Lectures on neutrino phenomenology - Part II

Monday - July I 8th -VSON 2022
ᄂヘfアT
Pasquale Dario Serpico (LAPTh - Annecy, France)

Lecture's Outline

```
- Motivation:Why focusing on v mass?
- Some history
    v oscillations
        That's how we learned about massive
        v nature & still in the process of measuring unknown/poorly known parameters Matter
- Absolute mass scale \& \(v\) nature
Tritium endpoint
Cosmology
\(0 \nu 2 \beta\)
- Conclusions
```


Two flavour case

Only one angle, plus a possible phase if Majorana (irrelevant for oscillations)
Check that the phase does not show up in Im J

$$
U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
$$

Two flavour case

Only one angle, plus a possible phase if Majorana (irrelevant for oscillations)

$$
U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
$$

Check that the phase does not show up in Im J

Appearence prob.

$$
P_{\alpha \rightarrow \beta}(L)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(L)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\left(m_{2}^{2}-m_{1}^{2}\right) L}{4 E}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\pi L}{\ell_{\mathrm{osc}}}\right)
$$

Survival prob.

$$
P_{\alpha \rightarrow \alpha}(L)=1-P_{\alpha \rightarrow \beta}(L)
$$

oscillation length $\quad \ell_{\mathrm{osc}}=\frac{4 \pi E \hbar}{\Delta m^{2} c^{3}}=2.48\left(\frac{E}{\mathrm{GeV}}\right)\left(\frac{\mathrm{eV}^{2}}{\Delta m^{2}}\right) \mathrm{km}$

$L / e_{\text {osc }}$

Two flavour case

Only one angle, plus a possible phase if Majorana (irrelevant for oscillations)

$$
U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
$$

Check that the phase does not show up in Im J

Appearence prob.

$$
P_{\alpha \rightarrow \beta}(L)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(L)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\left(m_{2}^{2}-m_{1}^{2}\right) L}{4 E}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\pi L}{\ell_{\mathrm{osc}}}\right)
$$

Survival prob.

$$
P_{\alpha \rightarrow \alpha}(L)=1-P_{\alpha \rightarrow \beta}(L)
$$

oscillation length $\quad \ell_{\mathrm{osc}}=\frac{4 \pi E \hbar}{\Delta m^{2} c^{3}}=2.48\left(\frac{E}{\mathrm{GeV}}\right)\left(\frac{\mathrm{eV}^{2}}{\Delta m^{2}}\right) \mathrm{km}$

Physical parameter space spanned either with:

$\theta_{i j} \in[0, \pi / 2]$ and $\Delta m^{2}>0$
Vacuum osc. has octant degeneracy
$L / \ell_{\text {osc }}$

Three flavour case (PMNS matrix)

The mixing matrix can be fully described by 3 mixing angles in the parameter ranges $\theta_{\mathrm{ij}} \in[0, \pi / 2]$ a phase $\delta_{\mathrm{CP}} \in[0,2 \pi[$, and two extra phases if Majorana

$$
U_{\text {PMNS }}=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)}_{\text {Atmospheric mixing }}
$$

Just like for rotations (e.g. Euler vs. Roll-Pitch-Yaw), the parametrisation is not unique (observables are!) but there is a standard PMNS parameterisation

The names in the factorisation are related to the fact that "effective" 2×2 mixing is sufficient for a leading order description of phenomena in different settings (and was historically used for first measurements!)

Three flavour case (PMNS matrix)

The mixing matrix can be fully described by 3 mixing angles in the parameter ranges $\theta_{\mathrm{ij}} \in[0, \pi / 2]$ a phase $\delta_{\mathrm{CP}} \in[0,2 \pi[$, and two extra phases if Majorana

Just like for rotations (e.g. Euler vs. Roll-Pitch-Yaw), the parametrisation is not unique (observables are!) but there is a standard PMNS parameterisation

Manifest that CP-violation in oscillations requires all three angles to be non-zero, and is proportional to $\sin \delta_{\mathrm{CP}}$, e.g.

$$
\begin{aligned}
P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)-P\left(v_{\mu} \rightarrow\right. & \left.v_{e}\right)=2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \\
& \times \sin \left(\Delta m^{2} 31 \frac{L}{4 E}\right) \sin \left(\Delta m^{2} 32 \frac{L}{4 E}\right) \sin \left(\Delta m^{2} 21 \frac{L}{4 E}\right)
\end{aligned}
$$

$$
U_{\text {PMNS }}=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)}_{\text {Atmospheric mixing }}
$$

mes in the factorisation are related to the fact that "effective" 2×2 mixing is sufficient for a leading order description of phenomena in different settings (and was historically used for first measurements!)

Mass splitting hierarchy: 2-flavour limits of 3-flavour case

It turns out that is some hierarchy, $\Delta m_{21} 2 \ll\left|\Delta m_{31}{ }^{2}\right|$
(sign of the former known via solar matter effects, next lecture; latter, not yet known with high confidence)

The general formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

reduces to

$$
P_{\alpha \beta} \simeq \delta_{\alpha \beta}-4\left(J_{31}^{\alpha \beta}+J_{32}^{\alpha \beta}\right) \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)-4 J_{21}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)
$$

- If we select L / E such that arg. $31 \sim \pi / 2 \rightarrow \Delta m_{21} 2 \ll\left|\Delta m_{31} 2\right|$ implies a very small 21 -oscillatory part (atmospheric 2-flavour limit)
- f we select L/E such that arg. $2 \mathrm{I} \sim \pi / 2 \rightarrow 3 \mathrm{I}$-oscillatory part averages to $\mathrm{I} / 2$ (solar 2-flavour limit)

Atmospheric limit

Also 'mild' mixing hierarchy $\theta_{13} \ll \theta_{12} \approx \theta_{23}$. Neglecting terms in θ_{13} we get:

$$
\begin{aligned}
& P_{e e} \simeq 1 \quad P_{e \mu} \simeq P_{\mu e} \simeq 0 \\
& P_{\mu \mu} \simeq 1-\sin ^{2}\left(2 \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
\end{aligned}
$$

 by pions as secondaries of cosmic ray interactions in the Earth's atmosphere. Similar approximation probed by "conventional v beams" produced (mainly) by π decays like in the atmosphere

$$
\Delta m_{32}^{2} \simeq \Delta m_{31}^{2} \simeq 2.4 \times 10^{-3} \mathrm{eV}^{2} \quad \sin ^{2} \theta_{23} \simeq 0.5
$$

Solar limit

| Neglecting terms in θ_{13} we get: |
| :--- |$P_{e e} \simeq 1-\sin ^{2}\left(2 \theta_{12}\right) \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)$

Although historically probed with solar v (more on that later), a very long baseline reactor experiment (like KamLAND, at hundreds of km) can probe the 'solar parameters' by detecting anti- \boldsymbol{v} via inverse β decays.

Switching on the 'reactor angle'

If relaxing the approximation $\theta_{13} \ll \theta_{12}, \theta_{23} \quad P_{e e}=1-\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)-\cos ^{4}\left(\theta_{13}\right) \sin ^{2}\left(2 \theta_{12}\right) \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)$
choosing a much shorter baseline (few km) than for the solar parameters, reactor experiments can largely 'isolate' the effect of θ_{13}

Nowadays, analyses usually include all the three-flavour parameters and for $L B$ experiments also matter effects
V. Neutrino oscillations in matter

v oscillations in matter

Consider v's not in vacuum $\mid 0>$, but immersed in a 'ordinary matter' background $\mid \Omega>$, with isotropically distributed e, p, and n (equal numbers of R and $L \ldots$... , density n_{i} and momentum distribution $f_{i}(p)$

The EoM for the v's now contain a potential, i.e. they are now of the form

$$
\left(i \not \partial-m-\gamma^{0} V\right) \nu=0
$$

v oscillations in matter

Consider v's not in vacuum $\mid 0>$, but immersed in a 'ordinary matter' background $\mid \Omega>$, with isotropically distributed e, p, and n (equal numbers of R and $L \ldots$... density n_{i} and momentum distribution $f_{i}(p)$

