Lectures on neutrino phenomenology - Part I

Lectures on neutrino phenomenology－Part I

Lectures on neutrino phenomenology - Part I

Saturday - July I 6th -VSON 2022
Pasquale Dario Serpico (LAPTh - Annecy, France)

Lectures on neutrino phenomenology - Part I

In physics, loosely speaking this means quantitative predictions for experimental investigation based on (sometimes simplified) theoretical models (as opposed to theoretical models per se, or 'mere exploratory' experimental physics)

ᄂヘfß丁
Saturday - July I 6th -VSON 2022
Pasquale Dario Serpico (LAPTh - Annecy, France)

Lecture's Outline

- Motivation:Why focusing on v mass?
- Some history
v oscillations
Vacuum (focus on CP violation) Matter
- Absolute mass scale \& v nature

Tritium endpoint
Cosmology
$0 \nu 2 \beta$

- Conclusions

Lecture's Outline

- Motivation:Why focusing on v mass?
- Some history
- v oscillations

Vacuum (focus on CP violation) Matter
That's how we learned about massive
v nature \& still in the process of
measuring unknown/poorly known
parameters

- Absolute mass scale \& v nature Tritium endpoint Cosmology 0 2 2 β

Conclusions
I. Motivation

Will deal mostly with v masses. Why?

- The neutrinos are spin-I/2 electrically neutral leptons.
- Besides gravity, the only known force they experience is the weak force: v 's form $\operatorname{SU}(2)$ doublets with charged lepton partners. Unique among SM fields \rightarrow experimental challenge... \& opportunity!
- Their weak interaction seems successfully described by the SM; cosmology also indicates that they gravitate as expected.

Will deal mostly with v masses. Why?

The neutrinos are spin-I/2 electrically neutral leptons.

- Besides gravity, the only known force they experience is the weak force: v 's form $\operatorname{SU}(2)$ doublets with charged lepton partners. Unique among SM fields \rightarrow experimental challenge... \& opportunity!
- Their weak interaction seems successfully described by the SM; cosmology also indicates that they gravitate as expected.

However

In the SM v's are massless, while many experiments over the past decades have proven that v 's do have mass... and a very tiny one!

Origin of mass $=$ a main driver of modern particle physics

Reconcile the massive nature of the weak bosons and the SM electro-weak symmetry breaking \Longleftrightarrow Higgs mechanism.
Recent strong evidence that the quarks and charged leptons derive their masses from an interaction with the Higgs field

Origin of mass = a main driver of modern particle physics

Reconcile the massive nature of the weak bosons and the SM electro-weak symmetry breaking \Longleftrightarrow Higgs mechanism.

Recent strong evidence that the quarks and charged leptons derive their masses from an interaction with the Higgs field

Most theorists strongly suspect that the nature and the origin of the v masses is different

Two qualitative options:

- Keep the known field content, but drop the requirement of renormalisability of the SM \rightarrow where does it lead us to?
-

Add ν_{R} (although we've never 'seen' these new dof's), or more stuff \rightarrow where does it lead us to?

Dirac mass term

$$
\begin{gathered}
\bar{\psi}=\psi^{\dagger} \gamma_{0} \\
\psi_{L} \equiv P_{L} \psi \equiv \frac{1-\gamma_{5}}{2} \psi \\
\psi_{R} \equiv P_{R} \psi \equiv \frac{1+\bar{\psi}_{R}}{2} \psi
\end{gathered}
$$

Dirac mass term

$$
\begin{gathered}
\bar{\psi}=\psi^{\dagger} \gamma_{0} \\
\psi_{L} \equiv P_{L} \psi \equiv \frac{1-\gamma_{5}}{2} \psi \\
\psi_{R} \equiv P_{R} \psi \equiv \frac{1+\gamma_{5}}{2} \psi
\end{gathered}
$$

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

$$
\binom{\psi_{\ell}(x)}{\psi_{r}(x)}=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\binom{u_{\ell}(\boldsymbol{p}, s)}{u_{r}(\boldsymbol{p}, s)} e^{i p x x} a(\boldsymbol{p}, s)+\binom{v_{\ell}(\boldsymbol{p}, s)}{v_{r}(\boldsymbol{p}, s)} e^{-i \boldsymbol{p} x x} a_{c}^{\dagger}(\boldsymbol{p}, s)\right] .
$$

Charge conjugation C swaps a with a_{c}

C-operator flips the chirality of the field (does not change spin of particle excitations!)

$$
\left(\psi_{L}\right)^{c}=\left(\psi^{c}\right)_{R}
$$

Dirac mass term

$$
\begin{gathered}
\bar{\psi}=\psi^{\dagger} \gamma_{0} \\
\psi_{L} \equiv P_{L} \psi \equiv \frac{1-\gamma_{5}}{2} \psi \\
\psi_{R} \equiv P_{R} \psi \equiv \frac{1+\gamma_{5}}{2} \psi
\end{gathered}
$$

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

$$
\binom{\psi_{\ell}(x)}{\psi_{r}(x)}=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\binom{u_{\ell}(\boldsymbol{p}, s)}{u_{r}(\boldsymbol{p}, s)} e^{i p x x} a(\boldsymbol{p}, s)+\binom{v_{\ell}(\boldsymbol{p}, s)}{v_{r}(\boldsymbol{p}, s)} e^{-i \boldsymbol{p} x x} a_{c}^{\dagger}(\boldsymbol{p}, s)\right]
$$

Charge conjugation C swaps a with a_{c}

C-operator flips the chirality of the field (does not change spin of particle excitations!)

$$
\left(\psi_{L}\right)^{c}=\left(\psi^{c}\right)_{R}
$$

v particle associated to a, a^{\dagger} anti- ν particle associated to $a_{c}, a_{c}{ }^{\dagger}$

We've seen these excitations, what we call v and anti-v

In the relativistic limit:

$$
\begin{aligned}
& \binom{u_{\ell}\left(p \hat{z}, \frac{1}{2}\right)}{u_{r}\left(p \hat{z}, \frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{u_{\ell}\left(p \hat{z},-\frac{1}{2}\right)}{u_{r}\left(p \hat{z},-\frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& \binom{v_{\ell}\left(p \hat{z}, \frac{1}{2}\right)}{v_{r}\left(p \boldsymbol{z}, \frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \text { and }\binom{v_{\ell}\left(\hat{z},-\frac{1}{2}\right)}{v_{r}\left(p \hat{z},-\frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

ψ_{L} ann. ferm. with hel. - \& creates antifer. with hel. + $\psi_{\mathrm{L}} \dagger$ ann. antifer. with hel. $+\&$ creates ferm. with hel. -

Dirac mass term

$$
\begin{gathered}
\bar{\psi}=\psi^{\dagger} \gamma_{0} \\
\psi_{L} \equiv P_{L} \psi \equiv \frac{1-\gamma_{5}}{2} \psi \\
\psi_{R} \equiv P_{R} \psi \equiv \frac{1+\gamma_{5}}{2} \psi
\end{gathered}
$$

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

v particle associated to a, a^{\dagger} anti- ν particle associated to $a_{c}, a_{c}{ }^{\dagger}$

