

present and outlook...

VSON School (Vietnam)

19th July 2022

Anatael Cabrera

CNRS/IN2P3 IJCLab @ Orsay

UNIVERSITE PARIS-SACLAY

D'ORSAY

disclainner...

This description aims to provide <u>basis of neutrino oscillation with reactor neutrinos</u> based on the **experimental challenges** we faced / are facing now (including an outlook) while highlighting the topics **where reactors have the largest impact**...

Hence, this description will <u>benefit from all other lectures for complementary information</u> not follow a strict chronological account

standard 3 active neutrino

oscillation paradigm

who I ann?

working on...

• Double Chooz experiment (dismantling now)

knowns & unknowns...

Weak Flavour Neutrinos (3): **v(e)**, **v(µ)**, **v(t)** — <u>observed</u> 3! (same as quarks)

Mass Neutrinos (3): v(1), v(2), v(3) — <u>assumed</u> ≥3! [cosmology constraints ≤4]

 PMNS matrix (3x3; a la CKM): U, assumed unitarity (→violation?)
 discovery!

 • mixing parameters (3): θ₁₃, θ₁₂, θ₂₃ (octant?) — derived J [Jarkslog invariant]
 • CP-violation parameter (1): δ?

Mass Squared Differences (2): δm^2 (i.e. Δm^2_{12}) Δm^2 (i.e. Δm^2_{13} or Δm^2_{23})

Mass Ordering (MO):

+ δ m² (solar data — observed!)

 $\pm \Delta m^2 \rightarrow$ which is the lightest neutrino V(1) or V(3)?

unknown [SM]

reactors' sensitivity...

<u>directly sensitive</u> to: θ | 3, θ | 2, δ m², Δ m², \pm ? Δ m² (mass ordering) via vacuum oscillations

by ≥2030: the world's knowledge of **all those parameters** will be driven by reactors [key **input** for other experiments: accelerators, atmospheric, solar, etc]

indirect (i.e. synergies) boosting the combined sensitivity for δ and θ 23

issue! ϕ (**reactor**) exhibits <u>several inconsistent features</u> (\rightarrow unsettled debate still)

beyond standard neutrino

main achievements so far...

Discovery of the neutrino

Tendence mot reactory for solar anomaly a atmospheric anomaly

• | 990-2000:

•CHOOZ & Palo Verde support **atmospheric anomaly** Kamiokande's $v(\mu) \rightarrow v(\tau) [\rightarrow SuperK]$ •(byproduct) direct (stringent) limit on **\thetaI3** (till 2011)

•2000-2010:

• KamLAND demonstrates the LMA solution of the "solar anomaly" [key for discovery]

• (byproduct) most spectacular spectral distortion seen so far (θ I 2 and δ m²)

•2010-2020:

• Daya Bay \oplus Double Chooz \oplus RENO: first measure the <u>predicted</u> θ I 3 — T2K evidence too

•(synergy) critical for first $\leq 2\sigma$ constraints on δ by T2K and NOvA

• (byproduct Double Chooz): ϕ (reactor) issue! \rightarrow reactor knowledge? vs sterile at $\sim |eV^2$?

experimental setup...

new physics?

the reactor.

Chooz

D

0

Nuclear reactors in the world

https://www.carbonbrief.org/mapped-the-worlds-nuclear-power-plants

- 440 operable reactors. 55 reactors under construction (Apr. 2020)
- Reactor's share of total electricity supplies in the world is ~10%

- Nuclear fuel is 3-4% of Uranium-235 (others are Uranium-238) provided by mining, milling, conversion to UF₆ & enrichment
- \cdot Heat from nuclear fission is used to provide steam for a generator
- Control rods are used to control the fission rate
- · As a by-product, reactor core is an electron anti- ν source

$\overline{\nu}_{\,e}$ production in reactors

Reactor neutrino flux

Energy & neutrinos emitted per fission

 $^{235}\text{U} + \text{n} \rightarrow \text{A} + \text{B} + 6.1\text{e}^- + 6.1\,\overline{\nu}_e + 202\,\text{MeV} + 2.4\text{n}$

Neutrino flux of commercial reactor (~3 GW on average)

 \cdot 3 GW_{th} = 3 × 10⁹ J/s = 1.9 x 10²² MeV

 \rightarrow Neutrino flux is ~ 6 x 10²⁰ $\overline{\nu}_{e}/s$

Thermal power

- Can be obtained from a power company to estimate ν flux prediction
- Thermal power vs time in Chooz reactor for example

Reactor neutrino spectrum

Reference spectra weighted by fuel evolution

the detector(s).