The EoM for the v's now contain a potential, i.e. they are now of the form

$$
\left(i \not \partial-m-\gamma^{0} V\right) \nu=0
$$

The potential can be derived from the part of the Lagrangian describing v interactions

$$
\begin{array}{r}
\mathcal{L}_{\text {weak }}^{\text {eff }} \supset-2 \sqrt{2} G_{F}\left\{\left(\bar{\nu}_{e} \gamma_{\mu} P_{L} \nu_{e}\right)\left(\bar{e} \gamma^{\mu} P_{L} e\right) \longleftarrow\right. \text { Fierz rearrangement of fields } \\
\left.\quad+\left(\sum_{\alpha} \bar{\nu}_{\alpha} \gamma_{\mu} P_{L} \nu_{\alpha}\right)\left[\sum_{f}^{p, n, e} \bar{f} \gamma^{\mu}\left(I_{3}^{f} P_{L}-\sin ^{2} \vartheta_{W} Q_{f}\right) f\right]\right\}
\end{array}
$$

The potential

Average over the distribution

$$
\begin{aligned}
& \left\langle\mathcal{L}_{\text {weak }}^{\text {eff }}\right\rangle=-2 \sqrt{2} G_{F}\left\{\left(\bar{\nu}_{e} \gamma^{\mu} P_{L} \nu_{e}\right) \int d^{3} p f_{e}(p)\langle\Omega| \bar{e} \gamma^{\mu} P_{L} e|\Omega\rangle\right. \\
& \quad+\frac{1}{2}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha}\right) \int d^{3} p\langle\Omega|\left[f_{e}(p) \bar{e} \gamma^{\mu}\left(-P_{L}+2 s_{W}^{2}\right) e\right. \\
& \left.\left.\quad+f_{p}(p) \bar{p} \gamma^{\mu}\left(P_{L}-2 s_{W}^{2}\right) p+f_{n}(p) \bar{n} \gamma^{\mu}\left(-P_{L}\right) n\right]|\Omega\rangle\right\}
\end{aligned}
$$

The potential

Average over the distribution

$$
\begin{aligned}
& \left\langle\mathcal{L}_{\text {weak }}^{\text {eff }}\right\rangle=-2 \sqrt{2} G_{F}\left\{\left(\bar{\nu}_{e} \gamma^{\mu} P_{L} \nu_{e}\right) \int d^{3} p f_{e}(p)\langle\Omega| \bar{e} \gamma^{\mu} P_{L} e|\Omega\rangle\right. \\
& \quad+\frac{1}{2}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha}\right) \int d^{3} p\langle\Omega|\left[f_{e}(p) \bar{e} \gamma^{\mu}\left(-P_{L}+2 s_{W}^{2}\right) e\right. \\
& \left.\left.\quad+f_{p}(p) \bar{p} \gamma^{\mu}\left(P_{L}-2 s_{W}^{2}\right) p+f_{n}(p) \bar{n} \gamma^{\mu}\left(-P_{L}\right) n\right]|\Omega\rangle\right\}
\end{aligned}
$$

Only the $\mathbf{0}$ component survives because of isotropy: $\quad \longrightarrow \quad \bar{f}_{L} \gamma^{0} f_{L}=f_{L}^{\dagger} f_{L}$

The potential

Average over the distribution

$$
\begin{aligned}
& \left\langle\mathcal{L}_{\text {weak }}^{\text {eff }}\right\rangle=-2 \sqrt{2} G_{F}\left\{\left(\bar{\nu}_{e} \gamma^{\mu} P_{L} \nu_{e}\right) \int d^{3} p f_{e}(p)\langle\Omega| \bar{e} \gamma^{\mu} P_{L} e|\Omega\rangle\right. \\
& \quad+\frac{1}{2}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha}\right) \int d^{3} p\langle\Omega|\left[f_{e}(p) \bar{e} \gamma^{\mu}\left(-P_{L}+2 s_{W}^{2}\right) e\right. \\
& \left.\left.\quad+f_{p}(p) \bar{p} \gamma^{\mu}\left(P_{L}-2 s_{W}^{2}\right) p+f_{n}(p) \bar{n} \gamma^{\mu}\left(-P_{L}\right) n\right]|\Omega\rangle\right\}
\end{aligned}
$$

Only the $\mathbf{0}$ component survives because of isotropy: $\quad \longrightarrow \quad \bar{f}_{L} \gamma^{0} f_{L}=f_{L}^{\dagger} f_{L}$
These operators count the number of L fermions, statistically half of the total
\rightarrow factors $n_{i} / 2$ out of the integration/trace over $\mid \Omega>$

$$
\rightarrow \quad-\sqrt{2} G_{F} n_{e}\left(\bar{\nu}_{e} \gamma^{0} P_{L} \nu_{e}\right)-\frac{G_{F}}{\sqrt{2}}\left[\left(1-4 s_{W}^{2}\right)\left(n_{p}-n_{e}\right)-n_{n}\right]\left(\bar{\nu}_{\alpha} \gamma^{0} P_{L} \nu_{\alpha}\right)
$$

The potential

Average over the distribution

$$
\begin{aligned}
& \left\langle\mathcal{L}_{\text {weak }}^{\text {eff }}\right\rangle=-2 \sqrt{2} G_{F}\left\{\left(\bar{\nu}_{e} \gamma^{\mu} P_{L} \nu_{e}\right) \int d^{3} p f_{e}(p)\langle\Omega| \bar{e} \gamma^{\mu} P_{L} e|\Omega\rangle\right. \\
& \quad+\frac{1}{2}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha}\right) \int d^{3} p\langle\Omega|\left[f_{e}(p) \bar{e} \gamma^{\mu}\left(-P_{L}+2 s_{W}^{2}\right) e\right. \\
& \left.\left.\quad+f_{p}(p) \bar{p} \gamma^{\mu}\left(P_{L}-2 s_{W}^{2}\right) p+f_{n}(p) \bar{n} \gamma^{\mu}\left(-P_{L}\right) n\right]|\Omega\rangle\right\}
\end{aligned}
$$

Only the $\mathbf{0}$ component survives because of isotropy: $\quad \longrightarrow \quad \bar{f}_{L} \gamma^{0} f_{L}=f_{L}^{\dagger} f_{L}$
These operators count the number of L fermions, statistically half of the total
\rightarrow factors $n_{i} / 2$ out of the integration/trace over $\mid \Omega>$

$$
\rightarrow \quad-\sqrt{2} G_{F} n_{e}\left(\bar{\nu}_{e} \gamma^{0} P_{L} \nu_{e}\right)-\frac{G_{F}}{\sqrt{2}}\left[\left(1-4 s_{W}^{2}\right)\left(n_{p}-n_{e}\right)-n_{n}\right]\left(\bar{\nu}_{\alpha} \gamma^{0} P_{L} \nu_{\alpha}\right)
$$

Euler-Lagrange equation finally yield the EoM with the following potential in flavour space

$$
V=\operatorname{diag}\left(V_{\mathrm{CC}}+V_{\mathrm{NC}}, V_{\mathrm{NC}}, V_{\mathrm{NC}}\right) . \quad V_{\mathrm{CC}}=\sqrt{2} G_{F} n_{e} \quad V_{\mathrm{NC}}=\frac{G_{F}}{\sqrt{2}}\left[\left(1-4 \sin ^{2} \vartheta_{W}\right)\left(n_{p}-n_{e}\right)-n_{n}\right]
$$

Equations of motion

Our results for vacuum evolution equivalent to v states evolving as

$$
i \frac{\partial}{\partial t} \psi=E \psi \simeq\left(p+\frac{m^{2}}{2 p}\right) \psi
$$

Getting rid of an overall common phase, now we get in the mass basis

$$
i \frac{\partial}{\partial t} \psi_{i}=\left[\frac{\Delta m_{i 1}^{2}}{2 p} \delta_{i j}+\left(U V U^{\dagger}\right)_{i j}\right] \psi_{j}
$$

Equations of motion

Our results for vacuum evolution equivalent to v states evolving as

$$
i \frac{\partial}{\partial t} \psi=E \psi \simeq\left(p+\frac{m^{2}}{2 p}\right) \psi
$$

Getting rid of an overall common phase, now we get in the mass basis

$$
i \frac{\partial}{\partial t} \psi_{i}=\left[\frac{\Delta m_{i 1}^{2}}{2 p} \delta_{i j}+\left(U V U^{\dagger}\right)_{i j}\right] \psi_{j}
$$