We've seen these excitations, what we call v and anti-v

$$
\binom{\psi_{\ell}(x)}{\psi_{r}(x)}=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\binom{u_{\ell}(\boldsymbol{p}, s)}{u_{r}(\boldsymbol{p}, s)} e^{i p x x} a(\boldsymbol{p}, s)+\binom{v_{\ell}(\boldsymbol{p}, s)}{v_{r}(\boldsymbol{p}, s)} e^{-i \boldsymbol{p} x x} a_{c}^{\dagger}(\boldsymbol{p}, s)\right]
$$

In the relativistic limit:

$$
\begin{aligned}
& \binom{u_{\ell}\left(\hat{z}, \frac{1}{2}\right)}{u_{r}\left(p \hat{z}, \frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{u_{\ell}\left(p \hat{z},-\frac{1}{2}\right)}{u_{r}\left(p \hat{z},-\frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& \binom{v_{\ell}\left(p \hat{z}, \frac{1}{2}\right)}{v_{r}\left(p \hat{z}, \frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \text { and }\binom{v_{\ell}\left(p \hat{z},-\frac{1}{2}\right)}{v_{r}\left(p \hat{z},-\frac{1}{2}\right)} \rightarrow\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Charge conjugation C swaps a with a_{c}

C-operator flips the chirality of the field (does not change spin of particle excitations!)

$$
\left(\psi_{L}\right)^{c}=\left(\psi^{c}\right)_{R}
$$

For v's we don't know if these states exist. If L is conserved, they must exist by CPT theorem, like for other fermions
ψ_{L} ann. ferm. with hel. - \& creates antifer. with hel. + $\psi_{\mathrm{L}} \dagger$ ann. antifer. with hel. $+\&$ creates ferm. with hel. -
ψ_{R} ann. fer. with hel. + \& creates antifer. with hel. $\psi_{\mathrm{R}} \dagger$ ann. antifer. with hel. - \& creates fer. with hel. +

Dirac mass term

$\left.-m\left(\bar{\psi}_{R} \psi_{L}\right)+\bar{\psi}_{L} \psi_{R}\right)$

$$
\binom{\psi_{\ell}(x)}{\psi_{r}(x)}=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\binom{u_{\ell}(\boldsymbol{p}, s)}{u_{r}(\boldsymbol{p}, s)} e^{i p \cdot x} a(\boldsymbol{p}, s)+\binom{v_{\ell}(\boldsymbol{p}, s)}{v_{r}(\boldsymbol{p}, s)} e^{-i p \cdot x} a_{c}^{\dagger}(\boldsymbol{p}, s)\right]
$$

Can symbolically think of it as

Dirac mass

Dirac mass

We've seen these excitations, what we call v and anti-v
ψ_{L} ann. ferm. with hel. - \& creates antifer. with hel. + $\psi_{\mathrm{L}} \dagger$ ann. antifer. with hel. $+\&$ creates ferm. with hel. -

For v's we don't know if these states exist. If L is conserved, they must exist by CPT theorem, like for other fermions
ψ_{R} ann. fer. with hel. + \& creates antifer. with hel. $\psi_{\mathrm{R}} \dagger$ ann. antifer. with hel. - \& creates fer. with hel. +

Majorana mass term

Can I use the same field to deal with what we observe?
Yes if $a=a_{c}$, i.e. L is not conserved (i.e. there is no intrinsic distinction between leptons and anti leptons)

The Majorana (2 comp) LH field writes

$$
\psi_{\ell M}(x)=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}} u_{\ell}(\mathbf{p}, s) e^{i p \cdot x} a(\mathbf{p}, s)+v_{\ell}(\mathbf{p}, s) e^{-i p \cdot x} a^{\dagger}(\mathbf{p}, s)
$$

And the RH field (same operators, not ind.!) is $\psi_{r M}(x)=\sum_{s= \pm 1 / 2} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}} u_{r}(\mathbf{p}, s) e^{i p \cdot x} a(\mathbf{p}, s)+v_{r}(\mathbf{p}, s) e^{-i p \cdot x} a^{\dagger}(\mathbf{p}, s)$

Can be combined in a 4-component Majorana field

$$
\psi_{M}(x)=\binom{\psi_{\ell_{M}}(x)}{\psi_{r M}(x)} \quad \text { satisfying } \quad \psi_{M}=\psi_{M}^{c}
$$

$$
-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

factor $1 / 2$ since the same dof enter twice...
neutrinos are their own antiparticles
cannot exist for any fermion but v 's due to charge conservation

Majorana mass term

$\begin{gathered}\text { Cannot really talk of } v / \text { anti- } \imath \text {, just } \operatorname{SU}(2) \text { interacting particles } \\ \text { with opposite helicities. In that sense, the term }\end{gathered} \quad-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)$

Majorana mass term

Cannot really talk of v lanti- v, just $\mathrm{SU}(2)$ interacting particles with opposite helicities. In that sense, the term

$$
-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

Catania 1906-Mediterranean seal938?
(after 1959, Venezuela?)

"There are several categories of scientists in the world; those of second or third rank do their best but never get very far. Then there is the first rank, those who make important discoveries, fundamental to scientific progress. But then there are the geniuses, like Galilei and Newton. Majorana was one of these."
Ettore Majorana

Dirac vs Majorana mass term

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right) \quad-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

As written, neither allowed in the SM, for any fermion!

Dirac vs Majorana mass term

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

$$
-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

As written, neither allowed in the SM, for any fermion!

Violates $S U(2)$ invariance
Violates both $S U(2)$ and $U(1)$ invariance

Dirac vs Majorana mass term

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

$$
-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

As written, neither allowed in the SM, for any fermion!

Violates $S U(2)$ invariance
Need to make m emerge from the Higgs SU(2) doublet coupling via Yukawa's after EWSB
e.g. $\bar{Q}_{L} Y_{u} u_{R} H$

The field v_{R} does not exist in SM, can't be done for v 's

Violates both $S U(2)$ and $U(1)$ invariance

Dirac vs Majorana mass term

$$
-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

$$
-\frac{1}{2} m\left(\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c}\right)
$$

Weak isospin I, triplet-like!

As written, neither allowed in the SM, for any fermion!

Violates $S U(2)$ invariance

Need to make m emerge from the Higgs $S U(2)$ doublet coupling via Yukawa's after EWSB
e.g. $\quad \bar{Q}_{L} Y_{u} u_{R} H$

The field v_{R} does not exist in SM, can't be done for v 's

Violates both $S U(2)$ and $U(1)$ invariance
Same 'promotion' of m does not work here for v at renormalisable level $(\operatorname{dim}=4)$ hence you did not hear about it!

The (renormalisable!) SM 'accidentally' conserves L

Option I: Drop renormalisability, add Weinberg's operator

The trick does work at dim=5 (SU(2) triplet out of 2 Higgs doublets)

$$
\mathcal{L}_{5}=\frac{1}{\Lambda}(H L)(H L)
$$

One can write a unique, dimension-5 operator that breaks L
S.Weinberg, Phys. Rev. Lett. 43, I566 (1979)

After EWSB, this yields a Majorana mass
term for neutrinos $m \nu^{2} \sim \frac{v^{2}}{\Lambda} \nu^{2}$

Note the quadratic dependence of m on Higgs vev, contrary to other SM particles!

