratio measurement
- Report 2.7 σ indication of oscillations with $\Delta m^2 = 7.2 eV^2$

ANOMALIES: REACTOR $\overline{\mathbf{v}}_{e}$ Shape

Berryman et. al., arXiv:2111.12530 [hep-ph]

Kirsty Duffy 31

ANOMALIES: THE 5 MEV BUMP

PUTTING IT TOGETHER

Diaz et. al., Phys. Rep. 884 (2020) 1-59

EXPERIMENTAL ANOMALIES

Ve appearance

 $V_{\mu}, \overline{V}_{\mu},$

ANOMALIES: LSND

Liquid Scintillator Neutrino Detector: µ⁺ decay at rest experiment at Los Alamos National Lab

 $\pi^+ \rightarrow \mu^+ \nu_\mu$

+ $e^+ v_e \overline{v}_\mu$

- Observed excess of V
 _e at 3.8σ
- If interpreted as two-flavour neutrino oscillation, requires Δm²~0.2-10eV²

Not consistent with any known 3-flavour oscillation

Phys. Rev. D 64, 112007

ANOMALIES: MINIBOONE

- Similar L/E as LSND: if an oscillation really exists, should see it here too
- Different energy, detector, beam, event signatures, backgrounds

- Recently released updated results (2021) with x2 more data than original anomaly (2009)
- Consistent with LSND results: combined significance of 6.1σ
- Best fit for neutrino oscillation hypothesis: $\Delta m^2 = 0.04 \text{ eV}^2$

Phys. Rev. D 103, 052002

LSND 90% CL (allowed) LSND 99% CL (allowed)

- MiniBooNE 90% CL (allowed)
- MiniBooNE 95% CL (allowed)
- MiniBooNE 99% CL (allowed)
 - Consistent with LSND results: combined significance of 6.1σ
- Best fit for neutrino oscillation hypothesis: $\Delta m^2 = 0.04 \text{ eV}^2$

Phys. Rev. D 103, 052002

Kirsty Duffy

41

Ve

Interpretations

DXFORD

MINIBOONE

800-ton mineral oil (CH₂₎ Cherenkov detector

Detect Cherenkov ring from electrons produced in V_e CC scattering interactions

However, photons produce

y rete

identical Cherenkov rings

Is the excess electrons?

- Sterile neutrino oscillations → difficult to explain MiniBooNE excess and all other global data
- Best-fit 2-neutrino sterile oscillation appearance spectrum does not predict data well at very low energies
- More complex models can help
 - Mixed oscillations and decay
 - Resonance matter effects
 - Additional sterile neutrinos
 - Non-unitary mixing
 - …and many more!

Is the excess photons?

Several sources of photon backgrounds:

NC㧠mis-ID

 \rightarrow measured in-situ

Dirt (neutrino interactions outside the detector)

■ → beam timing

- Need x3.18 increase to explain excess
- \rightarrow to be investigated...

ENTER MICROBOONE

FIRST STEP IN THE FERMILAB SBN PROGRAMME

Kirsty Duffy

Neutrino Oscillation Experiment: disappearance **Experiment:** appearance 3+1 Oscillations Interpretations Time (drift direction Wire number (beam direction) **LArTPCs:** → enable incredible precision measurements at scale \rightarrow Transformative physics in 9 cm oscillations, BSM, and cross-

section measurements

LARTPC STRENGTH: ELECTRONS AND PHOTONS

INVESTIGATING THE MINIBOONE LOW-ENERGY EXCESS

Photon search

Target $\Delta \rightarrow N\gamma$: I γ Op and I γ Ip

V

Phys. Rev. Lett. 128, 111801

p

SINGLE PHOTON SEARCH

Phys. Rev. Lett. 128, 111801

SINGLE PHOTON SEARCH

Phys. Rev. Lett. 128, 111801

No evidence of an excess in either sample

INVESTIGATING THE MINIBOONE LOW-ENERGY EXCESS

Phys. Rev. Lett. 128, 241801

EXCLUSION CONTOURS

MICROBOONE-NOTE-III6-PUB

- What does this mean for the sterile neutrino hypothesis?
- MicroBooNE hasn't seen evidence of an excess → place constraints on oscillation phase space for a new neutrino flavour

MICROBOONE-NOTE-III6-PUB

New summer

FUTURE PROSPECTS: BNB+NUMI

MICROBOONE-NOTE-III6-PUB

- BNB R_{ve/vµ}: 0.005
 NuMI R_{ve/vµ}: 0.04
- Combining both data sets → significantly improved sensitivity
- → Upcoming BNB + NuMI analysis will be sensitive to full LSND allowed regions

PUTTING IT TOGETHER

Diaz et. al., Phys. Rep. 884 (2020) 1-59

Appearance

We can now also look at global fits using only $V_{\mu} \rightarrow V_{e}$ appearance data

Note: does not include MicroBooNE

	$ u_{\mu} \rightarrow \nu_{e} $
Neut ri no	MiniBooNE (BNB) * MiniBooNE(NuMI) NOMAD
Antineutrino	LSND * KARMEN MiniBooNE (BNB) *
* = anomaly at $\geq 2\sigma$	

DOESTHE MODEL FIT ALLTHE DATA?