- Note that anti-v's ($E<0$ solutions to Dirac eq.) the potential has an opposite relative sign to the mass term. 'fake' (medium dependent) CP violation that has to be taken into account in searches for genuine CP violation

Equations of motion

Our results for vacuum evolution equivalent to v states evolving as

$$
i \frac{\partial}{\partial t} \psi=E \psi \simeq\left(p+\frac{m^{2}}{2 p}\right) \psi
$$

Getting rid of an overall common phase, now we get in the mass basis

$$
i \frac{\partial}{\partial t} \psi_{i}=\left[\frac{\Delta m_{i 1}^{2}}{2 p} \delta_{i j}+\left(U V U^{\dagger}\right)_{i j}\right] \psi_{j}
$$

- Note that anti-v's ($E<0$ solutions to Dirac eq.) the potential has an opposite relative sign to the mass term. 'fake' (medium dependent) CP violation that has to be taken into account in searches for genuine CP violation
- V, scaling as G_{F}, corresponds to coherent scattering, as opposed to incoherent scattering (order $G_{F}{ }^{2}$)

Think of birefringence for different photon polarisations as analogy of different potential for different v flavours

Equations of motion

Our results for vacuum evolution equivalent to v states evolving as

$$
i \frac{\partial}{\partial t} \psi=E \psi \simeq\left(p+\frac{m^{2}}{2 p}\right) \psi
$$

Getting rid of an overall common phase, now we get in the mass basis

$$
i \frac{\partial}{\partial t} \psi_{i}=\left[\frac{\Delta m_{i 1}^{2}}{2 p} \delta_{i j}+\left(U V U^{\dagger}\right)_{i j}\right] \psi_{j}
$$

- Note that anti-v's ($E<0$ solutions to Dirac eq.) the potential has an opposite relative sign to the mass term. 'fake' (medium dependent) CP violation that has to be taken into account in searches for genuine CP violation
- V, scaling as G_{F}, corresponds to coherent scattering, as opposed to incoherent scattering (order $G_{F}{ }^{2}$)

Think of birefringence for different photon polarisations as analogy of different potential for different v flavours

- In 'exotic' environments (like SN cores, early universe) the potential is more complicated, e.g. the presence of dense v backgrounds makes the problem non-linear and the physics very rich (but complicated)!

2 flavour case

$$
i \frac{\mathrm{~d}}{\mathrm{~d} x}\binom{\nu_{e}}{\nu_{\mu}}=\left(-p \mathbf{l}+\frac{1}{2 p} U\left(\begin{array}{cc}
m_{1}^{2} & 0 \\
0 & m_{2}^{2}
\end{array}\right) U^{\dagger}+\Delta V\right)\binom{\nu_{e}}{\nu_{\mu}} \quad \Delta V=\left(\begin{array}{cc}
\sqrt{2} G_{F} n_{e} & 0 \\
0 & 0
\end{array}\right)
$$

2 flavour case

Remember: $p=E, x=t$, Opposite sign for anti-v; terms proportional to identity irrelevant

$$
i \frac{\mathrm{~d}}{\mathrm{~d} x}\binom{\nu_{e}}{\nu_{\mu}}=\left(-p \mathbf{l}+\frac{1}{2 p} U\left(\begin{array}{cc}
m_{1}^{2} & 0 \\
0 & m_{2}^{2}
\end{array}\right) U^{\dagger}+\Delta V\right)\binom{\nu_{e}}{\nu_{\mu}} \quad \Delta V=\left(\begin{array}{cc}
\sqrt{2} G_{F} n_{e} & 0 \\
0 & 0
\end{array}\right)
$$

The propagating states are different from the states previously considered!
They can be found by diagonalising \mathbf{G}, or any other propagation matrix differing from \mathbf{G} via a term proportional to I. Let us make the 'clever' choice

$$
\mathrm{G}_{e f f}=\mathrm{G}-\left(-E+\frac{m_{1}^{2}+m_{2}^{2}}{4 E}+\frac{\sqrt{2}}{2} G_{F} n_{e}\right) \mathrm{I}=\frac{\Delta m^{2}}{4 E}\left(\begin{array}{cc}
-c_{2 \theta}+A & s_{2 \theta} \\
s_{2 \theta} & c_{2 \theta}-A
\end{array}\right) \quad \text { where } \quad A \equiv \frac{2 \sqrt{2} E G_{F} n_{e}}{\Delta m^{2}}
$$

A quantifies the relative strength of matter potential to vacuum mixing effects.
We can expect matter effects to be more pronounced with growing energy

Effective mixing parameters

We can further rewrite

$$
\begin{gathered}
\frac{\Delta m^{2}}{4 E}\left(\begin{array}{cc}
-c_{2 \theta}+A & s_{2 \theta} \\
s_{2 \theta} & c_{2 \theta}-A
\end{array}\right)=\frac{\Delta \tilde{m}^{2}}{4 E}\left(\begin{array}{cc}
-c_{2 \theta_{m}} & s_{2 \theta_{m}} \\
s_{2 \theta_{m}} & c_{2 \theta_{m}}
\end{array}\right) \\
A \equiv \frac{2 \sqrt{2} E G_{F} n_{e}}{\Delta m^{2}}
\end{gathered}
$$

Same structure as vacuum mixing case studied before, but for a couple of changes

Effective mixing parameters

We can further rewrite

$$
\begin{gathered}
\frac{\Delta m^{2}}{4 E}\left(\begin{array}{cc}
-c_{2 \theta}+A & s_{2 \theta} \\
s_{2 \theta} & c_{2 \theta}-A
\end{array}\right)=\frac{\Delta \tilde{m}^{2}}{4 E}\left(\begin{array}{cc}
-c_{2 \theta_{m}} & s_{2 \theta_{m}} \\
s_{2 \theta_{m}} & c_{2 \theta_{m}}
\end{array}\right) \\
A \equiv \frac{2 \sqrt{2} E G_{F} n_{e}}{\Delta m^{2}}
\end{gathered}
$$

Same structure as vacuum mixing case studied before, but for a couple of changes

- The mass value is rescaled as

$$
\Delta \tilde{m}^{2}=\Delta m^{2} \sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}
$$

- Effective mixing angle given by

$$
\sin \left(2 \theta_{m}\right)=\frac{\sin (2 \theta)}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}} \quad \cos \left(2 \theta_{m}\right)=\frac{\cos (2 \theta)-A}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}}
$$

Let's plot and study the effective mixing angle vs. A (and impact on effective splitting)

Qualitative discussion of basic matter effects

- Only marginal modification to vacuum when $|A| \ll \cos (2 \theta) \leq 1$

$$
\sin \left(2 \theta_{m}\right)=\frac{\sin (2 \theta)}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}}
$$

Qualitative discussion of basic matter effects

- Only marginal modification to vacuum when $|A| \ll \cos (2 \theta) \leq 1$
- Strong suppression of the mixing when $|A| \gg \cos (2 \theta) \quad$ always the case when $\quad|A| \gg 1$
flavour states almost matching matter eigenstates, with mass splitting given however by $\quad \Delta \tilde{m}^{2} \simeq A \Delta m^{2}$ (The flavour interacting more is 'heavier')

$$
\sin \left(2 \theta_{m}\right)=\frac{\sin (2 \theta)}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}}
$$

Qualitative discussion of basic matter effects

- Only marginal modification to vacuum when $|A| \ll \cos (2 \theta) \leq 1$
- Strong suppression of the mixing when $|A| \gg \cos (2 \theta) \quad$ always the case when $\quad|A| \gg 1$
flavour states almost matching matter eigenstates, with mass splitting given however by $\quad \Delta \tilde{m}^{2} \simeq A \Delta m^{2}$ (The flavour interacting more is 'heavier')
- Resonance when $A \simeq \cos (2 \theta)$ within a width $\simeq \sin (2 \theta)$

States maximally mixed (independent on their vacuum mixing) and their mass splitting is minimised $\quad \Delta \tilde{m}^{2}=\Delta m^{2} \sin (2 \theta)$
Resonant density $\quad n_{e}^{\mathrm{res}}=\frac{\Delta m^{2} \cos (2 \theta)}{2 \sqrt{2} G_{F} E}$

$$
\sin \left(2 \theta_{m}\right)=\frac{\sin (2 \theta)}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}}
$$