Option I: Drop renormalisability, add Weinberg's operator

The trick does work at dim=5 (SU(2) triplet out of 2 Higgs doublets)

$$
\mathcal{L}_{5}=\frac{1}{\Lambda}(H L)(H L)
$$

One can write a unique, dimension-5 operator that breaks L

After EWSB, this yields a Majorana mass

 term for neutrinos

Note the quadratic dependence of m on Higgs vev, contrary to other SM particles!

Sensible to think that the tiny v masses detected via oscillations are due to the fact that a high scale $\boldsymbol{\Lambda}$ is responsible for physics BSM breaking L

Can estimate Λ so that $\mathrm{m} \sim 0.0 \mathrm{I}-0.1 \mathrm{eV}$ (scale bracketed by oscillations \& direct searches) It is well below the Planck scale~ 1019 GeV : New physics scale required!

Option II : Adding $\nu_{R}(=N)$

Gauge singlets! Now we can form Yukawa mass term for v, but nothing prevents Majorana mass for N

$$
\mathcal{L} \ni-Y_{N_{i j}} \bar{N}_{i} L_{j} H-\frac{m_{N_{i}}}{2} \overline{N_{i}^{c}} N_{i}+h . c . \quad \begin{gathered}
\text { Renormalizable } \\
\text { extension of } S M
\end{gathered}
$$

Yukawa mass term now possible

Option II: Adding $\nu_{\mathrm{R}}(=\mathrm{N})$

Gauge singlets! Now we can form Yukawa mass term for v, but nothing prevents Majorana mass for N

$$
\mathcal{L} \ni-Y_{N_{i j}} \bar{N}_{i} L_{j} H-\frac{m_{N_{i}}}{2} \overline{N_{i}^{c}} N_{i}+h . c . \quad \begin{gathered}
\text { Renormalizable } \\
\text { extension of } S M
\end{gathered}
$$

Yukawa mass term now possible

Back to effective Majorana mass term for v 's (Seesaw, type I)

$$
m_{\nu}=Y_{N}^{T} \frac{1}{m_{N}} Y_{N} v^{2}
$$

Tiny Yukawa's is a possible alternative, but in general $m_{N} \neq 0$ unless explicitly enlarging symmetry group of the SM (why?)

So, why focusing on v masses?

They do achieve what people have been trying to do since the 70's, to 'break' the SM!

New fields/energy scale/'meaningful’ symmetry (or breaking thereof) out there, below Planck scale!

Yet, unlikely that we will understand deeper structure only with low-E experiments. But our duty to collect as much info as we can...

Now time to review how this achievement was attained
II. Historical notes

Partial and incomplete, just to give you a sense of the main events and dates! Apologies to dozens of collaborations and thousands of colleagues!

- 1915-...: Chadwick (NP 1935) observes a continuum spectrum in β-decays, instead of a quasi-monhocromatic one: Apparent energy (and ang. momentum) violation. Only statistically true? (Bohr)

Partial and incomplete, just to give you a sense of the main events and dates! Apologies to dozens of collaborations and thousands of colleagues!

- 1915-...: Chadwick (NP 1935) observes a continuum spectrum in β-decays, instead of a quasi-monhocromatic one: Apparent energy (and ang. momentum) violation. Only statistically true? (Bohr)
- 1930: Pauli (NP 1945) proposed the "neutrino" as a solution: Dear radioactive ladies and gentlemen, [...] I have hit upon a desperate remedy to save the [...]energy theorem. Namely the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin I/2 [...] The mass of the neutron must be [...] not larger than 0.01 proton mass. [...] in β decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant.

Partial and incomplete, just to give you a sense of the main events and dates! Apologies to dozens of collaborations and thousands of colleagues!

- 1915-...: Chadwick (NP 1935) observes a continuum spectrum in β-decays, instead of a quasi-monhocromatic one: Apparent energy (and ang. momentum) violation. Only statistically true? (Bohr)
- 1930: Pauli (NP 1945) proposed the "neutrino" as a solution: Dear radioactive ladies and gentlemen, [...] I have hit upon a desperate remedy to save the [...]energy theorem. Namely the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin I/2 [...] The mass of the neutron must be [...] not larger than 0.01 proton mass. [...] in β decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant.
"[...] Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December."

Partial and incomplete, just to give you a sense of the main events and dates! Apologies to dozens of collaborations and thousands of colleagues!

- 1915-...: Chadwick (NP 1935) observes a continuum spectrum in β-decays, instead of a quasi-monhocromatic one: Apparent energy (and ang. momentum) violation. Only statistically true? (Bohr)
- 1930: Pauli (NP 1945) proposed the "neutrino" as a solution: Dear radioactive ladies and gentlemen, [...] I have hit upon a desperate remedy to save the [...]energy theorem. Namely the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin I/2 [...] The mass of the neutron must be [...] not larger than 0.01 proton mass. [...] in β decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant.
"[...] Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December."
"I have done a terrible thing today, something which no theoretical physicist should ever do. I have suggested something that can never be verified experimentally." (Pauli to Baade)

Partial and incomplete, just to give you a sense of the main events and dates! Apologies to dozens of collaborations and thousands of colleagues!

- 1915-...: Chadwick (NP 1935) observes a continuum spectrum in β-decays, instead of a quasi-monhocromatic one: Apparent energy (and ang. momentum) violation. Only statistically true? (Bohr)
- 1930: Pauli (NP 1945) proposed the "neutrino" as a solution: Dear radioactive ladies and gentlemen, [...] I have hit upon a desperate remedy to save the [...]energy theorem. Namely the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin I/2 [...] The mass of the neutron must be [...] not larger than 0.01 proton mass. [...] in β decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant.
- 1932-34: Fermi (NP 1938) names it"neutrino" (little neutral one) to distinguish it from the neutron recently discovered by J. Chadwick (NP 1935), and later proposes the 'Fermi' theory of beta decay.

A (brief) v history, I

$\mathcal{L}_{\text {Fermi }}=-\frac{G_{F}}{\sqrt{2}} \bar{p} \gamma_{\mu} n \bar{e} \gamma^{\mu} \nu+$ h.c.
$G_{F}=1.166 \cdot 10^{-5} \mathrm{GeV}^{-2} \quad$ Fermi constant

A (brief) v history, II

- 1956: Reines (NP 1995) \& Cowan discover the (anti) v via inverse β decay using the Savannah river reactor as a source

A（brief）v history，II

－1956：Reines（NP 1995）\＆Cowan discover the（anti）v via inverse β－ decay using the Savannah river reactor as a source

－1956－57：Lee \＆Yang（NP 1957）propose and Madame Wu（no NP？！？）proves that P is violated in weak interactions．Sudarshan，Marshak，Gell－Mann \＆Feynman propose the V－A current structure．

Tsung－Dao Lee（李政道）advisor：Fermi Chen－Ning Yang（杨振宁）；advisors：Teller，Fermi

A（brief）v history，III

－1957：First idea of v（anti－v ）oscillation，by B．Pontecorvo
－Early＇60：Leptonic mixing introduced Maki（牧二郎）Nakagawa（中川昌美）Sakata（坂田昌）