Double Chooz Near Detector: ~30 ton detection volume

 $d - July 202 \rightarrow dismantling)$

inverse-B decay (IBD) interaction...

IBD: anti- $v_e + p \rightarrow e^+ + n$

no e+ PID

reactor neutrino spectrum...

Double Chooz near-detector spectrum during ON-OFF-ON transition

the v discovery (1950's).

18

Partic

Reines & Cowan detector (300kg)...

today's inspiration!

²⁰ Reines et al **detection strategy legacy**...

PMT \Leftrightarrow transparent medium

v interaction: coincidence and/or tagging

overburden

external shielding

loaded medium (113Cd)

signal modulation

~70years ago → much the same still now!

Anatael Cabrera (CNRS-IN2P3 & APC)

today's version of similar technology...

21

KamLAND/SNO+

4

https://liquido.ijclab.in2p3.fr/

under construction

results release with the latest experimental results @ Neutrino 2022 conference (June 2022)

https://media.neutrino2022.org/talk/talk_session_apply/108/20220603220651_33.pdf

LiquidO event-wise imaging...

self-segmentation

unprecedented PID @ IMeV...

potential: redu

den / shielding

(reactor) opaque scintillation & (native) self-segmentation

needless segmentation: problematic @ IMeV (pollution, cost@complex, etc)

~ I MeV: reactor, geoneutrino, solar, $\beta\beta$ -decay, etc ²⁵

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

status on neutrino oscillation knowledge...

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

Δm² & +δm²

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

≥2030

	best kno	owledge	NuFIT5.0	foreseen	dominant	technique
θ ₁₂	3,0 %	SK⊕SNO	2,3 %	<1.0%	JUNO	reactor

μΔm²	3,0 %	DYB	1,3 %	≈1.0%	JUNU&DUNE&HK	reactor⊕beam
Mass Ordering	unknown	SK et al	NO @ ~3 σ	@5σ	JUNO⊕DUNE⊕HK	reactor⊕beam
CPV	unknown	T2K	3/2π @ ≈ 2σ	@5σ?	DUNE⊕HK⊕ALL	beam driven
			(now)			(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow CPV) except θ_{13} !

NuFIT 5.0 (2020)

		NuFIT 5.0 (2020)			
2	2.8				_
or 10					
∆m ²					
			-	$\sin^2 \theta_{12}$	
eV2		<u> </u>	late	$\theta_{12}/^{\circ}$	
0-3	2.2		ic d		
Ξ	E IE	3	heri	$\sin^2 \theta_{23}$	
n ²			ospl	$\theta_{23}/^{\circ}$	
N -	2.6		tme	• 2.0	
	2°ETTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		Хa	$\sin^2 \theta_{13}$	(
			E S]	$\theta_{13}/^{\circ}$	
			nou	$\delta_{\rm CD}/^{\circ}$	
		F F	vitk	UCP/	
4	TE E		4	Δm_{21}^2	
				$10^{-5} {\rm eV}^2$	
Sop 1	80			$\Delta m_{3\ell}^2$	
				10^{-3} eV^2	
				$\sin^2 \theta_{12}$	
			ta	$\theta_{12}/^{\circ}$	
	$0.3 0.4 0.5 0.6 0.7 \Box$		da	127	
	Sill 0 ₂₃	-	eric	$\sin^2 \theta_{23}$	
			phe	$ heta_{23}/^{\circ}$	
-			nos	· 20	
eVa	75E JE	E	atr	$\sin^{-}\theta_{13}$	
- ⁻²			SK	$\theta_{13}/^{\circ}$	
21 []			th	Scp /°	
Δm	ÝE 💙 E		wi	UCP/	
		– 1		Δm^2_{21}	
		E.LE.		10^{-5} eV^2	
	0.2 0.25 0.3 0.35 0.4	0.015 0.02 0.025 0.03		$\Delta m^2_{3\ell}$	
	sin ⁻ θ ₁₂	sin ⁻ θ ₁₃		10^{-3} eV^2	