Qualitative discussion of basic matter effects

- Only marginal modification to vacuum when $|A| \ll \cos (2 \theta) \leq 1$
- Strong suppression of the mixing when $|A| \gg \cos (2 \theta) \quad$ always the case when $\quad|A| \gg 1$
flavour states almost matching matter eigenstates, with mass splitting given however by $\quad \Delta \tilde{m}^{2} \simeq A \Delta m^{2}$ (The flavour interacting more is 'heavier')
- Resonance when $A \simeq \cos (2 \theta)$ within a width $\simeq \sin (2 \theta)$

States maximally mixed (independent on their vacuum mixing)

$$
\sin \left(2 \theta_{m}\right)=\frac{\sin (2 \theta)}{\sqrt{(\cos (2 \theta)-A)^{2}+\sin ^{2}(2 \theta)}}
$$ and their mass splitting is minimised

$$
\Delta \tilde{m}^{2}=\Delta m^{2} \sin (2 \theta)
$$

$$
\text { Resonant density } \quad n_{e}^{\mathrm{res}}=\frac{\Delta m^{2} \cos (2 \theta)}{2 \sqrt{2} G_{F} E}
$$

Note: sign of $\cos (2 \theta)$ switches from + to - when θ goes above $\pi / 4$. The sign of A depends on v vs. anti- v Depending on the octant of θ, resonance either occurs in v or anti- v, not both!

v oscillations in matter - varying density

Same as before, but now effective mixing and mass defined instantaneously (or locally)

By rotating into the instantaneous (or local) mass basis, obtain a structure as

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\nu_{a}}{\nu_{b}}=\left(\begin{array}{cc}
\frac{\tilde{m}_{a}^{2}(t)}{2 E} & i \dot{\theta}(t) \\
i \dot{\theta}(t) & \frac{\tilde{m}_{b}^{2}(t)}{2 E}
\end{array}\right)\binom{\nu_{a}}{\nu_{b}}
$$

v oscillations in matter - varying density

Same as before, but now effective mixing and mass defined instantaneously (or locally)

By rotating into the instantaneous (or local) mass basis, obtain a structure as

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\nu_{a}}{\nu_{b}}=\left(\begin{array}{cc}
\frac{\tilde{m}_{a}^{2}(t)}{2 E} & i \dot{\theta}(t) \\
i \dot{\theta}(t) & \frac{\tilde{m}_{b}^{2}(t)}{2 E}
\end{array}\right)\binom{\nu_{a}}{\nu_{b}}
$$

Hard to get a general, exact analytical solution. But in limiting cases, we expect that

- If the off-diagonal term is small, constant density results should apply, each state evolves independently.
- If the off-diagonal term is large, states can 'jump' from one to the other (Landau-Zener jump equation)

v oscillations in matter - varying density

Same as before, but now effective mixing and mass defined instantaneously (or locally)

By rotating into the instantaneous (or local) mass basis, obtain a structure as

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\nu_{a}}{\nu_{b}}=\left(\begin{array}{cc}
\frac{\tilde{m}_{a}^{2}(t)}{2 E} & i \dot{\theta}(t) \\
i \dot{\theta}(t) & \frac{\tilde{m}_{b}^{2}(t)}{2 E}
\end{array}\right)\binom{\nu_{a}}{\nu_{b}}
$$

Hard to get a general, exact analytical solution. But in limiting cases, we expect that

- If the off-diagonal term is small, constant density results should apply, each state evolves independently.
- If the off-diagonal term is large, states can 'jump’ from one to the other (Landau-Zener jump equation)

$$
P_{L Z}=e^{-2 \pi \gamma}
$$

"Large or small" is gauged with respect to the instantaneous oscillation frequency (or length)

$$
\frac{1}{\gamma}=\left|\frac{2 \dot{\theta}}{\Delta \tilde{m}^{2} /(2 E)}\right| \ll 1 \quad \text { Adiabaticity condition }
$$

Application to the Sun, I

Resonant density for 'solar parameters'

$$
n_{\mathrm{res}}=\frac{\Delta m_{21}^{2} \cos \theta_{12}}{2 \sqrt{2} G_{F} E} \simeq 10^{26}\left(\frac{\mathrm{MeV}}{E}\right) \mathrm{cm}^{-3}
$$

Solar profile

$$
\begin{gathered}
n_{e}(r) \simeq n_{\text {core }}=6.5 \times 10^{25} \mathrm{~cm}^{-3} \quad r \leq r_{\text {core }} \simeq 0.1 R_{\odot} \\
n_{e}(r) \simeq n_{\text {core }} \exp \left(-\frac{r-r_{\text {core }}}{r_{0}}\right) \quad r_{\text {core }} \leq r \leq R_{\odot} \\
r_{0} \simeq R_{\odot} / 10 \simeq 70000 \mathrm{~km}
\end{gathered}
$$

Application to the Sun, I

Resonant density for 'solar parameters'

$$
n_{\mathrm{res}}=\frac{\Delta m_{21}^{2} \cos \theta_{12}}{2 \sqrt{2} G_{F} E} \simeq 10^{26}\left(\frac{\mathrm{MeV}}{E}\right) \mathrm{cm}^{-3}
$$

Solar profile

$$
n_{e}(r) \simeq n_{\text {core }}=6.5 \times 10^{25} \mathrm{~cm}^{-3} \quad r \leq r_{\text {core }} \simeq 0.1 R_{\odot}
$$

$$
n_{e}(r) \simeq n_{\text {core }} \exp \left(-\frac{r-r_{\text {core }}}{r_{0}}\right) \quad r_{\text {core }} \leq r \leq R_{\odot}
$$

$$
r_{0} \simeq R_{\odot} / 10 \simeq 70000 \mathrm{~km}
$$

- High- E as ${ }^{8 B}$ measured by $S K$ with $E \sim 10 \mathrm{MeV}$, should experience resonance \& strong matter effects
- Low-E part below a few MeV like pp should not (quasi-vacuum)

Application to the Sun, II

The density profile varies 'slowly' compared to neutrino oscillation length
Slowly decreasing $\quad \frac{1}{n_{e}} \frac{\mathrm{~d} n_{e}}{\mathrm{~d} x}=\frac{1}{r_{0}} \simeq \frac{10}{R_{\odot}} \simeq\left(7 \times 10^{4} \mathrm{~km}\right)^{-1} \quad$ To be compared with $\quad \ell_{\mathrm{osc}} \simeq 25 \mathrm{~km} \frac{E}{\mathrm{MeV}} \frac{10^{-4} \mathrm{eV}^{2}}{\Delta m^{2}}$

Adiabaticity well verified in the Sun, for $\mathrm{E} \sim \mathrm{MeV}$ and actual solar parameters $\quad \gamma \gg 1$

Application to the Sun, II

The density profile varies 'slowly' compared to neutrino oscillation length
Slowly decreasing $\quad \frac{1}{n_{e}} \frac{\mathrm{~d} n_{e}}{\mathrm{~d} x}=\frac{1}{r_{0}} \simeq \frac{10}{R_{\odot}} \simeq\left(7 \times 10^{4} \mathrm{~km}\right)^{-1} \quad$ To be compared with $\quad \ell_{\mathrm{osc}} \simeq 25 \mathrm{~km} \frac{E}{\mathrm{MeV}} \frac{10^{-4} \mathrm{eV}^{2}}{\Delta m^{2}}$

Adiabaticity well verified in the Sun, for $\mathrm{E} \sim \mathrm{MeV}$ and actual solar parameters $\quad \gamma \gg 1$

- Low-E : phase-averaged vacuum formula should apply

$$
P_{e e}=1-\frac{1}{2} \sin ^{2}\left(2 \theta_{12}\right) \simeq 0.55
$$

Application to the Sun, II

The density profile varies 'slowly' compared to neutrino oscillation length
Slowly decreasing $\quad \frac{1}{n_{e}} \frac{\mathrm{~d} n_{e}}{\mathrm{~d} x}=\frac{1}{r_{0}} \simeq \frac{10}{R_{\odot}} \simeq\left(7 \times 10^{4} \mathrm{~km}\right)^{-1} \quad$ To be compared with $\quad \ell_{\mathrm{osc}} \simeq 25 \mathrm{~km} \frac{E}{\mathrm{MeV}} \frac{10^{-4} \mathrm{eV}^{2}}{\Delta m^{2}}$