Diaz et. al., Phys. Rep. 884 (2020) 1-59

µBooNÈ

Appearance

Disappearance

SO WHAT DOES THIS MEAN?

SO WHAT DOES THIS MEAN?

- We have a large number of anomalous experimental results
- Note: a lot of these are enduring, but not statistically significant: very few above 2σ
- Many could be explained by the addition of a sterile neutrino
- But adding one new neutrino to the model can't explain all the data

MORE STERILE NEUTRINOS?

- What about 3+2, 3+3 models?
- Add in a lot of new degrees of freedom (3+2 adds 7dof to the fits!)
- Helps a little with the tension, but not a lot

MORE STERILE NEUTRINOS?

- What about 3+2, 3+3 models?
- Add in a lot of new degrees of freedom (3+2 adds 7dof to the fits!)
- Helps a little with the tension, but not a lot
- Does not improve agreement with MiniBooNE

STERILE NEUTRINOS + DECAY?

Different models have different predictions for the **something**:

- Something = invisible (non-interacting)
 - As long as the decay takes place before the detector...
 - ...effect is that active neutrino flavour (Vµ in this diagram) seem to disappear, with no balancing appearance

Something = visible

- Option I: active neutrino, Ve or VT
 - Effect is of v_e/v_T appearance but not with L/E dependence we'd expect from oscillation
 - Decay can happen before or in the detector
- Option 2: active neutrino, v_µ
 - High energy $v_{\mu} \rightarrow v_{4} \rightarrow$ lower-energy $v_{\mu} + \phi$
 - Effect is to change the energy spectrum in favour of lower-energy neutrinos
 - Decay can happen before or in the detector
- Option 3: something else visible e.g. y, e+e-
 - Perhaps this thing can be mistaken as the ve interaction (e.g. in MiniBooNE)?
 - Decay needs to happen inside the detector

Some more beyond-thestandard-model models that aren't sterile neutrinos

Mostly motivated by appearance measurements (MiniBooNE) rather than disappearance

These slides heavily inspired by P. Machado, Fermilab PAC, November 2021

DARK NEUTRINOS

Ballett, Pascoli, Ross-Lonergan PRD 2019 Ballett, Hostert, Pascoli PRD 2020 Bertuzzo, Jana, Machado, Zukanovich PRL 2018 Bertuzzo, Jana, Machado, Zukanovich PLB 2019 Arguelles, Hostert, Tsai PRL 2019

HIGGS PORTAL SCALARS

Batell, Berger, Ismail PRD 2019 Patt, Wilczek 2006

Motivation:

- Portal to dark sector
- Connection to Higgs sector

Experimental signature:

- No hadronic activity
- e⁺e⁻ or µ⁺µ⁻
- Invariant mass

Too many papers to list, but see

Ballett, Pascoli, Ross-Lonergan PRD 2019

Ballett, Pascoli, Ross-Lonergan JHEP 2017

Kelly, Machado PRD 2021

Motivation:

meson

HEAVY NEUTRAL LEPTONS

- Possibly related to neutrino mass
- Dirac vs Majorana nature of HNLs can be probed, if discovered

Experimental signature:

- Several possibilities
- Delayed timing w.r.t.
 beam neutrinos

Less likely/ harder to explain anomalies

Reconstruct invariant mass?

AXION-LIKE PARTICLES

Kelly Kumar Liu PRD 2021

Brdar et al PRL 2021

Axion produced in beam decay pipe, propagates to detector, and decays

Motivation:

- Axions are well motivated (although this isn't necessarily related to strong CP problem)
- Relatively simple search

Experimental signature:

- Two high-energy electron-like EM showers
- No hadronic activity
- Invariant mass

WHAT WE REALLY NEED IS MORE DATA

- Follow-up high-sensitivity, direct experimental tests (ongoing, planned, and proposed sterile neutrino oscillation searches):
 - Accelerator-based: SBN (ICARUS+SBND), IsoDAR
 - Reactor-based: SoLiD, Neutrino-4, DANSS, NEOS, STEREO, PROSPECT, CHANDLER, ...
 - Radioactive source: BEST
 - Also searches at long-baseline experiments (using near detectors or looking for NC active-flavour disappearance) and at high-energy atmospheric neutrino experiments: T2K, NOvA, IceCube/DeepCore, Super-K
 - And neutral-current based searches with coherent scattering: COHERENT, CEVNS

3+1 Oscillations

Experiment:

SUMMARY

- A number of **anomalies** exist that can't be explained in the 3-neutrino paradigm
- Could hint at interesting new physics?
- May be evidence for sterile neutrinos but picture is unclear tension in 3+1 model
- More data and more experiments will soon add to this picture!

TRANSITION MAGNETIC MOMENT

Gninenko PRL 2009

Coloma Machado Soler Shoemaker PRL 2017

Atkinson et al JHEP 2022

Vergani et al PRD 2021

Motivation:

- May be a consequence of the mechanism for neutrino masses
- Excellent fit to MiniBooNE energy spectrum

Experimental signature:

- Photon EM shower
- Some hadronic activity (I y I p)
- "Double bang" if both interactions happen within detector