$\begin{array}{lll}\text { S．Sakata } & \text { Z．Maki } & \text { M．Nakagawa } \\ \text { 1929．2005 } \\ \text { 1932．2901 }\end{array}$ 1911．1976

A（brief）v history，III

－1957：First idea of v（anti－v ）oscillation，by B．Pontecorvo
－Early＇60：Leptonic mixing introduced Maki（牧二郎）Nakagawa（中川昌美）Sakata（坂田昌）
－1962：v_{μ} discovered by L．Lederman，M．Schwartz and J．Steinberger （NP 1988．．．awarded before the NP for the（anti）－ν_{e} ！）
－1967－69：First pheno elaboration of flavour oscillations and thoughts of connection to the solar problem Pontecorvo，Gribov（В＾ади́мир Нау́мович Гри́бов）

A (brief) v history, IV

- 1964-I968: Deficit in solar v flux measured by R. Davis (NP 2002) at Homestake if compared with the predicted solar v fluxes (Bahcall et al.)

A (brief) v history, IV

- 1964-1968: Deficit in solar v flux measured by R. Davis (NP 2002) at Homestake if compared with the predicted solar v fluxes (Bahcall et al.)
- Anomaly received further confirmation (SAGE, GALLEX, KamiokaNDE...) eventually interpretation due to mixing, sealed by SNO

No p-decay, but solar v \& SNI987A

 solar v measured!

...In parallel, starting point of "modern v physics"

- 1988: First convincing evidence for atmospheric neutrino anomaly [Kamiokande], confirmed e.g. by MACRO
- 1998: Strong evidence by SuperKamiokande, confirmed by Soudan2 \& MACRO

- Over the past decade, also HE telescopes (mostly astro!) joined these studies (Antares, I206.0645, IceCube...)

... till long baseline \& modern reactor v projects

- K2K (I999-2004),T2K (20I0-202I), MINOS (2005-20I6), OPERA (2008-20I2), NOVA (>20I4) : Long baseline confirmation and refinement of the picture
- "Solar" parameters further explored by KamLAND (>2002) via 'long distance’ studies of reactor fluxes.

- Greatly improved reactor experiments (...CHOOZ, Palo Verde...) eventually lead to the generation capable of measuring third mixing angle (From 2012: Daya Bay, Double Chooz, RENO...)

Some references

- G.Altarelli and K.Winter, Neutrino Mass, Springer, Berlin/Heidelberg, 2003, in particular B. Kayser's chapter on mixing and flavour change, hep-ph/02III34
- M. Fukugita,T. Yanagida, Physics of Neutrinos and applications to astrophysics, Springer 2003
- A. De Gouvea, TASI lectures on neutrino physics, hep-ph/04II274
- A. Strumia and F.Vissani, neutrino masses and mixing and... hep-ph/0606054.
- C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press 2007
- Z.-Z. Xing, S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology, Springer 20II
- V. Barger, D. Marfatia, and K.Whisnant, The Physics of Neutrinos, Princeton University Press 20I2

III. Neutrino oscillations (in vacuum)

The discovery that v's have masses comes from the observation that v's oscillate (due to lepton mixing), a concept which we now introduce

Oscillations experiments are also the primary tool to measure the parameters governing this new mass sector, hence we'll focus on some of their key aspects

(Cartoon) meaning of flavour

v flavour defined via the charged current weak interaction vertex involved in its production/detection

The weak interaction couples the v of a given flavour only to the charged lepton ℓ of the same flavour.

Note

The 'flavour' of charged leptons (typically studied/measured via their e.m. interactions) is 'defined' by their mass, which determines their properties, like their decays.

Cartoon translates into equations in the SM, of course!

From SM Weak interaction to Effective Fermi Theory

$$
\begin{gathered}
\frac{g}{\sqrt{2}}\left(J_{W}^{\mu} W_{\mu}^{+}+J_{W}^{\mu \dagger} W_{\mu}^{-}\right)+\frac{g}{\cos \vartheta_{W}} J_{Z}^{\mu} Z_{\mu} \\
J_{W}^{\mu} \equiv \sum_{\text {gen. }} \bar{u} \gamma^{\mu} P_{L} d+\bar{\nu} \gamma^{\mu} P_{L} \ell,
\end{gathered} \quad J_{Z}^{\mu} \equiv \sum_{f} \bar{f} \gamma^{\mu}\left(I_{3}^{f} P_{L}-\sin ^{2} \vartheta_{W} Q_{f}\right) f, \quad \supset \quad \frac{1}{4} \sum_{\alpha} \bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\alpha} .
$$

From SM Weak interaction to Effective Fermi Theory

$$
\begin{gathered}
\frac{g}{\sqrt{2}}\left(J_{W}^{\mu} W_{\mu}^{+}+J_{W}^{\mu \dagger} W_{\mu}^{-}\right)+\frac{g}{\cos \vartheta_{W}} J_{Z}^{\mu} Z_{\mu} \\
J_{W}^{\mu} \equiv \sum_{\text {gen. }} \bar{u} \gamma^{\mu} P_{L} d+\bar{\nu} \gamma^{\mu} P_{L} \ell, \quad J_{Z}^{\mu} \equiv \sum_{f} \bar{f} \gamma^{\mu}\left(I_{3}^{f} P_{L}-\sin ^{2} \vartheta_{W} Q_{f}\right) f, \quad \partial \quad \frac{1}{4} \sum_{\alpha} \bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\alpha}
\end{gathered}
$$

For phenomenology at $E \ll M w, M z$, useful to 'integrate out' the gauge bosons
(set their kinetic term to zero, neglect all terms that involve more than two heavy particle like triple and quartic gauge couplings, gauge-Higgs interactions, as well as currents with the top quark)

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial W_{\mu}^{+}}=\frac{g}{\sqrt{2}} J_{W}^{\mu}+M_{W}^{2} W^{-\mu}=0, \quad \frac{\partial \mathcal{L}}{\partial Z_{\mu}}=\frac{g}{\cos \vartheta_{W}} J_{Z}^{\mu}+M_{Z}^{2} Z^{\mu}=0 \\
& \mathcal{L}_{\text {weak }}^{\text {eff }}=-2 \sqrt{2} G_{F}\left(J_{W}^{\mu} J_{W \mu}^{\dagger}+J_{Z}^{\mu} J_{Z \mu}\right): \quad G_{F} \equiv \frac{\sqrt{2} g^{2}}{8 M_{W}^{2}} \simeq 1.166 \times 10^{-5} \mathrm{GeV}^{-2}
\end{aligned}
$$

Lepton number conservation

The SM Lagrangian is invariant under a global $\mathrm{U}(\mathrm{I})$ transformation for each generation (each α)

$$
\ell_{\alpha} \rightarrow e^{i \phi} \ell_{\alpha} \quad \nu_{\alpha} \rightarrow e^{i \phi} \nu_{\alpha}
$$

The associated conserved quantum number (via Noether's theorem) is the generation Lepton number L_{α}, whose sum is the (global) lepton number L