Adiabaticity well verified in the Sun, for $\mathrm{E} \sim \mathrm{MeV}$ and actual solar parameters $\quad \gamma \gg 1$

- Low-E : phase-averaged vacuum formula should apply

$$
P_{e e}=1-\frac{1}{2} \sin ^{2}\left(2 \theta_{12}\right) \simeq 0.55
$$

- High-E : matter dominance \& adiabaticity $\rightarrow V$'s remain in the (heavy) instantaneous mass eigenstate, eventually reaching the surface as |V2>

$$
P_{e e}=\left|\left\langle\nu_{e} \mid \nu_{2}\right\rangle\right|^{2} \simeq \sin ^{2} \theta_{12} \simeq 0.30
$$

Application to the Sun, II

The density profile varies 'slowly' compared to neutrino oscillation length
Slowly decreasing $\quad \frac{1}{n_{e}} \frac{\mathrm{~d} n_{e}}{\mathrm{~d} x}=\frac{1}{r_{0}} \simeq \frac{10}{R_{\odot}} \simeq\left(7 \times 10^{4} \mathrm{~km}\right)^{-1} \quad$ To be compared with $\quad \ell_{\mathrm{osc}} \simeq 25 \mathrm{~km} \frac{E}{\mathrm{MeV}} \frac{10^{-4} \mathrm{eV}^{2}}{\Delta m^{2}}$

Adiabaticity well verified in the Sun, for $\mathrm{E} \sim \mathrm{MeV}$ and actual solar parameters $\quad \gamma \gg 1$

- Low-E : phase-averaged vacuum formula should apply

$$
P_{e e}=1-\frac{1}{2} \sin ^{2}\left(2 \theta_{12}\right) \simeq 0.55
$$

- High-E : matter dominance \& adiabaticity \rightarrow V's remain in the (heavy) instantaneous mass eigenstate, eventually reaching the surface as |V2>

$$
P_{e e}=\left|\left\langle\nu_{e} \mid \nu_{2}\right\rangle\right|^{2} \simeq \sin ^{2} \theta_{12} \simeq 0.30
$$

Generalisation to matter effects in 3 flavour case

Similar story, now the effective hamiltonian writes

For LBNE, typically constant density assumption is ok; the impact of matter effects is stronger at higher-E For T2K, $A \approx 0.05$, for NOvA, $A \approx 0.15$, for DUNE, $A \approx 0.21$

Generalisation to matter effects in 3 flavour case

Similar story, now the effective hamiltonian writes

For LBNE, typically constant density assumption is ok; the impact of matter effects is stronger at higher-E For T2K, $A \approx 0.05$, for NOvA, $A \approx 0.15$, for DUNE, $A \approx 0.21$

Typically dealt with numerically (exact analytical formulae anyway not transparent)
For an idea, at leading order, we expect $\quad P_{\mu \rightarrow e} \simeq \sin ^{2}\left(\theta_{23}\right) \sin ^{2}\left(2 \tilde{\theta}_{13}\right) \sin ^{2}\left(\frac{\Delta \tilde{m}_{31}^{2} L}{4 E}\right)$
A conversion probability enhancement is expected for $\begin{cases}\bullet \text { v's } & \Delta m_{31}^{2}>0 \\ \bullet \text { anti-v's } & \Delta m_{31}^{2}<0\end{cases}$
Effect can be used to determine mass ordering, but it is a nuisance for CP -measurements!

An application to long baseline experiments

$$
\text { This means that the so-called 'CP asymmetry parameter' } \quad a_{\mathrm{CP}} \equiv \frac{P_{\alpha \beta}-P_{\bar{\alpha} \bar{\beta}}}{P_{\alpha \beta}+P_{\bar{\alpha} \bar{\beta}}}
$$

is non-zero even if $C P$ is conserved (i.e. $\operatorname{Im} \mathrm{J}=0$), due to extrinsic background effects; in general, measures combination of both

An application to long baseline experiments

This means that the so-called 'CP asymmetry parameter' $\quad a_{\mathrm{CP}} \equiv \frac{P_{\alpha \beta}-P_{\bar{\alpha} \bar{\beta}}}{P_{\alpha \beta}+P_{\bar{\alpha} \bar{\beta}}}$
is non-zero even if $C P$ is conserved (i.e. $\mathrm{Im} \mathrm{J}=0$), due to extrinsic background effects; in general, measures combination of both

Because of the complex parameter dependence and matter effects, continuous correlations (as δ, θ_{13}) and discrete degeneracies (sign $\Delta \mathrm{m}_{31}{ }^{2} /$ octant θ_{23}) remain in the parameter space even if both v 's and anti- v 's used

An application to long baseline experiments

This means that the so-called 'CP asymmetry parameter' $\quad a_{\mathrm{CP}} \equiv \frac{P_{\alpha \beta}-P_{\bar{\alpha} \bar{\beta}}}{P_{\alpha \beta}+P_{\bar{\alpha} \bar{\beta}}}$
is non-zero even if $C P$ is conserved (i.e. Im $J=0$), due to extrinsic background effects; in general, measures combination of both

Because of the complex parameter dependence and matter effects, continuous correlations (as δ, θ_{13}) and discrete degeneracies (sign $\Delta \mathrm{m}_{31}{ }^{2} / o c t a n t \theta_{23}$) remain in the parameter space even if both v 's and anti-v's used

To explicitly see an example of that, you can analytically compute e.g. $P_{\mu \mathrm{e}}$ to linear or quadratic order in the mass splitting ratio \& the same for anti-v's

An application to long baseline experiments

This means that the so-called 'CP asymmetry parameter' $\quad a_{\mathrm{CP}} \equiv \frac{P_{\alpha \beta}-P_{\bar{\alpha} \bar{\beta}}}{P_{\alpha \beta}+P_{\bar{\alpha} \bar{\beta}}}$
is non-zero even if $C P$ is conserved (i.e. $\mathrm{Im} \mathrm{J}=0$), due to extrinsic background effects; in general, measures combination of both

Because of the complex parameter dependence and matter effects, continuous correlations (as δ, θ_{13}) and discrete degeneracies (sign $\Delta \mathrm{m}_{31}{ }^{2} /$ octant θ_{23}) remain in the parameter space even if both v 's and anti-v's used

To explicitly see an example of that, you can analytically compute e.g. $P_{\mu \mathrm{e}}$ to linear or quadratic order in the mass splitting ratio \& the same for anti-V's

Overcoming that requires e.g. using enough E-resolution, different baselines, different oscillation channels...

VI. The quest for the absolute mass scale

Currently pursued in three ways:

- Kinematical measurement in particle processes
- Gravitational measurement
- Via observation of processes only allowed by a finite mass

Beta decay endpoint $z X \rightarrow{ }_{z \pm I} X^{\prime}+e+v_{e}$

${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}}$

Most widely studied:

Beta decay endpoint $z X \rightarrow_{Z \pm 1} X^{\prime}+e+v_{e}$

${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}}$

Most widely studied:

If neglecting recoil daughter nucleus (carries less than 0.05% of the reaction Q -value) (excitations of X^{\prime} should be included if present!)

$$
\Gamma \propto \int|\mathcal{M}|^{2} \mathrm{~d} f_{e} \mathrm{~d} f_{\nu}
$$

where

$$
\mathrm{d} f_{i}=\frac{p^{2} \mathrm{~d} p \mathrm{~d} \Omega}{(2 \pi)^{3}}=\frac{p p_{0} \mathrm{~d} p_{0} \mathrm{~d} \Omega}{(2 \pi)^{3}}
$$

$$
K_{e}^{\max }=Q-K_{\mathrm{rec}}-K_{\mathrm{ex}}
$$

$$
\epsilon_{\nu}=K_{e}^{\max }-K_{e}
$$

Beta decay endpoint $z X \rightarrow{ }_{z \pm 1} X^{\prime}+e+v_{e}$

${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}-+\bar{\nu}_{\mathrm{e}}$

Most widely studied:

