Prospect for Sensitivity of some Prominent Experiments to Neutrino Mass Ordering

Thien Le Hong, Thang Nguyen Tat, Bhavna Yadav

Mini Project Presentation Vietnam School of Neutrinos (VSON6) 2022, ICISE, Quy Nhon, Vietnam Supervisor: Dr. Kirsty Duffy

July 22, 2022

1/29

- Introduction
- II Basic Knowledge about MO
- **III** Prominent Experiments to determine MO
- IV Sensitivity of Prominent Experiments to MOV Conclusion

Introduction

- Standard Model has three generations of fundamental matter particles (fermions)
- The quark and charged lepton mass show a hierarchical structure (Gen III > Gen II > Gen I)
- Does neutrino mass show the same hierarchy?

Neutrino Oscillation

Image: A matrix and a matrix

→ ∃ →

Knowledge about MO

$$P(\nu_l \to \nu_{l'}) = \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \frac{\Delta m^2 (eV^2) \cdot L(m)}{E(MeV)} \right)$$

We know the two masssquared differences from neutrino oscillations:

- |∆m²_{atm}| ~ 2.5 x 10⁻³ eV²
- Δm²_{sol} ~ 7.5 x 10⁻⁵ eV²
- We don't know the sign of the Δm²_{atm} since the leading order vacuum oscillation formula is only sensitive to sin²(Δm²)
 - Normal Hierarchy (NH): v₃ > v₂ > v₁ (v_e is lighter)
 - Inverted Hierarchy (IH):
 v₂ > v₁ > v₃ (v_e is heavier)

We also don't know the absolute neutrino mass, $\delta_{\mbox{\it CP}}$ or if neutrino is its own anti-particle

5 / 29

- 1 Medium Baseline Reactor based experiment (JUNO)
- 2 Long Baseline
 Accelerator based
 experiment (T2K,
 NOvA, HK, DUNE)
 3 Summary

- Experimental Overview
- Method of determining MO
- Challenges/Requirements
- Key designs to meet the requirements

Medium Baseline Reactor based experiments (JUNO)

1.1. Experimental Overview

JUNO characteristics

- Iiquid scintillator detector: 20ktons
- number of PMTs: 17,000 (20")
- energy resolution: 3% at 1MeV
- rock overburden: 700m
- distance to reactors: 53km

Physics objectives

- neutrino mass hierarchy
- sub-% measurement of solar oscillation parameters
- astrophysical neutrinos
- nucleon decay
- eV-scale sterile neutrinos

Figure: JUNO experiment overview

Medium Baseline Reactor based experiments (JUNO)

1.2. Method of determining MO Precision vaccum oscillation measurement

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$ $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$

Figure: JUNO neutrino bi-oscillation spectral distorsion

ヨト イヨト

1.3. Challenges/Requirements

- High statistics (10⁵ events in 6 years)
- High Energy resolution ($\tilde{3}$ % at 1MeV)
- Low Energy scale uncertainty (< 1%)

1.4. Key designs to satisfy the requirements

- Large liquid scintillator volume (20kton)
- High liquid scintillator light yield and transparency
- High PMT coverage and efficiency
- Double (stereo-) calorimetry
- Complementary calibration system
- Using JUNO+TAO

- 2.1. Experimental Overview Basically 3 generations :
 - First generation : K2K, MINOS, OPERA
 - Second generation : NOvA, T2K
 - Third generation : DUNE, Hyper-Kamiokande (HK)

Long Baseline Accelerator Based Experiment (Gen. 2)

Main goals :

- vµ->ve oscillation
- δCP and θ₁
- Δm23 and θ₂₁

T2K Characteristics :

- Baseline : 295km
- Off-axis angle : 2.5 degree -> Maximum at 600MeV

Primary Physics Goals :

- Mixing angle θ₁
- mass splitting ∆m²₂
- Strong constraints on the CP-violating phase δ
- Strong constraints on the neutrino mass hierarchy

NOvA Characteristics :

- Liquid scintillator detector : 14ktons
- Baseline : 810km
- Largest-flux Energy : 2GeV

Figure: T2K (Upper) and NO ν A (Lower) experiment overview

(日) (四) (日) (日) (日)

Long Baseline Accelerator Based Experiment (Gen.3)

Figure: HK experiment overview

Figure: DUNE experiment overview

(日) (四) (日) (日) (日)

Long Baseline Accelerator Based Experiment

2.2. Method of determining MO Matter Effect

Figure: Atomic structure of Matter

Long Baseline Accelerator Based Experiment

Figure: Feymann diagrams for charged current (left) and neutral current (right) in matter

Charged Current Interaction

- Giving additional effective potential (or "drag") to neutrino
- Only for electron neutrino