Number operators, counting \# leptons - antileptons
\qquad

$$
L=\sum_{\text {gen }} L_{\alpha}=\sum_{\text {gen }} \int \mathrm{d} x^{3}\left[\nu_{\alpha}^{\dagger}(x) \nu_{\alpha}(x)+\ell_{\alpha}^{\dagger}(x) \ell_{\alpha}(x)\right]
$$

Lepton number conservation

The SM Lagrangian is invariant under a global $\mathbf{U}(\mathrm{I})$ transformation for each generation (each α)

$$
\ell_{\alpha} \rightarrow e^{i \phi} \ell_{\alpha} \quad \nu_{\alpha} \rightarrow e^{i \phi} \nu_{\alpha}
$$

The associated conserved quantum number (via Noether's theorem) is the generation Lepton number L_{α}, whose sum is the (global) lepton number L

Number operators, counting \# leptons - antileptons

$$
L=\sum_{\text {gen }} L_{\alpha}=\sum_{\text {gen }} \int \mathrm{d} x^{3}\left[\nu_{\alpha}^{\dagger}(x) \nu_{\alpha}(x)+\ell_{\alpha}^{\dagger}(x) \ell_{\alpha}(x)\right]
$$

E.g. we see

This formalism translates the experimental evidences (over several decades!) that the v flavour at detection is the same as it was at production

we do not see

Violation of L_{α} 's conservation in v experiments!

...until evidence collected that, if you make v's propagate long enough, this may not be true! E.g. can have:

Violation of L_{α} 's conservation in v experiments!

...until evidence collected that, if you make v 's propagate long enough, this may not be true! E.g. can have:

Will see that this requires leptonic mixing and that (some) v mass $\neq 0$
Something non-trivial in flavour space must happen in the propagation of the (free) v 's. We know how to describe the propagation of mass eigenstates m_{i} (eigenstates of the Hamiltonian) which we denote $\boldsymbol{v}_{\mathrm{i}}$

Free v propagation \& Leptonic mixing

Free $\boldsymbol{v}_{\mathrm{i}}$ obey Dirac eq.
$(i \not \partial-m) \psi(x)=0$

Solved in terms of plane waves
$\psi(x)=u(p) e^{-i p \cdot x}$ $c t=x$
with dispersion relation

$$
E^{2}=p^{2}+m^{2} \Rightarrow E \simeq p+\frac{m^{2}}{2 p}
$$

ultra-relativistic limit

Free v propagation \& Leptonic mixing

Free v_{i} obey Dirac eq.
$(i \not \partial-m) \psi(x)=0$

Solved in terms of plane waves
$\psi(x)=u(p) e^{-i p \cdot x}$

$$
c t=x
$$

with dispersion relation

$$
E^{2}=p^{2}+m^{2} \Rightarrow E \simeq p+\frac{m^{2}}{2 p}
$$

ultra-relativistic limit

Note: vacuum evolution equivalent to v states evolving as $\quad i \frac{\partial}{\partial t} \psi=E \psi \simeq\left(p+\frac{m^{2}}{2 p}\right) \psi$

Free v propagation \& Leptonic mixing

Free v_{i} obey Dirac eq.
$(i \not \partial-m) \psi(x)=0$

Solved in terms of plane waves
$\psi(x)=u(p) e^{-i p \cdot x}$

$$
c t=x
$$

with dispersion relation

$$
E^{2}=p^{2}+m^{2} \Rightarrow E \simeq p+\frac{m^{2}}{2 p}
$$

ultra-relativistic limit

Mixing means that \boldsymbol{v}_{α} 's of definite flavour must be superpositions of the mass eigenstates $\boldsymbol{v}_{\mathbf{i}}$; Complete bases in flavour and mass space are related by a unitary matrix U (PMNS for $N=3$)

Free v propagation \& Leptonic mixing

Free v_{i} obey Dirac eq.

$$
(i \not \partial-m) \psi(x)=0
$$

Solved in terms of plane waves
$\psi(x)=u(p) e^{-i p \cdot x}$

$$
c t=x
$$

with dispersion relation

$$
E^{2}=p^{2}+m^{2} \Rightarrow E \simeq p+\frac{m^{2}}{2 p}
$$

ultra-relativistic limit

Mixing means that \boldsymbol{v}_{α} 's of definite flavour must be superpositions of the mass eigenstates ν_{i}; Complete bases in flavour and mass space are related by a unitary matrix U (PMNS for $N=3$)
$\begin{gathered}\begin{array}{c}\text { In terms } \\ \text { of } v \text { fields }\end{array}\end{gathered} \psi_{\alpha}=\sum_{i=1,2,3} U_{\alpha i} \psi_{i} \quad \begin{gathered}\text { In terms of } \\ \text { single- } v \text { state }\end{gathered} \quad\left|\nu_{\alpha}\right\rangle=\sum_{i=1,2,3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \quad$ Since $\quad|\nu\rangle=\psi^{\dagger}|0\rangle$

Anti- ν are instead
created as

v_{α} 's of definite flavour (i.e. associated to a given charged lepton mass) are not mass eigenstates.

The mixing matrix and its meaning

We can thus rewrite the CC weak interaction in the massive v basis as (now these indicates v fields!)

$$
\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e, \mu, \tau \\ i=1,2,3}}\left(\bar{\ell}_{L \alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}^{-}+\bar{v}_{L i} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L \alpha} W_{\lambda}^{+}\right)
$$

The mixing matrix and its meaning

We can thus rewrite the CC weak interaction in the massive v basis as (now these indicates v fields!)

$$
\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e, \mu, \tau \\ i=1,2,3}}\left(\bar{\ell}_{L \alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}^{-}+\bar{v}_{L i} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L \alpha} W_{\lambda}^{+}\right)
$$

Theorist's rant

Technically, once taking into account the fact that one may also rotate the charged lepton basis, the U entering the $\mathrm{W} v \ell$ coupling is given by

$$
U=U_{\nu} U_{\ell}^{\dagger}
$$

Hence, properly one should talk of leptonic (rather than v) mixing

We can thus rewrite the CC weak interaction in the massive v basis as (now these indicates v fields!)

$$
\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e, \mu, \tau \\ i=1,2,3}}\left(\bar{\ell}_{L \alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}{ }^{-}+\bar{v}_{L i} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L \alpha} W_{\lambda}{ }^{+}\right)
$$

Theorist's rant

Technically, once taking into account the fact that one may also rotate the charged lepton basis, the U entering the $\mathrm{W} v \ell$ coupling is given by

$$
U=U_{\nu} U_{\ell}^{\dagger}
$$

Hence, properly one should talk of leptonic (rather than v) mixing

Meaning of U

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

e-row: linear combination of mass states that couple to the electron.
Second column: linear combination of charged leptons that couples to v_{2}
... and so on, you get the idea!