If neglecting recoil daughter nucleus (carries less than 0.05% of the reaction Q -value) (excitations of X^{\prime} should be included if present!)

$$
\Gamma \propto \int|\mathcal{M}|^{2} \mathrm{~d} f_{e} \mathrm{~d} f_{\nu}
$$

where

$$
\mathrm{d} f_{i}=\frac{p^{2} \mathrm{~d} p \mathrm{~d} \Omega}{(2 \pi)^{3}}=\frac{p p_{0} \mathrm{~d} p_{0} \mathrm{~d} \Omega}{(2 \pi)^{3}}
$$

$$
K_{e}^{\max }=Q-K_{\mathrm{rec}}-K_{\mathrm{ex}} \quad \epsilon_{\nu}=K_{e}^{\max }-K_{e}
$$

Observable:
Electron spectrum $\quad \frac{\mathrm{d} \Gamma}{\mathrm{d} K_{e}} \propto|\mathcal{M}|^{2} p_{e}\left(K_{e}+m_{e}\right) \epsilon_{\nu} \sqrt{\epsilon_{\nu}^{2}-m_{\nu}^{2}}$

Typically studied in detail via spectrometers (e.g. KATRIN) or calorimeters (e.g. MARE)

Tritium decay endpoint ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}}$

Traditionally one defines a (Fermi-)Kurie function $\quad \mathcal{K}\left(K_{e}\right) \propto \sqrt{\frac{\mathrm{d} \Gamma}{\mathrm{d} K_{e}}}$

Tritium decay endpoint ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}-+\bar{\nu}_{\mathrm{e}}$

Traditionally one defines a (Fermi-)Kurie function

$$
\mathcal{K}\left(K_{e}\right) \propto \sqrt{\frac{\mathrm{d} \Gamma}{\mathrm{~d} K_{e}}}
$$

Franz N. D. Kurie (USA, 1907-1972)
($\mathrm{n} \neq \mathrm{p}+\mathrm{e}$)

Effective neutrino mass in β-decays

Different V's masses (\& different X^{\prime} excitations, if any) contribute each with corresponding probabilities (incoherent sum)

$$
\left.\frac{\mathrm{d} \Gamma}{\mathrm{~d} K_{e}}\right|_{\text {tot }}=\sum_{i}\left|U_{e i}\right|^{2} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} K_{e}}\left(m_{i}\right)
$$

Effective neutrino mass in β-decays

Different V's masses (\& different X^{\prime} excitations, if any) contribute each with corresponding probabilities (incoherent sum)

$$
\left.\frac{\mathrm{d} \Gamma}{\mathrm{~d} K_{e}}\right|_{\text {tot }}=\sum_{i}\left|U_{e i}\right|^{2} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} K_{e}}\left(m_{i}\right)
$$

If the fine structure due to different contributions cannot be resolved, we can expand for $\varepsilon \gg m_{i}{ }^{2}$
$\sum_{i}\left|U_{e i}\right|^{2} \epsilon \sqrt{\epsilon-m_{i}^{2}} \simeq \epsilon^{2}-\frac{1}{2} \sum_{i}\left|U_{e i}\right|^{2} m_{i}^{2}$
the 'effective mass' is actually $m_{\beta}^{2}=\sum_{i}\left|U_{e i}\right|^{2} m_{i}^{2}$

Effective neutrino mass in β-decays

Different V's masses (\& different X^{\prime} excitations, if any) contribute each with corresponding probabilities (incoherent sum)

If the fine structure due to different contributions cannot be resolved, we can expand for $\varepsilon \gg m_{i}^{2}$
$\sum_{i}\left|U_{e i}\right|^{2} \epsilon \sqrt{\epsilon-m_{i}^{2}} \simeq \epsilon^{2}-\frac{1}{2} \sum_{i}\left|U_{e i}\right|^{2} m_{i}^{2}$
the 'effective mass' is actually $\quad m_{\beta}^{2}=\sum_{i}\left|U_{e i}\right|^{2} m_{i}^{2}$

$$
\left.\frac{\mathrm{d} \Gamma}{\mathrm{~d} K_{e}}\right|_{\text {tot }}=\sum_{i}\left|U_{e i}\right|^{2} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} K_{e}}\left(m_{i}\right)
$$

Article | Open Access | Published: 14 February 2022

Direct neutrino-mass measurement with subelectronvolt sensitivity

$$
m_{\beta}<0.8 \mathrm{eV} \text { at } 90 \% \text { C.L. }
$$

Are V's their own antiparticle? The hope to figure it out with $0 v 2 \beta$

$2 \nu 2 \beta \quad z X \rightarrow Z \pm 2 X^{\prime}+2 e+2 V_{e}$
Allowed as rare weak decay in the SM, notably if the single $\boldsymbol{\beta}$ not energetically allowed e.g. reviewed in R Saakyan 2013

Maria Goeppert Mayer

 (NP 1963 for the shell model) seminal paper on $2 \downarrow 2 \beta$ in 1935

Are V's their own antiparticle? The hope to figure it out with $0 v 2 \beta$

$2 \downarrow 2 \beta$

$$
z X \rightarrow z \pm 2 X^{\prime}+2 e+2 V_{e}
$$

Allowed as rare weak decay in the SM, notably if the single $\boldsymbol{\beta}$ not energetically allowed e.g. reviewed in R Saakyan 2013

Maria Goeppert Mayer

 (NP 1963 for the shell model) seminal paper on $2 \downarrow 2 \beta$ in 1935$0 \nu 2 \beta \quad \mathrm{ZX} \rightarrow \mathrm{Z} \pm 2 \mathrm{X}$ '+2e
Is this mode allowed? Clearly violates L (cannot happen for Dirac V's)
\rightarrow would imply the existence of of a Majorana mass term

Schechter and Valle PRD 25, 295 I (I982)

Neutrinos and $0 \vee 2 \beta$

If $0 \nu 2 \beta$ mediated by the v mass term (there can be other contributions!), one should keep in mind that different masses enter coherently

$\left(U_{e 1}\right)^{2} m_{1}$

$$
\left(\mathrm{U}_{\mathrm{e} 1}\right)^{2} \mathrm{~m}_{1}
$$

$+\quad\left(U_{e 2}\right)^{2} m_{2}$

Neutrinos and $0 \vee 2 \beta$

If $0 \nu 2 \beta$ mediated by the v mass term (there can be other contributions!), one should keep in mind that different masses enter coherently

$$
\mathcal{M} \propto \sum_{i} m_{i} U_{e i}^{2} \equiv m_{\beta \beta}
$$

$0 \nu 2 \beta$ in the minimal scenario: Signatures and challenges

High resolution \& large statistics are key!

$$
\Gamma_{0 \nu}=\left|m_{\beta \beta}\right|^{2}\left|\mathcal{M}_{\mathrm{nuc}}\right|^{2} G_{\mathrm{ph} . \mathrm{sp}}
$$

Need also nuclear matrix elements to translate lifetime into v mass

$0 \nu 2 \beta$ in the minimal scenario: Signatures and challenges

High resolution \& large statistics are key!

$$
\Gamma_{0 \nu}=\left|m_{\beta \beta}\right|^{2}\left|\mathcal{M}_{\mathrm{nuc}}\right|^{2} G_{\mathrm{ph} . \mathrm{sp}}
$$

Need also nuclear matrix elements to translate lifetime into v mass

Leading limits in each isotope:

Experiment	Isotope	Exposure $[\mathrm{kg}$ $\mathrm{yr}]$	$\boldsymbol{T}_{1 / 2}^{0 \mathrm{y}}\left[10^{35}\right.$ $\mathrm{yr}]$	$\mathrm{m}_{\mathrm{ms}}[\mathrm{meV}]$
Gerda	${ }^{76} \mathrm{Ge}$	127.2	18	$79-180$
Majorana	${ }^{76} \mathrm{Ge}$	26	2.7	$200-433$
KamLAND- Zen	${ }^{136 \mathrm{Xe}}$	970	23	$36-156$
EXO-200	${ }^{136} \mathrm{Xe}$	234.1	3.5	$93-286$
CUORE	${ }^{130} \mathrm{Te}$	1038.4	2.2	$90-305$

$0 \vee 2 \beta$ in the minimal scenario: Signatures and challenges

High resolution \& large statistics are key!

