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Introduction to neutrinos

Standard Model of Elementary Particles
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Why study neutrino interactions?
* Neutrino interaction is a signature of neutrino existence

 Study neutrino interactions to understand the weak interaction
and electroweak unification theories.

* Neutrino interactions give information for neutrino mass and
neutrino mixing,...

* In experiments: better understanding of neutrino interactions =2
more precise measuring neutrino oscillations.



Weak Interactions of SM Coupling strength
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Parity symmetry
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P: parity or space reflection
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Example of Parity symmetry violation
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Parity violation by weak interaction

+ Vector current (odd parity):  2(wv) = - (wv)
» Axial-vector current (even parity): P(Wﬁw) = Sy
 Weak current is a mixture of vector and axial vector currents:

-1
& Sw

Ju = U 242 Vﬂ(l i}’s)u

« = Parity of a system is violated by weak force! (first postulated
by Lee & Yang in 1950)
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Parity violation confirmed by experiment
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* Parity violation appeared in the
the asymmetry of polarized ¢°Co

(by Wu in 1957): More electrons emitted
60 €0+ 7o B in direction opposite to
Co—""Ni +e + V, %0Co spin = parity violation!
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Weak interaction and chirality

-igy
« CC weak interaction: J': =u NG }”“(1 i}’s)"

« Chirality: uy = 1/2(1 -ys)u
Lorentz invariant u=u;+up < Chiral projection

but not directly measurable!: “R ™ 1/’(1 " 75)“

Vector current interacting only with the left-handed particle,
or right-handed anti-particle
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Weak interaction for neutrinos

* In case of neutrinos, both CC and NC interactions can be viewed as a
vector current interacting only with the left-handed particle, or right-
handed anti-particle

* Neutrinos only participate in weak 1nteraction, they are produced in a
left-handed eigen-state (chiral).

* If neutrinos are consider as no mass:
* Chirality and helicity are the same
* Neutrinos are always 1n left-handed state and no right-handed neutrinos exist!

* In fact neutrinos are massive, right-handed neutrino exists, €.g. as
sterile neutrinos.



Details of
Neutrino Interactions
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Convenient variables used

. 4-momentum transfer: Neutrino interaction with Target

Q*=-q’
o | I T — q-Prarget P, P,
nelasticity: ¥y = 55~ |
In the target’s rest frame: q |
G0 _ E,—E |
Y=TE T TE !

* Bjorken scaling variable:

2 Particles

—q
2P target *{q

* Invariant hadronic mass:
W=¢(

X = Ptarget

q + Ptarget)2

7/14/22



Neutrino — Electron
Interactions
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Neutrino — Electron interactions: CC

Threshold neutrino energy required:

Inverse muon decay

Ey 2 mj—me \\//
Total cross-section in the center of mass frame v,(1) u(3)

(neglecting mass of electron and neutrino):
W
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_ _ E
Measurement in Charm Il:  o(v,e7)=(1.651+0.093)x10 ‘”(1 Gev] cm?
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Neutrino — electron interactions: NC

NC electron elastic scattering

* Incoming neutrinos can be: 'V, ,\'u and V.
V(1) Vo(3)

* There is no change in mass = threshold-less interaction!

Z
» Total cross-section (9% of the inverse muon decay): /\\
sin” 8,, = 0.2324 +0.0058 +0.0059 e(2) e(4)
_Gys P

Cror = i (Lll—sin2 HW+§-sm49W):1.4><1042cm2/GeV-EV(GeV)
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Neutrino — electron interactions: CC & NC

V,+te >V, +te

* |[n case of incoming neutrino Vo Vve— VVVe

—In addition to NC, there is the L,
second contributing, CC W™ Z
scattering. :
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Fractional uncertainty

Neutrino — electron interactions: Application

Known Interaction (Standard Candle)

 To constraint neutrino flux

using the uncertainty of cross-section

Flux constraining using nu-e (spectrum)
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* v-e scattering 1s well known interaction we can use to
constrain the neutrino flux

20 December 2013

Jaewon Park. U. of Rochester FNAL JETP



Neutrino — Nucleons
Interactions
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Neutrino — Nucleons interactions