Reminder: Quark mixing matrix

Flavour basis defined by the weak interactions. $\left(\frac{v+h}{\sqrt{2}}\right) \overline{\mathbf{u}}_{L} \mathbf{Y}_{u} \mathbf{u}_{R}$
Mass basis defined by the Yukawa term

$$
\left(\frac{v+h}{\sqrt{2}}\right) \overline{\mathbf{d}}_{L} \mathbf{Y}_{d} \mathbf{d}_{R}
$$

bold = matrices in flavour space

Mass matrices $\begin{aligned} & \mathbf{M}_{u}=\mathbf{Y}_{u} v / \sqrt{2} \\ & \mathbf{M}_{d}=\mathbf{Y}_{d} v / \sqrt{2}\end{aligned}$ can be diagonalized by biunitary transformations

Reminder: Quark mixing matrix

Flavour basis defined by the weak interactions. $\left(\frac{v+h}{\sqrt{2}}\right) \overline{\mathbf{u}}_{L} \mathbf{Y}_{u} \mathbf{u}_{R}$
Mass basis defined by the Yukawa term

$$
\left(\frac{v+h}{\sqrt{2}}\right) \overline{\mathbf{d}}_{L} \mathbf{Y}_{d} \mathbf{d}_{R}
$$

After EWSB,
bold = matrices in flavour space

Mass matrices $\begin{aligned} & \mathbf{M}_{u}=\mathbf{Y}_{u} v / \sqrt{2} \\ & \mathbf{M}_{d}=\mathbf{Y}_{d} v / \sqrt{2}\end{aligned}$ can be diagonalized by biunitary transformations

Denote with primes the fields in terms of which the mass is diagonal

$$
\mathbf{u}_{L}^{\prime}=V_{L}^{u} \mathbf{u}_{L}
$$

$$
\mathbf{u}_{R}^{\prime}=V_{R}^{u} \mathbf{u}_{R}
$$

Now, how does the weak current rewrite?

$$
\mathbf{M}_{u}^{\mathrm{diag}}=V_{L}^{u \dagger} \mathbf{M}_{u} V_{R}^{u}
$$

Convention here:

$$
J_{W}^{\mu} \equiv \sum_{\text {gen. }} \bar{u} \gamma^{\mu} P_{L} d+\bar{\nu} \gamma^{\mu} P_{L} \ell, \quad J_{W}^{\mu} \supset \sum_{\text {flavors }} \bar{u}_{L}^{\prime}\left(V_{L}^{u \dagger} V_{L}^{d}\right) \gamma^{\mu} P_{L} d_{L}^{\prime} \quad \quad U_{\mathrm{CKM}} \equiv V_{L}^{u \dagger} V_{L}^{d}
$$

The product of unitary matrix affecting up and down left quark fields now enters (CKM matrix) Note: Rotations of the right-handed fields have no physical consequence in the SM!

Towards v oscillations (in vacuum)

Let's make sense of our previous scheme:

Production:
Flavour state, i.e.
coherent combination of mass
states

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1,2,3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle
$$

Towards v oscillations (in vacuum)

Let's make sense of our previous scheme:

Production:
Flavour state, i.e.
coherent combination of mass states

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1,2,3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle
$$

Propagation:
Each mass state propagates independently, relative phases build-up

$$
\left|\nu_{k}(t)\right\rangle=e^{-i E_{k} t}\left|\nu_{k}\right\rangle
$$

Towards v oscillations (in vacuum)

Let's make sense of our previous scheme:

Production:
Flavour state, i.e.
coherent combination of mass
states

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1,2,3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle
$$

Propagation:
Each mass state propagates independently, relative phases build-up

$$
\left|\nu_{k}(t)\right\rangle=e^{-i E_{k} t}\left|\nu_{k}\right\rangle
$$

Detection:
Measure flavour, which ones depends on the combination of mass states here

Project $\left\langle\nu_{\beta}\right|$

Towards v oscillations (in vacuum)

Let's make sense of our previous scheme:

Production:
Flavour state, i.e.
coherent combination of mass states

Propagation:
Each mass state propagates independently, relative phases build-up

$$
\left|\nu_{k}(t)\right\rangle=e^{-i E_{k} t}\left|\nu_{k}\right\rangle
$$

Detection:
Measure flavour, which ones depends on the combination of mass states here

Project $\left\langle\nu_{\beta}\right.$

Key quantity, the transition amplitude $\quad A_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t) \equiv A_{\alpha \beta}=\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle=\sum_{k} U_{\alpha k}^{*} U_{\beta k} e^{-i E_{k} t}$

v oscillation (in vacuum): The basic math

The transition probability is the modulus square of the amplitude:

$$
P_{\alpha \rightarrow \beta}(t)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle\right|^{2}=A_{\alpha \beta}^{*} A_{\alpha \beta}=\sum_{j, k} J_{k j}^{\alpha \beta} e^{-i\left(E_{k}-E_{j}\right) t}
$$

where we introduced the quartic rephasing invariant $\quad J_{k j}^{\alpha \beta} \equiv U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}$
e.g. E.E. Jenkins and A.V. Manohar, Nucl. Phys. B792 (2008) I87, 0706.43I3. encoding the information of the mixing matrix independent of phase redefinitions of the lepton fields

v oscillation (in vacuum): The basic math

The transition probability is the modulus square of the amplitude:

$$
P_{\alpha \rightarrow \beta}(t)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle\right|^{2}=A_{\alpha \beta}^{*} A_{\alpha \beta}=\sum_{j, k} J_{k j}^{\alpha \beta} e^{-i\left(E_{k}-E_{j}\right) t}
$$

where we introduced the quartic rephasing invariant $\quad J_{k j}^{\alpha \beta} \equiv U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}$
e.g. E.E. Jenkins and A.V. Manohar, Nucl. Phys. B792 (2008) I87, 0706.4313. encoding the information of the mixing matrix independent of phase redefinitions of the lepton fields

The double sum can be split in $\quad \sum+\sum+\sum$ the latter two terms are the sum of two complex conjugate expressions, hence
$P_{\alpha \rightarrow \beta}(t)=\sum_{j}\left|U_{\alpha j}\right|^{2}\left|U_{\beta j}\right|^{2}+2 \Re\left[\sum_{k>j} J_{k j}^{\alpha \beta} e^{-i\left(E_{k}-E_{j}\right) t}\right]$.

v oscillation (in vacuum): The basic math

The transition probability is the modulus square of the amplitude:

$$
P_{\alpha \rightarrow \beta}(t)=\left|\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle\right|^{2}=A_{\alpha \beta}^{*} A_{\alpha \beta}=\sum_{j, k} J_{k j}^{\alpha \beta} e^{-i\left(E_{k}-E_{j}\right) t}
$$

where we introduced the quartic rephasing invariant $\quad J_{k j}^{\alpha \beta} \equiv U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}$
e.g. E.E. Jenkins and A.V. Manohar, Nucl. Phys. B792 (2008) 187, 0706.43I3. encoding the information of the mixing matrix independent of phase redefinitions of the lepton fields

The double sum can be split in $\quad \sum+\sum+\sum \quad$ the latter two terms are the sum of two complex conjugate expressions, hence
$P_{\alpha \rightarrow \beta}(t)=\sum_{j}\left|U_{\alpha j}\right|^{2}\left|U_{\beta j}\right|^{2}+2 \Re\left[\sum_{k>j} J_{k j}^{\alpha \beta} e^{-i\left(E_{k}-E_{j}\right) t}\right] . \begin{array}{r}\text { The standard derivation of the oscillation } \\ \text { relies on the approximations for ultra-rela }\end{array}$