$$
\Gamma_{0 \nu}=\left|m_{\beta \beta}\right|^{2}\left|\mathcal{M}_{\mathrm{nuc}}\right|^{2} G_{\mathrm{ph} . \mathrm{sp}}
$$

Need also nuclear matrix elements to translate lifetime into v mass
For IH , lower limit exists, currently being probed by KamLAND-Zen

Leading limits in each isotope:

Experiment	Isotope	Exposure $[\mathrm{kg}$ $\mathrm{yr}]$	$T_{1 / 2}^{0 \mathrm{y}}\left[10^{25}\right.$ $\mathrm{yr}]$	$\mathrm{m}_{\mathrm{ps}}[\mathrm{meV}]$
Gerda	${ }^{76} \mathrm{Ge}$	127.2	18	$79-180$
Majorana	${ }^{76} \mathrm{Ge}$	26	2.7	$200-433$
KamLAND- Zen	${ }^{136} \mathrm{Xe}$	970	23	$36-156$
EXO-200	${ }^{136} \mathrm{Xe}$	234.1	3.5	$93-286$
CUORE	${ }^{130} \mathrm{Te}$	1038.4	2.2	$90-305$

If IH, realistic path to 'guaranteed detection' (or exclude Majorana) If $\mathrm{NH} .$. . we need a good dose of luck!

Some notions of Cosmology (pedestrian exposition, apologies!)

- Homogeneous \& isotropic solution of GR equations (used as first order proxy to describe the Universe, Copernican principle) leads to an expanding (or contracting) metric, with scale factor $a=a(t)$
-The expansion rate $H=a^{-1}$ da/dt depends on the energy content of the Universe (its acceleration further depends on the pressure, unlike in Newtonian physics)

In this framework, the Hubble-Lemaître law (Galaxies sufficiently far away from us recede with $v=H_{0} d$) makes sense!

Some notions of Cosmology (pedestrian exposition, apologies!)

- Homogeneous \& isotropic solution of GR equations (used as first order proxy to describe the Universe, Copernican principle) leads to an expanding (or contracting) metric, with scale factor $a=a(t)$
-The expansion rate $H=a^{-1}$ da/dt depends on the energy content of the Universe (its acceleration further depends on the pressure, unlike in Newtonian physics)

In this framework, the Hubble-Lemaître law (Galaxies sufficiently far away from us recede with $v=H_{0} d$) makes sense!

- Not only density* higher in the early universe, but radiation wavelength contracted: More energetic! Early universe denser \& hotter (eventually a plasma, $E \sim T$) \& dominated by relativistic species; even weak interaction at equilibrium when $T>f e w ~ M e V$!

*of stuff in 'free fall', going with the expansion. Not of structures decoupled from that

"Brooklyn is not expanding!" (cit.)

From "Annie Hall", by Woody Allen, 1977 (@ Youtube)
"Brooklyn is not expanding!" (cit.)

From "Annie Hall", by Woody Allen, 1977 (@ Youtube)

Neutrinos \& Cosmology

- v's produced (\# comparable with photons!) e.g. via $\mathrm{e}^{+} \mathrm{e}^{-} \longleftrightarrow v$ anti- v \& attain a FD distribution.

$$
f_{\nu}(p) \simeq \frac{1}{e^{p / T_{\nu}}+1}
$$

- With expansion \& cooling below $T \sim$ few $\mathrm{MeV} v$ decouple and 'freeze-out': number drops as a^{-3}, average momentum redshifts as $a^{-1}\left(1 \mathrm{eV} \sim 10^{4} \mathrm{~K}\right)$

$$
H \simeq \sqrt{G_{N}} T^{2} \quad \Gamma_{\mathrm{eq}}=n_{\mathrm{eq}}\langle\sigma v\rangle \sim G_{F}^{2} T^{5} \quad\langle\sigma v\rangle=\sigma_{\mathrm{weak}} \sim G_{F}^{2} E^{2} \sim G_{F}^{2} T^{2} \quad \frac{\Gamma_{\mathrm{eq}}}{H} \sim\left(\frac{T}{\mathrm{MeV}}\right)^{3}
$$

Neutrinos \& Cosmology

- v's produced (\# comparable with photons!) e.g. via $\mathrm{e}^{+} \mathrm{e}^{-} \longleftrightarrow v$ anti- v \& attain a FD distribution.

$$
f_{\nu}(p) \simeq \frac{1}{e^{p / T_{\nu}}+1}
$$

○ With expansion \& cooling below $T \sim f e w ~ M e V ~ v$ decouple and 'freeze-out': number drops as a^{-3}, average momentum redshifts as $a^{-1}\left(\mathrm{I} \mathrm{eV} \sim 10^{4} \mathrm{~K}\right)$

$$
H \simeq \sqrt{G_{N}} T^{2} \quad \Gamma_{\mathrm{eq}}=n_{\mathrm{eq}}\langle\sigma v\rangle \sim G_{F}^{2} T^{5} \quad\langle\sigma v\rangle=\sigma_{\text {weak }} \sim G_{F}^{2} E^{2} \sim G_{F}^{2} T^{2} \quad \frac{\Gamma_{\mathrm{eq}}}{H} \sim\left(\frac{T}{\mathrm{MeV}}\right)^{3}
$$

Key pheno consequences

- Slightly colder than CMB: v's decouple before $\mathrm{e}^{ \pm}$annihilations

$$
\frac{T_{\nu}}{T_{\gamma}} \simeq\left(\frac{4}{11}\right)^{1 / 3}
$$

- Abundance

$$
n=g \int f_{\nu}(p) \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}}=\frac{g}{2 \pi^{2}} \frac{3 \zeta(3)}{2} T_{\nu}^{3} \rightarrow 110 \mathrm{~cm}^{-3} \text { today, per flavour }
$$

- Energy density

$$
\rho=\sum_{i=1}^{3} \int\left[f_{\nu_{i}}(p)+f_{\bar{\nu}_{i}}(p)\right] \sqrt{m_{i}^{2}+p^{2}} \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}}\left\{\begin{array}{l}
\equiv \frac{7 \pi^{2}}{120}\left(\frac{4}{11}\right)^{4 / 3} \frac{T^{4}}{15} N_{\text {eff }}\left(T_{\nu} \gg m_{i}\right) \\
\\
\simeq \sum m_{i} n_{\nu}\left(T_{\nu} \ll m_{i}\right)
\end{array}\right.
$$

- Very close to isotropic and homogeneous (think of the tiny anisotropies in the CMB!); relativistic v Edensity contributes to the expansion of the Universe via H. Parameterised via $N_{\text {eff }} 3$.

Neutrinos in the early universe

- Very close to isotropic and homogeneous (think of the tiny anisotropies in the CMB!); relativistic v Edensity contributes to the expansion of the Universe via H. Parameterised via $N_{\text {eff }} 3$.

Gravitational* effect, but...

$$
H^{2}=\frac{8 \pi G_{N}}{3} \rho-\frac{k}{a^{2}} \quad \rho_{R}=\rho_{\gamma}\left[1+\frac{7}{8}\left(\frac{4}{11}\right)^{4 / 3} N_{\mathrm{eff}}\right]
$$

$N_{\text {eff }}$ also sensitive to new dof's e.g. coupled to v's
$N_{\text {eff }}=2.99 \pm 0.34$ (95\% C.L.) Planck $2018+$ BAO

$$
N_{\text {eff }}=2.88 \pm 0.54 \text { (95\% C.L.) BBN; Pitrou et al. I } 80 \text { I. } 08023
$$

*BBN is also affected by (anti-) v_{e} distributions via p-n (departure from) equilibrium

Neutrinos in the 'late' universe

OIn the late universe:
a) v E-density influenced by their mass

$$
\rho \simeq \sum m_{i} n_{\nu}\left(T_{\nu} \ll m_{i}\right)
$$

Neutrinos in the 'late' universe

OIn the late universe:
a) v E-density influenced by their mass

$$
\rho \simeq \sum m_{i} n_{\nu}\left(T_{\nu} \ll m_{i}\right)
$$

b) Formation of structures; $\quad \delta G_{\mu \nu}=8 \pi G_{N} \delta T_{\mu \nu}$
since v 's have large velocities than typical (both baryonic \& dark) matter, they oppose small structure forming.
From the pattern and growth of perturbations, we can constrain (the total) v mass+exotic interactions (drag, decay...)