Neutral Current Interaction

- Giving additional potential (or "drag") to neutrino
- Affecting all flavors equally
- \Rightarrow Induce an effect that depends on Δm^2_{21}

Long Baseline Accelerator Based Experiment

Matter Effect

Figure: Survival probability of electron neutrino at baseline L=5x10³km

Image: A matrix

Long Baseline Accelerator Based Experiments

Beyond vacuum oscillation: matter effect (MSW effect)

- Neutrino forward scatter with electron when travelling in matter, gaining an additional effective potential ±V_c (minus for antineutrino), causing a phase shift in oscillation that is dependent on MH
- Neutral current scattering doesn't contribute (same phase shift for ν_θ, ν_μ, ν_c)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}[\Delta(1-x)]}{(1-x)^{2}} \\ &+ \alpha J\cos(\Delta \pm \delta)\frac{\sin(\Delta x)\sin[\Delta(1-x)]}{x(1-x)} \\ &+ \alpha^{2}\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\frac{\sin^{2}(\Delta x)}{x^{2}}, \end{split}$$

$$\begin{split} \Delta &\equiv \Delta m_{32}^2 L/(4E) \qquad x \equiv \pm 2\sqrt{2} G_{\rm F} n_e E / \Delta m_{32}^2 \\ J &\equiv \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \end{split}$$

 $V_C = \sqrt{2}G_F N_e$

- (1-x) term carries the MH information through matter effect
- Effect is usually opposite for neutrino vs. antineutrino
- Effect is usually larger for higher energy and longer distance
- Effect is largely dependent on θ₂₃ (due to octant ambiguity)
- Effect is coupled with size of CP phase

イロト イ伺ト イヨト イヨト

2.3. Challenges

- Largely dependent on θ_{23}
- Coupled with size of CP phase
- Require precise estimation of matter density
- Require sufficiently long baseline

3

イロト イポト イヨト イヨト

Event Rate \approx Prob. \times Flux \times Cross Section \times Detection Efficiency

Expts.	Baseline(km)	Matter Density(gm/cc)	Matter Potential(eV)
HK	295	2.6	$0.94 imes10^{-13}$
T2K	295	2.6	$0.94 imes10^{-13}$
ΝΟνΑ	810	2.8	$1.01 imes10^{-13}$
DUNE	1300	3	$1.08 imes10^{-13}$

Table: Matter potential and baseline for Experiments

Matter effect in Long Baseline Accelerator Based Experiment

Matter Effect, neutrino

Figure: The plot shows the matter effect in $P_{\mu e}$ in different baselines. The horizontal solid lines represent the $P_{\mu e}$ for NH and the horizontal dashed lines for IH at the first oscillation peak of T2K/T2HK (*black*), NO ν A (*cyan*) and DUNE (*yellow*) respectively. The difference $P_{\mu e}^{NH} - P_{\mu e}^{IH}$ represents the magnitude of matter effect in each experiments. $\delta = 0^{\circ}$ and $\theta_{23} = \pi/4$ is considered. Other parameter are taken from NuFIT 5.1.

Matter Effect in Long Baseline Accelerator Based Experiments

R.B. Patterson, Annu. Rev. Nucl. Part. Sci. 2015. 65:177 Depend on Mixing angle and other parameter also

Figure: Left: Maximal θ_{23} . Right: Impact of Upper and Lower octant

э

イロト イヨト イヨト イヨト

T2K and NO ν A Sensitivity to MO (2 Gen.)

Figure: T2K (upper) and NO ν A (lower) $\langle \neg \neg \rangle$

HK and DUNE Sensitivity to MO (3 Gen.)

Figure: HK (left) and DUNE (right)

< □ > < □ > < □ > < □ >

JUNO Sensitivity to MO

Combined Sensitivity to MO

æ

- Neutrino Mass Hierarchy is still a fundamental property that we don't know
- Currently, there is 2σ preference for Normal Ordering from individual experiment: T2K, NOVA, combined with reactor θ_{13} measurement
- Next generation experiments aim to have greator than 3σ sensitivity to MO in a single experiment (2025-2030)
- JUNO is independent of $\delta_C P$ and $\theta_2 3$ but LBL acclerator depend on these parameter. So Two different techniques convering to same result can give a concrete evidence.
- Resolved MO can help to distinguish between different mass models and other aspects related to neutrino mass and CP violaion.

- We would like to thank all the organizers of VSON6 for giving us this opportunity to attend this school. Special thanks to Dr. Cao Son.
- We are very grateful to all the Lecturers for their very informative talks and hands-on.
- Also we would like to thank Dr. Kirsty Duffy and Mr. Ankur Nath for there valuable time in helping us with the mini-project.

JHEP 03 028 (2014)

systematics and dates

THANK YOU

æ

< □ > < □ > < □ > < □ > < □ >