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.7)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
7	$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
uau	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
ITELIC	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$	
nusp	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
aun	$\sin^2 \theta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \rightarrow 0.02436$	
CIC 1	$ heta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$	
ILIIUU	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
8	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$	
		Normal Orc bfp $\pm 1\sigma$	lering (best fit) 3σ range	Inverted Orde bfp $\pm 1\sigma$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$	
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ 0.304^{+0.012}_{-0.012}	lering (best fit) 3σ range $0.269 \rightarrow 0.343$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$	
rata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$	lering (best fit) 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$	
sric uata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$	$\frac{\text{pring } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$	
spineric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/\circ}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/\circ}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$	$\frac{\text{pring } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$	
aumospineric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$	ering (Δ $\chi^2 = 7.1$) 3σ range 0.269 → 0.343 31.27 → 35.87 0.419 → 0.617 40.3 → 51.8 0.02052 → 0.02428	
on aunospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/\circ}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/\circ}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/\circ}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$	ering (Δ $\chi^2 = 7.1$) 3σ range 0.269 → 0.343 31.27 → 35.87 0.419 → 0.617 40.3 → 51.8 0.02052 → 0.02428 8.24 → 8.96	
with SIA authospiteric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/\circ}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/\circ}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/\circ}$ $\delta_{\rm CP}/^\circ$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$ 197^{+27}_{-24}	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$ $120 \rightarrow 369$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30}	$\frac{\text{pring } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$ $193 \rightarrow 352$	
WITH ON AUTIOSPITETIC DATA	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\delta_{\rm CP}/^{\circ}}{\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$ 197^{+27}_{-24} $7.42^{+0.21}_{-0.20}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$ $120 \rightarrow 369$ $6.82 \rightarrow 8.04$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30} $7.42^{+0.21}_{-0.20}$	$\frac{\text{pring } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$ $193 \rightarrow 352$ $6.82 \rightarrow 8.04$	

experimental setup...

new physics

(reactor flux)

31

reactor flux discrepancy...

now ≤7.0% mismatch between ILL-prediction and data

2019 world reactor flux knowledge...

reactor flux (data) precision <1.0%

shape distorsion common across experiments...

only one experiment in tension: **Bugey3** (flat-ish) — spectral reference before **reactor-\thetaI3**

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

34

reactor flux uncertainty...

nature physics

ARTICLE

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

reactor ultimate flux...

Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235 U and 239 Pu β spectra

V. Kopeikin,¹ M. Skorokhvatov,^{1,2} and O. Titov^{1,*}

¹National Research Centre Kurchatov Institute, 123182, Moscow, Russia ²National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia (Dated: May 31, 2021)

We report a reanalysis of the reactor antineutrino energy spectra based on the new relative measurements of the ratio $R = {}^{e}S_{5}/{}^{e}S_{9}$ between cumulative β spectra from 235 U and 239 Pu, performed at a research reactor in National Research Centre Kurchatov Institute (KI). A discrepancy with the β spectra measured at Institut Laue-Langevin (ILL) was observed, indicating a steady excess of the ILL ratio by the factor of 1.054 ± 0.002 . We find a value of the ratio between inverse beta decay cross section per fission for 235 U and 239 Pu: $({}^{5}\sigma_{f}/{}^{9}\sigma_{f})_{KI} = 1.45 \pm 0.03$, and then we reevaluate the converted antineutrino spectra for 235 U and 238 U. We conclude that the new predictions are consistent with the results of Daya Bay and STEREO experiments.

arXiv:2103.01684v2 [nucl-ex] 28 May 2021

$R=0.925\pm0.010(exp)\pm0.023(model) \rightarrow R\approx1.02\pm0.010(exp)\pm0.02(model)$

experiment flux uncertainty will drive?

solve the reactor "issue" (anomaly):

(discrepancy data and ILL-prediction)

Uncertainty (%)	\mathbf{ND}	
Proton Number	0.66	
Thermal Power	0.47	reducible!!
TnC Selection	0.24	
Background	0.18	
Energy per Fission	0.16	
θ_{13} Correction	0.16	
Statistics	0.22	
Total	0.97	

2020 improvements...

≥2020 ab initio estimation

first LiquidO's experiment...