Neutrinos \& structure growth, some key formulae

For non-relativistic pressureless particles: 2 degrees of freedom describe perturbations $\quad \delta \equiv \delta \rho / \rho, \quad \phi$

$$
\text { Continuity eq. } \quad \delta^{\prime \prime}+\frac{a^{\prime}}{a} \delta^{\prime}=-k^{2} \phi \quad \text { Poisson eq. } \quad k^{2} \phi=-4 \pi G_{N} a^{2} \rho \sum \delta_{i}
$$

Neutrinos \& structure growth, some key formulae

For non-relativistic pressureless particles: 2 degrees of freedom describe perturbations $\quad \delta \equiv \delta \rho / \rho, \quad \phi$
Continuity eq. $\quad \delta^{\prime \prime}+\frac{a^{\prime}}{a} \delta^{\prime}=-k^{2} \phi \quad$ Poisson eq. $k^{2} \phi=-4 \pi G_{N} a^{2} \rho \sum \delta_{i}$

$$
\begin{gathered}
\text { V's 'free stream' (decoupled with large velocity dispersion) } \\
\delta^{\prime \prime}+\frac{a^{\prime}}{a} \delta^{\prime}+\left(k^{2}-k_{J}^{2}\right) c_{s}^{2} \delta=-k^{2} \phi \quad c_{s} \simeq \frac{3.15 T_{\nu}}{m_{\nu}} \quad k_{J}^{2}=\frac{3 a^{\prime}}{a c_{s}^{2}}
\end{gathered}
$$

V's "do not settle" in potential wells that they can overcome by their typical velocity: compared with CDM, they suppress power at small-scales (perturbations oscillate, do not grow exponentially)

Can erase the 'free-streaming' feature with (very!) large secret self-coupling $\sim 10^{10} \mathrm{G}$: strongly disfavoured even for a single species.
e.g. Schöneberg et al. 2107.10291

Neutrinos \& large scale structures in simulation
^CDM with massless vs. massive neutrinos (total mass of 6.9 eV), with same total matter

Power spectrum of large scale structures

$$
\begin{aligned}
& \delta=\frac{\rho}{\langle\rho\rangle}-1 \quad \text { Density contrast } \\
& =\sum_{\mathbf{k}} \tilde{\delta}_{(\mathbf{k})} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} \\
& \begin{array}{l}
\text { Can develop in Fourier } \\
\text { modes, evolve independently } \\
\text { in linear theory }
\end{array}
\end{aligned}
$$

Power spectrum of large scale structures

$$
\begin{aligned}
& \delta=\frac{\rho}{\langle\rho\rangle}-1 \quad \text { Density contrast } \\
& =\sum_{\mathbf{k}} \tilde{\delta}_{(\mathbf{k})} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}} \\
& \begin{array}{l}
\text { Can develop in Fourier } \\
\text { modes, evolve independently } \\
\text { in linear theory }
\end{array}
\end{aligned}
$$

Ensemble variance is the power spectrum $P(k)$

Neutrinos \& large scale structures, more quantitative

Cosmologies with same total matter Ω_{m} but massive v 's lead to a $P(k)$ suppression at small scales
$k>k_{\mathrm{NR}}=0.01 \sqrt{\frac{\sum m_{\nu}}{\mathrm{eV}}} \sqrt{\frac{\Omega_{m}}{0.3}} h \mathrm{Mpc}^{-1}$

In linear perturbation theory,

$$
\frac{\Delta P}{P} \simeq-\frac{\sum m_{\nu}}{1.7 \mathrm{eV}} \frac{0.3}{\Omega_{m}}
$$

(Improvements exist both via analytical and numerical approaches)

Partial degeneracies exist with other parameters. Actual bound (mildly) depends on reference model and also on how many (consistent!) datasets are used.

Cosmological neutrino mass bounds (95\% CL)

Jimenez et al. 2203.l4247

Impact of dataset combination
Planck 2018 (all T and pol, plus lensing) $<0.24 \mathrm{eV}$
Planck 2018 + BAO < 0.12 eV
(A\&A /807.06209)
Planck 2018 + BAO + Ly $-\alpha<0.089 \mathrm{eV}$ (Palanque-Delabrouille et al. I 9 | I.09073)

Planck 2018 + BOSS + eBOSS $<0.082 \mathrm{eV}$ (Brieden et al. 2204.l I 868)

Impact of cosmological model
^CDM: Planck $2018+$ BAO $<0.12 \mathrm{eV}$
\CDM+w+running+ Neff : Planck $2018+$ BAO $<0.167 \mathrm{eV}$
(Di Valentino et al. 1908.01391)

In the coming decade, expected to reach sensitivity to measure the minimum NH mass at 3-4 sigma e.g. T. Brinckmann et al. I 808.05955

(Very?) Long term: v’s \& cosmology for Dirac vs. Majorana

- We need non-relativistic v's to distinguish Dirac vs. Majorana
- CvB provides (lots of) them for free! If we could detect them via weak interaction, since the flux is known, we can exploit the fact that the interaction rate is twice as large in the Majorana vs. Dirac case.

Long et al l 405.7654 ... Hernandez-Molinero et al. 2205.00808..

(Very?) Long term: v's \& cosmology for Dirac vs. Majorana

- We need non-relativistic v 's to distinguish Dirac vs. Majorana
- CvB provides (lots of) them for free! If we could detect them via weak interaction, since the flux is known, we can exploit the fact that the interaction rate is twice as large in the Majorana vs. Dirac case.

Long et al I405.7654 ... Hernandez-Molinero et al. 2205.00808...
The PTOLEMY collaboration has the long-term goal to detect the $\mathrm{C} \nu \mathrm{B}$, via v-induced β-decay with significant quantities of tritium atoms bound to graphene sheets.

https://ptolemy.Ings.infn.it

(Very?) Long term: v's \& cosmology for Dirac vs. Majorana

- We need non-relativistic v's to distinguish Dirac vs. Majorana
- CvB provides (lots of) them for free! If we could detect them via weak interaction, since the flux is known, we can exploit the fact that the interaction rate is twice as large in the Majorana vs. Dirac case.

Long et al I405.7654 ... Hernandez-Molinero et al. 2205.00808
The PTOLEMY collaboration has the long-term goal to detect the $\mathrm{C} \nu \mathrm{B}$, via v-induced β-decay with significant quantities of tritium atoms bound to graphene sheets.

Neutrino Capture on a Beta Decaving Nucleus (NCB)

https://ptolemy.Ings.infn.it

Lots of technical challenges, also conceptual ones:The localisation in the graphene induces a quantum spread on momentum

VII. Conclusions: Exotica? Surprises?

Some conclusions and perspectives

- We care particularly about v mass since motivated suspect that it is a messenger of BSM physics
- Proving that v 's are Majorana particles (best shot: $0 v 2 \beta$) is the single best way to experimental prove the above...
- Absolute mass measurements also serves to pin down the scale of NP (and has cosmo consequences, for instance!)
- Establishing if (and the extent to which) CP is violated in the leptonic sector is another key objective (may be linked to cosmological $v /$ anti- v asymmetry, unfortunately model-dependent)
- We have also to complete our knowledge of the mass-mixing measurement (NO vs IO, maximality of θ_{23}...essentially oscillation experiments), hopefully achieving enough precision to attempt e.g. meaningful unitarity checks; associated advances in nuclear and particle physics often required (reactor flux models, $x-s e c . .$.)

Room for surprises?

- Theoretically, if RH v's exist (N), no reasons for them to be 3 ! Search for sterile v's...
- ... On the other hand, no reason why they should be (only at) eV scale!
- Maybe keV-MeV mass range (link to dark matter? Impact on astrophysics \& cosmology?)

Maybe MeV-GeV (e.g. for ARS leptogenesis?)

- In general, possibility of v portal $N(L H)$ to new physics
- Neutrinos are feebly interacting, maybe a reason to:
- (More easily) see new interactions
- (More easily) expect visible if tiny violations of known physics (e.g. CPT invariance, Lorentz Invariance...)

Cảm ơn