And the expression is further simplified using the unitarity of U and the identities

$$
\Re[(a+i \alpha)(b+i \beta)]=a b-\alpha \beta \quad e^{i x}=\cos x+i \sin x \quad \cos x=1-2 \sin ^{2}(x / 2)
$$

v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j} 2 \equiv m_{k} 2-m_{j} 2$ and $L=c t$, the distance between source and detector, is often called baseline
v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j}{ }^{2} \equiv m_{k}{ }^{2}-m_{j}{ }^{2}$ and $L=c t$, the distance between source and detector, is often called baseline

Some general properties

- v flavour change implies that (some) v mass $\neq 0$ and they are non-degenerate
v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j}{ }^{2} \equiv m_{k}{ }^{2}-m_{j}{ }^{2}$ and $L=c t$, the distance between source and detector, is often called baseline

Some general properties

$\bullet v$ flavour change implies that (some) v mass $\neq 0$ and they are non-degenerate
$\bullet v$ flavour change implies mixing, otherwise* $J_{k j}^{\alpha \beta}=0$
Follows from $\quad U_{\alpha i}^{} U_{\beta i}=0 \quad$ if mass basis diagonal in flavour space, for $\alpha \neq \boldsymbol{\beta}$
v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j}{ }^{2} \equiv m_{k}{ }^{2}-m_{j}{ }^{2}$ and $L=c t$, the distance between source and detector, is often called baseline

Some general properties

- v flavour change implies that (some) v mass $\neq 0$ and they are non-degenerate
- v flavour change implies mixing, otherwise* $J_{k j}^{\alpha \beta}=0$
- The dependence from L and E enters only via L / E (related to proper time!)
Follows from $\quad U_{\alpha i}^{} U_{\beta i}=0 \quad$ if mass basis diagonal in flavour space, for $\alpha \neq \boldsymbol{\beta}$
v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j}{ }^{2} \equiv m_{k}{ }^{2}-m_{j}{ }^{2}$ and $L=c t$, the distance between source and detector, is often called baseline

Some general properties

- v flavour change implies that (some) v mass $\neq 0$ and they are non-degenerate
- v flavour change implies mixing, otherwise* $J_{k j}^{\alpha \beta}=0$
- The dependence from L and E enters only via L / E (related to proper time!)
- CPT symmetry implies that $\quad P_{\bar{\alpha} \bar{\beta}}=P_{\beta \alpha} \quad$ (note reversed order of the indices!)
Follows from $\quad U_{\alpha i}^{} U_{\beta i}=0 \quad$ if mass basis diagonal in flavour space, for $\alpha \neq \boldsymbol{\beta}$

v oscillation (in vacuum): General formula

$$
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

where we introduced the squared mass differences $\Delta m_{k j}{ }^{2} \equiv m_{k}{ }^{2}-m_{j}{ }^{2}$ and $L=c t$, the distance between source and detector, is often called baseline

Some general properties

$\bullet v$ flavour change implies that (some) v mass $\neq 0$ and they are non-degenerate

- v flavour change implies mixing, otherwise* $J_{k j}^{\alpha \beta}=0$
- The dependence from L and E enters only via L / E (related to proper time!)
- CPT symmetry implies that $\quad P_{\bar{\alpha} \bar{\beta}}=P_{\beta \alpha} \quad$ (note reversed order of the indices!)
- Valid for arbitrary number of generations/mass states, provided that the bases are complete (unitarity used!)
Follows from $\quad U_{\alpha i}^{} U_{\beta i}=0 \quad$ if mass basis diagonal in flavour space, for $\alpha \neq \boldsymbol{\beta}$

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad \text { CP-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad \text { CP-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

- CP violation in v oscillation requires (physical) phases in the mixing matrix U, otherwise $\operatorname{Im} \mathrm{J}=0$

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad \text { CP-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

- CP violation in v oscillation requires (physical) phases in the mixing matrix U, otherwise $\operatorname{lm} \mathrm{J}=0$
- CP-violating part oscillates twice faster (double frequency) than CP-conserving part

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad C \text { P-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

- CP violation in v oscillation requires (physical) phases in the mixing matrix U, otherwise $\operatorname{lm} \mathrm{J}=0$
- CP-violating part oscillates twice faster (double frequency) than CP-conserving part
- $\sum \operatorname{lm} \mathrm{J}$ equivalent (up to a sign) to the 'Jarlskog invariant' (in 3×3) used for the quantification of \mathscr{A}

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad C \text { C-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

- CP violation in v oscillation requires (physical) phases in the mixing matrix U, otherwise $\operatorname{Im} \mathrm{J}=0$
- CP-violating part oscillates twice faster (double frequency) than CP-conserving part
- $\sum \operatorname{lm} \mathrm{J}$ equivalent (up to a sign) to the 'Jarlskog invariant' (in 3×3) used for the quantification of $£ \mathbb{P}$

- Transition among flavours required to access CP violation, since $J_{k j}^{\alpha \alpha}=\left|U_{\alpha k}\right|^{2}\left|U_{\alpha j}\right|^{2}$ is obviously real

v oscillations \& CP violation

$$
\begin{array}{r}
P_{\alpha \rightarrow \beta}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)+2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right) \\
\quad C \text { CP-conjugate, remember for anti-v, U } \rightarrow U^{*} \\
P_{\bar{\alpha} \rightarrow \bar{\beta}}(L)=\delta_{\alpha \beta}-4 \sum_{k>j} \Re J_{k j}^{\alpha \beta} \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)-2 \sum_{k>j} \Im J_{k j}^{\alpha \beta} \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
\end{array}
$$

- CP violation in v oscillation requires (physical) phases in the mixing matrix U, otherwise $\operatorname{lm} \mathrm{J}=0$
- CP-violating part oscillates twice faster (double frequency) than CP-conserving part
- $\sum \operatorname{lm} \mathrm{J}$ equivalent (up to a sign) to the 'Jarlskog invariant' (in 3×3) used for the quantification of $£ \mathbf{P}$

- Transition among flavours required to access CP violation, since $J_{k j}^{\alpha \alpha}=\left|U_{\alpha k}\right|^{2}\left|U_{\alpha j}\right|^{2}$ is obviously real
- Measuring CP -violation requires observing the spectral dependence. If oscillations are averaged out (e.g. due to a poor energy resolution of the detector)
$\begin{aligned} & \text { CP-conserving } \\ & \text { factor }\end{aligned}\left\langle\sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)\right\rangle=\frac{1}{2}$
$\begin{aligned} & \text { CP-violating } \\ & \text { factor }\end{aligned}\left\langle\sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)\right\rangle=0$

Analogues of v oscillations

Aanalogous to other quantum systems where the initial state is a coherent superposition of eigenstates of the Hamiltonian:

Spins: for example a state with spin up in the z-direction in a B-field aligned in the x-direction. This gives raise to spin-precession, i.e. the state changes the spin orientation with a typical oscillatory behaviour.

K /anti-K: difference between the mass/strong interaction eigenstates (ruling production) and the weak interactions eigenstates K_{s}, K_{L}, controlling the decay.