European Innovation Council

UK Research and Innovation

Innovation Fundament

CDF(France) **first time in neutrinos!**

•ČIEMAT (Spain)
 •IJCLab/Université Paris-Saclay (France)
 •J-G Universität Mainz (Germany)
 •Subatech/Nantes Université (France)
 •Sussex University (UK)

Charles University (Czech Republic)
INFN-Padova (Italy)
UC-Irvine (US)
Universidade Estadual de Londrina (Brasil)
PUC-Rio de Janeiro (Brasil)
Queen's University (Canada)
University of Zaragoza (Spain)
Tohoku University / RCNS (Japan)

-OTech'

CLOUD collaboration (EDF I3 institutions over 10 countries)

θ 3 ⊕ Δm²

40

summary on today's Θ 3 knowledge/experiments...

reactor-θI3 experiments: DC⊕DYB⊕RENO

"naively extrapolating" from reactor- θ 3 experiments...

~0.01%??!! possible to improve at all?

2020 world status in Θ 13...

θ₁₃ consistent (≤2σ)

minor tension ($\leq 2\sigma$) & slight increase (2016 \rightarrow 2018)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

T2K@reactor best knowledge CP-Violation...

θI3 implications

CPV phase vs θI3

[constrained by reactor]

CPV phase vs θ23

[octant ambiguity]

leptonic sector unitarity with LiquidO?

Iowards Unitarity?

(how far?)

PS-HEP Conference @ Ghent (Belgium

Anatael Cabrera CNRS/IN2P3 LAL@Orsay LNCA@Chooz

Conference @ HEP-European Physics Society (July 2019 @ Ghent Belgium) Web: https://indico.cern.ch/event/577856/contributions/3421609/

Super Cool

T2K@reactor best knowledge CP-Violation...

θI3 implications powerful constraint **CPV** phase vs θ | 3 [constrained by reactor] CPV phase vs θ23

[octant ambiguity]

<u>θ_2⊕δm²</u>

48

(stunning) experiment rationale...

univocal neutrino oscillation pattern...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

^{s1} KamLAND's spectral distortion (and reactor-off)...

A. Gando et al., Phys. Rev. D 88, 033001 (2013).

JUNO location...

 $\theta_{12} \oplus \delta m^2$ (slow) $\theta_{13} \oplus \Delta m^2$ (fast)

~late 2022

rate+shape sensitivity evolution...

consider all systematics with state of the art knowledge (KL, DC, DYB)

rate+shape \rightarrow negligible rate uncertainties

JUNO precision...

	Mass Ordering	$ \Delta m^2_{32} $	$ \Delta m^2_{21} $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$
6 years of data	$3-4\sigma$	$\sim 0.18\%$	$\sim 0.30\%$	$\sim 0.5\%$	$\sim 14\%$
20 years of data	5σ	$\sim 0.15\%$	$\sim 0.25\%$	$\sim 0.4\%$	$\sim 7\%$

Anatael Cabrera (CNRS-IN2P3 & APC)

reactor impact in θ **3**- θ **12** plane...

Mass Ordering reactors' role

PREPARED FOR SUBMISSION TO JHEP

IFT-UAM/CSIC-112, YITP-SB-2020-21

The fate of hints: updated global analysis of three-flavor neutrino oscillations

Ivan Esteban,^{*a*} M. C. Gonzalez-Garcia,^{*a,b,c*} Michele Maltoni,^{*d*} Thomas Schwetz,^{*e*} Albert Zhou^{*e*}

- ^a Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
- ^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
- ^cC.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
- ^dInstituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
- e Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

E-mail: ivan.esteban@fqa.ub.edu,

maria.gonzalez-garcia@stonybrook.edu, michele.maltoni@csic.es, schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6 σ level. Combined with the χ^2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7 σ . The CP conserving value $\delta_{\rm CP} = 180^{\circ}$ is within 0.6 σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the ~ 3 σ level. We discuss the origin of these results – which are driven by the new data from the T2K and NOvA long-baseline experiments–, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2 σ tension in Δm_{21}^2 preferred by KamLAND and solar experiments is also reduced to the 1.1 σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

KEYWORDS: neutrino oscillations, solar and atmospheric neutrinos

today's world data eads to...

•Super-Kamiokande (most info so far)

2.70 (202

some fragility?

NMO favoured

what are the leading experiments

what's going to happen next?