1. Charged current quasi-elastic scattering: V, +n —p +p

2. Neutral current elastic scattering: V,+N->V,+N

3. Single m,1n.,K resonance productions:  V +N =2 [+ N+ (1, K)
4. Coherent pion productions: V,+X2VP,+X+m

5. Deep inelastic scattering : V,+N =2 [+ N + mn(n,K)

l: lepton; N, N’: nuclons; m: integer

Pion () Eta (1)

_ B Kaon (K)
7 *+(ud); E-(du)  uT+ dd -2 55 +=us: K = sT Proton (p) Neutron (n)
70 (ut /dd) n= 76

M, ~140 MeV | | M, ~ 548 MeV
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K° = ds/sd p = uud n = udd

my ~ 495 MeV m, ~ 940 MeV | Im, ~ 940 MeV



Neutrino — Nucleons interactions

* Nucleon target gives much more cross-
section than electron target.

e Elastic interactions:
» Dominate at small Q?

> Nucleon recoil intact

» CC interactions are referred to as “quasi -
elastic” (change of charge and the mass
transfer to the lepton in the final state).

* Inelastic scattering:

> At low Q?, resonance production is dominated.

» At high Q?, DIS production is dominated
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Neutrino — Nucleons interactions

Ptarget
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CC - W* exchange

¢Quasi-elastic Scattering
Target changes but no
breakup

vu+n - W +p

«Coherent/Diffractive production
Target unchanged
vu+n—>u‘+n+7r+

¢Nuclear resonance production
Target goes to excited state
and decays
vu+n—>u'+p+n°(N*orA)

n+mn"

¢Deep Inelastic Scattering
Target breaks up
v, + quark — p + quark'

NC - Z° exchange

¢Elastic Scattering
Target unchanged
vu+n — vu + n
¢Coherent/Diffractive production
Target unchanged
v +N-v +N +7°
¢Nuclear resonance production
Target goes to excited state
and decays
vu+ N—>vu+ N + © (N* or A)
¢Deep Inelastic Scattering
Target breaks up
v, + quark — v, + quark



NC Elastic and CC QE interactions

NC Elastic

* In these processes of neutrino-nucleon interaction, a

A% V
single lepton and a single nucleon are produced in | |
which the nucleon recoils intact.

e In case of NC, for all flavours of neutrinos and anti- z
neutrinos, we have “NC elastic” scattering:
p/n p/n

V+N=2>V+N
* In case of CC interaction, when neutrinos acquire CC QE
sufficient energy:

v, I
V,+n 2p+IF
—> Need energy to create the lepton’s mass =2 this is I
referred to as “CC Quasi-elastic” (CC QE)
scattering. ) ,
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CC QE interactions

* CC QE interactions 1s an important channel
for v oscillation experiments:

* QE gives largest contribution to the
cross-section of neutrino-nucleon
interaction in a low region energy of
neutrino ( <1 GeV).

* QE is two body reaction = the incident
neutrino energy can be reconstructed
from kinematics of the charged lepton =
for measuring oscillation parameters.
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This implies that it 1s difficult to keep for

the nucleon to remain intact at higher g?




Resonance production

* This production obtained with higher Q>
transfer (or neutrino’s energy,

0.5GeV < E < 10 GeV)

- inelastic scattering!

* The lepton part 1s alsmost the same as in the
case of elastic scattering.

* In the hadronic part, the target nucleon i1s
knocked into a baryon resonance —>then
decay 1nto a nucleon + a single pion (mostly)

or mult1 pions or Kaons or a radiative photon.
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The available resonance
depending on neutrino’s energy



Single pion production

Charged Current

A%

Excitation of baryon resonance | | v, +p — [ +7" +p

v ol
v+n = I 4+71 4+n W Tt
v+n — Im+7°+p o

v+N 2> £(v) +N* D

u Vi
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n

Decay of baryon resonance

)+
/ '
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Single pion production

v+N 2> £(v) "‘N*I Charged Current _

n(y) + N’ v, u
Main background of the nucleon decay:
W+
Particles in the final state are the same as the ones from nucleon decay Tt
Main background for the search of v, 2 v, at T2K P 0
In the NC scattering, 1’ and y production can mimic v, Neutral Current
Major contamination to the energy spectrum measurement Y Vi
In the CC scattering, m production can be absorbed in the nucleus: Vi
* 71 can be considered as missing energy, 0
- background in searching for v, 2 v, disappearance n
* CClpi can be mimicked as CCQE. N
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Single meson and photon production
v Meson 7™

Delta (4) v+N 2> £+ A(N*)

€ h ?