Photon polarization state can be written as a superposition of states with H and V linear polarisations, or as a superposition of states with R and L circular polarizations. Think of v of a given flavour as being linearly polarised, while propagating v as circularly polarized states (those have well defined propagation characteristics such as velocity). Allows for analogical realization of the "flavour oscillation phenomenon" with lasers, e.g. arXiv: I 001.2749

Actually, I cheated!

Can derive the formulae e.g. assuming that v can be described by plane-waves, with definite momentum (which implies spatially infinite sources!) or assuming that the interference of different E-states vanishes unless they have the same E (implying sources constant in time, since ever and forever)
production and detection are always localised and not eternal.
e.g. production in decay: the relevant timescale is the pion lifetime
(or the time travelled in the decay pipe)

Actually, I cheated!

Can derive the formulae e.g. assuming that v can be described by plane-waves, with definite momentum (which implies spatially infinite sources!) or assuming that the interference of different E-states vanishes unless they have the same E (implying sources constant in time, since ever and forever)

production and detection are always localised and not eternal.

e.g. production in decay: the relevant timescale is the pion lifetime (or the time travelled in the decay pipe)

$$
\Delta E \gtrsim \frac{1}{2 \tau_{\pi}}
$$

There is always an energy-momentum spread which can be correctly described by a wave-packet formalism For oscillations to be measurable, we need to make sure that coherence is preserved, hence:
Error on p, E not small enough to measure the mass, $\quad \sigma_{p} \gg \frac{\Delta m^{2}}{\langle p\rangle}$
packets at detection not spatially separated more than size $\sigma_{x} \gg \frac{\Delta m^{2} L}{2\langle p\rangle} \quad \begin{gathered}\text { equivalent to } \\ E \text {-spread condition }\end{gathered} \frac{\Delta E}{E} \ll \frac{\ell_{\text {osc }}}{L}$

As long as those hold (often if not always!) the previous formalism yields the correct results

IV. Parameters of the mixing matrix

How many physical free parameters for N families?

Generic $N x N$ complex matrix has $2 N^{2}$ real parameters
Unitarity implies:

- Each row vector of unit length: N constraints
- Each couple of rows are orthogonal: $N(N-I)$ constraints

Hence a Unitary $N x N$ complex matrix has N^{2} real parameters, but not all are physical!

How many physical free parameters for N families?

Generic $N x N$ complex matrix has $2 N^{2}$ real parameters
Unitarity implies:

- Each row vector of unit length: N constraints
- Each couple of rows are orthogonal: $N(N-I)$ constraints

Hence a Unitary $N x N$ complex matrix has N^{2} real parameters, but not all are physical!
Rephasing a charged lepton field $\ell \rightarrow \mathbf{e}^{\mathrm{i} \theta} \ell$ leaves the mass term invariant, but changes by a phase $\mathbf{e}^{-\mathrm{i} \theta} \mathrm{a}$ row of the matrix. Phases in N 'up' fields and N 'down' ... means that $2 N-I$ dofs* in U are unphysical

Final counting $N^{2}-(2 N-I)=N^{2}-2 N+I=(N-I)^{2}($ for $N=2 \rightarrow I$ dof; for $N=3 \rightarrow 4$ dofs $)$
*Naively, you may think it's 2 N ; but a common phase of all the up and down fields won't affect at all the mixing matrix, hence only $2 \mathrm{~N}-\mathrm{I}$ dofs are unphysical.

How many physical free parameters for N families?

Generic $N x N$ complex matrix has $2 N^{2}$ real parameters

Unitarity implies:

- Each row vector of unit length: N constraints
- Each couple of rows are orthogonal: $N(N-I)$ constraints Hence a Unitary $N x N$ complex matrix has N^{2} real parameters, but not all are physical!

Rephasing a charged lepton field $\ell \rightarrow \mathbf{e}^{\mathrm{i} \theta} \ell$ leaves the mass term invariant, but changes by a phase $\mathrm{e}^{-\mathrm{i} \theta} \mathrm{a}$ row of the matrix. Phases in N 'up' fields and N 'down' ... means that $2 N$ - I dofs* in U are unphysical

Final counting $N^{2}-(2 N-I)=N^{2}-2 N+I=(N-I)^{2}$ (for $N=2 \rightarrow I$ dof; for $N=3 \rightarrow 4$ dofs $)$
For Majorana v's, instead of 2 N -I independent rephasings, you can rephase only N (charged leptons), since if the active v are Majorana particles, then no rephasing at all is allowed*. $N^{2}-N=N(N-I)($ for $N=2 \rightarrow 2$ dof; for $N=3 \rightarrow 6$ dofs)
*Naively, you may think it's 2 N ; but a common phase of all the up and down fields won't affect at all the mixing matrix, hence only $2 \mathrm{~N}-\mathrm{I}$ dofs are unphysical.
*Easiest way to see this: Transformation $\mathbf{v} \rightarrow \mathrm{e}^{\mathrm{i} \theta \mathrm{q}} \mathbf{V}$ associated to Lepton number conservation, which is violated

Mixing angles and phases

CP-even and CP-odd parameters are called angles and phases, respectively.
Equivalently, angles are the parameters in U when it is real, which means it's an orthogonal matrix: $U^{\top} U=I$, a set of $N(N+I) / 2$ conditions since (both sides are) symmetric.
The group $O(N)$ has dimension $N^{2}-(N(N+I) / 2)=N(N-I) / 2$, hence this is the number of independent angles (for $N=2 \rightarrow$ I angle; for $N=3 \rightarrow 3$ angles)
Hence, we have
$(N-I)^{2}-N(N-I) / 2=(N-I)(N-2) / 2$ phases for Dirac v 's (for $N=2 \rightarrow$ no phase; for $N=3 \rightarrow I$ phase)
$N(N-I)-N(N-I) / 2=(N-I) N / 2$ phases for Majorana v's (for $N=2 \rightarrow I$ phase; for $N=3 \rightarrow 3$ phases)

Mixing angles and phases

CP-even and CP-odd parameters are called angles and phases, respectively.
Equivalently, angles are the parameters in U when it is real, which means it's an orthogonal matrix: $U^{\top} U=I$, a set of $N(N+I) / 2$ conditions since (both sides are) symmetric.
The group $O(N)$ has dimension $N^{2}-(N(N+I) / 2)=N(N-I) / 2$, hence this is the number of independent angles (for $N=2 \rightarrow$ I angle; for $N=3 \rightarrow 3$ angles)
Hence, we have
$(N-I)^{2}-N(N-I) / 2=(N-I)(N-2) / 2$ phases for Dirac v's (for $N=2 \rightarrow$ no phase; for $N=3 \rightarrow I$ phase)
$N(N-I)-N(N-I) / 2=(N-I) N / 2$ phases for Majorana v 's (for $N=2 \rightarrow I$ phase; for $N=3 \rightarrow 3$ phases)

Leptonic CP violation requires phases. So, it can certainly take place in 3 generations, as for quarks, but may happen in 2 generations if v 's are Majorana. A different question is: Can it arise in 2 generations in oscillation experiments?