NuFitv5.0: today's world knowledge — what about tomorrow?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

NuFitv5.0: maginilise today's world knowledge – CPV, θ_{23} , θ_{13} , ...

the building blocks...

	direct sensitivity	nuisance	sensitivity	combined sensitivity
JUNO	ultra precision oscillation	θ ₁₃ ?	~ 3σ	<mark>δ(</mark> Δm²)≤0.5%
NOvA			<mark>~3-4σ</mark> (~800km baseline)	δ(Δm²)~1.0%
T2K		mainly CPV	<2σ	δ(Δm²)~1.0%
HyperK	fake CPV (due to Earth)	(θ ₂₃ too)	(~250km baseline)	δ(Δm²)~0.5%
DUNE			>5σ! (~1200km baseline)	δ(Δm²)~0.5%
Atmospherics		mainly θ ₂₃ (CPV too)	~3-60 (many baselines)	δ(Δm²) poor

the building blocks...

scientific reports

Explore content \checkmark About the journal \checkmark Publish with us \checkmark	Abstract		
	The measurement of neutrino mass ordering (MO) is a fundamental element for the		
nature > scientific reports > articles > article	understanding of leptonic flavour sector of the <i>Standard Model of Particle Physics</i> . Its determination relies on the precise measurement of Δm_{-}^2 and Δm_{-}^2 using either neutrino		
<u>Inatore</u> / <u>Scientine reports</u> / <u>articles</u> / article	<i>vacuum oscillations</i> , such as the ones studied by medium baseline reactor experiments, or		
	matter effect modified oscillations such as those manifesting in long-baseline neutrino beams		
Article Open Access Published: 30 March 2022	(LB $ u$ B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully		
	resolved MO measurement ($\geq 5\sigma$) is most likely to await for the next generation of neutrino		
Synergies and prospects for early resolution of the	experiments: JUNO, whose stand-alone sensitivity is $\sim 3\sigma$, or LBvB experiments (DUNE and		
eynergiee and prospecto for early recondition of the	Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to		
neutrino mass ordering	provide precious information. In this work, we study the possible context for the earliest full		
i i i i i i i i i i i i i i i i i i i	MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum		
	oscillation, upon the combination of JUNO and the current generation of LB $ u$ B experiments		
Anatael Cabrera, Yang Han, Hongzhao Yu + Show authors	(NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the		
	overall sensitivity where the sub-percent precision of Δm^2_{32} by LBvB experiments is found to		
Scientific Reports 12 Article number: 5393 (2022) Cite this article	be the leading order term for the MO earliest discovery. We also found that the comparison		
	between matter and vacuum driven oscillation results enables unique discovery potential for		
198 Accesses Metrics	physics beyond the Standard Model.		

powerful synergy/UNO vs NOvA σ T2K: high precision disappearance $\Delta m^{2}_{32...}$

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Mass Ordering resolution [now at ~30]...

discrepancies may lead to discoveries!

JUNO and HK⊕DUNE (Disappearance)

JUNO+NOvA+T2K

Unitarity

69

φ(reactor)/φ(solar) ⊕ θI3(all) ⊕ θI2(all)

consider full matrix structure (not just composition)

why shape?

•large mixing but a small one!

largest CP-Violation (SM)

•any symmetry behind? [Nature's caprice?]

U_{3x3} unitary?

[so far assumed]

70

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

CKM vs PMNS...

d s b

elegance (symmetry)

A. De Gouvea, H. Murayama, hep-ph/0301050; PLB, 2015.L. Hall, H. Murayama, N. Weiner, hep-ph/9911341.

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

unitarity is behind all our definitions...

UNITARITY

IF 3 neutrino standard states

[in agreement with quark's **3 families**]

 \Rightarrow 2 mass difference: $\Delta m^2 \& \delta m^2$

 \Rightarrow 3 independent mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$

 \Rightarrow | (Dirac) CP-Violating phase: δ_{CP}

[i.e. a 3x3 unitarity matrix may be complex]

if 4 families

3x3 effective approximation

UNITARITY testing for new families + more!!

since no CPV (yet) ⇒ test PMNS Unitarity via "each row"

$$U_{l1}|^{2} + |U_{l2}|^{2} + |U_{l3}|^{2} = 1$$

 $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1 \Rightarrow$ explore "electron top-row"

only " θ_{12} " and " θ_{13} "

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

today's (**e-row**) **unitarity** knowledge...

74

unitary explorations limited by absolute flux uncertainty

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

reactor flux uncertainty...

ARTICLE

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

neutrino last modification of the Standard Model... more discoveries

Super Cool

rationale...