A** = uuu; A* = uud NS f-I-A(N*)N + (K, n)
A% = udd; A-=ddd |V

m, = 1232 MeV — K+ A

v+ N 2> £+ A(N¥)
b N4y

/ W*_y

Can be background of the v, =2 v, appearance ! p -
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o [10% cm?]

Single pion production cross-section
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CC Resonance (p)
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* Data points: total inclusive v,
CC interaction VP —> [ p T

v, CC lpi cross-section
on deuterium

This process 1s dominated 1n the range
0.5 GeV <E <10 GeV




Coherent Interactions (nuclear target)

* Pion production without breaking the target
nucleus.

* Cross-section 1s smaller than the resonance-
mediated production.

* At low range of E, : NC scattering:
v+ X2 v+ X+

* Recently, cross-section of charged current
coherent pion production (v + “C = 1*+ 12C
+ 1V) was found to be very small in ~ < GeV
region.

* CC experimently observed 1n higher E,




v cross section / E, (10°° cm? / GeV)

o o O ©Q -
o N A O ® N B

Deep Inelastic Scattering

A. Schukraft, G. Zeller

DIS process appears from E > few GeV
Nucleons are made of quarks.

3 * Understood as neutrino — quark interaction.
- * E, 1s calculated as energy of lepton +
3 energy of hadrons.
3 TOTAL v + N =21+ hadrons
E s g niices L ':,‘!-*-. Ve u
E_ \
— L
107 1 10 10°
E, (GeV) e
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Deep Inelastic Scattering

- e ANL12FT = BEBC + BNL7FT
30— v ccFR o CCFRR o CDHS . . .

- o FNAL 15FT +« Gargamelle ~ |HEP ITEP [ [’ e Data pOlntS: total inclusive VM
o5 ® IHEPJINR v SKAT - MINOS ¢ L . .

: + SciBooNE e T2K — CC DIS CC lnteraCtlon measured
20 on different targets.
15—

10— v, CC DIS cross-section
- on deuterium
5._
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DIS process dominates for E, > 10 GeV and increases linearly with E, until W, Z mass!
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Neutrino — Nucleus
Interactions

7/14/22



Neutrino — nucleus interactions: motivation

e Limitation of neutrino — electron interaction:

e Well-understood but cross-section is much smaller than neutrino — nucleon interactions
* Impossible to create a target made of only free electrons in the reality.

* Experiments think of neutrino — nucleons interaction:
* Impossible to construct a target made of pure neutrons

* Hydrogen target containing only proton = CC QE interaction is only for anti-neutrinos with
lower cross-section.

* Deuterium made of proton and neutron is a good target but it is light = low interaction rate.

* Neutrino-nucleus interactions:
* Give higher interaction rate
* In experiments, detectors are build using heavier nuclei such as carbon, oxygen or iron

* Nuclear effects are present making complication in understanding interactions observed in
detectors!



Neutrino-nucleus interactions: nuclear efftects

e Initial state of the nucleons:
* Nucleons in a nucleus move around

inside the nuclear potential, changing s —RFG
their momentum and direction. 05 _SF
* The direction and momentum of the

nucleon affects the kinematics of any
1nteraction

* The 1nitial momentum spectra of
nucleons 1s not well known.

« = Need models to describe this.
* Final State Interaction (FSI)

* Nuclear effects become more Y LL';%-‘ - a—
important at low energy region.

Y S S SR (ST R R ) 'AY (O The nucleon momentum distributions from
generators. a RFG and a SF (both for Carbon)
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