79

• high precision SM's neutrino oscillation \implies synergise with JUNO & HK \oplus DUNE

neutrinos as probe BSM→ discoveries? ⇒ beyond today's paradigm?

status on neutrino oscillation knowledge...

SuperChooz

SuperChooz

BSM discovery?

	3,0 %	SK⊕SNO	2,3 %	≤0.5%	JUNO⊕SC	reactor⊕solar
θ23	5,0 %	NOvA+T2K	2,0 %	≲1.0%?	DUNE⊕HK [SC]	beam (octaint)
			1,5 %	<0.5%	Supervise	
СР	violation?	T2K+NOvA	~3/2π @ ≤2σ	@5σ?	DUNE⊕HK [SC]	beam driven
СРТ	violation?			< %?	SuperChooz	reactor⊕solar
Unitarity	violation?			< %?	SuperChooz	reactor⊕solar

reactor \oplus **beam** & **solar** again via SC — SC's atmospherics under study... nice!!

SUPERRCHOODZ pathfinder (i.e. experimental exploration)

The SuperChooz Pathfinder Exploration

■ Monday 20 Jun 2022, 11:00 → 12:00 Europe/Paris

https://indico.ijclab.in2p3.fr/event/7663/

• 100/-1-A900 - Auditorium Joliot Curie (IJCLab)

Videoconference

PHE Seminars

▶ Join

11:00 \rightarrow 12:00 The SuperChooz Pathfinder Exploration ¶

A new possible flagship neutrino experiment in Europe opens by exploiting a unique opportunity that has long been hidden in the Chooz nuclear reactor site – Europe's historical and most powerful reactor neutrino science site. The "SuperChooz" project benefits by existence of 2 caverns, formerly hosting the Chooz-A nuclear reactor complex, built in the 60's, that are becoming vacant upon its dismantling completion. The caverns hold a total volume of up to 50 000m^3, thus directly comparable to the size of SuperKamiokande. Its potential use for fundamental science purposes is under active discussion with EDF, thus starting the "pathfinder" exploration era. The SuperChooz caverns combined with the existing ~1km baseline to two of the most powerful N4 Chooz PWR nuclear reactors make this site a unique asset to Europe and specially France. Experimentally, the challenge is the poor overburden (order 100m underground). However, the novel LiquidO technology, born as a byproduct of Double Chooz experiment in the same site, heralds the potential for unprecedented active background rejection of up to two orders of magnitude, thus providing feasibility potential ground for a hypothetical SuperChooz. In this seminar, the rationale of the scientific programme of the hypothetical SuperChooz experiment will be highlighted for the first time. The project is aimed to address some of the most fundamental symmetries (studies under completion) behind the Standard Model, including a design that may open for key synergies that may boost the sensitivities of other neutrino flagship experiments such as DUNE (US), JUNO (China) and HyperKamiokande (Japan).

Speaker: Dr Anatael CABRERA (IJCLab/LNCA - IN2P3/CNRS)

🕲 1h 🖉 🗸

ICLab⊕Subatech teams — Octobre 2020

CNrs

edf

EDF CONTS

CNRS/1712-3 direction EDF CNRS exploring...

CDF CNrs

cnrs

CNrs

CNIS

CNIS

CNIS

CNrs

CNIS

March 20

CNIS

CNIS

cnrs

CNIS

CNrs CNrs

CNIS

CNrs

CNTS CNTS

the remaining challenges... (my view — likely biassed somewhat)

• improve absolute knowledge precision (ex. flux cancels by <u>multi-detector</u>) \rightarrow discoveries?

•intrinsic limitations (no appearance, etc) \rightarrow empower synergies with accelerators, solar, etc.

• $\theta I 2 \oplus \delta m^2$ precision: is likely hard to improve (few per mille) after JUNO — world best $\leq I$ year of data

• $\theta I 3 \oplus \Delta m^2$ precision: still improve for $\theta I 3$ — nobody knows how to!! [\rightarrow SuperChooz?]

• θ 3 is <u>one of the most intriguing parameter</u> of the PMNS (tiny term among many large terms) \Rightarrow pointing to a feature(s) or symmetry? certainly this is BSM territory...

•understand meaning of structure of the PMNS (i.e. large mixing) — very different from CKM

challenge remains on BACKGROUND control

? JUNO

goal:

S/BG ≥100 with minimal overburden

LiquidO?