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Our research laboratory (IOP, VAST)

Institute of physics (I0P) e Mathematical physics: Theory of

groups (including supergroups and

@ established in 1969, quantum groups) and related topics,

O ene 6 e fisk e theories of gravitation (GR and
institutes on basic science of extensions: SUGRA, f(R)-gravitation,
the etc.), etc.

o Particle physics (theory & experiment):
Standard model and beyond: Higgs

@ and now, one of 34 research physics, neutrino physics, CP violation,
institutes of the VAST with etc.
about 30 other units for
basic research and
technology.

and Viet Nam,

o Gravitation and cosmology: theories of
gravitation and cosmology (BH's, DM,
DE, GW's, cosmological models, etc.).

e Collaborations: Belle Il and T2K (as
well as LHC_ATLAS in the past).
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Quantum field theories in brief. .

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why neutrinos?
and neutrinos
eutrinos and Fermi's theory
Symmetry and symmetry groups

Basic courses

o Group theory (for particle physics).

STANDARD MODEL AND NEUTRINOS



INTRODUCTION
d neutrinos

Symmetry and symmetry groups

Basic courses

o Group theory (for particle physics).

o Special theory of relativity.

STANDARD MODEL AND NEUTRINOS



INTRODUCTION
d neutrinos

Symmetry and symmetry groups

Basic courses

o Group theory (for particle physics).
o Special theory of relativity.

o Quantum field theory.

STANDARD MODEL AND NEUTRINOS



INTRODUCTION
d neutrinos

Symmetry and symmetry groups

Basic courses

o Group theory (for particle physics).
o Special theory of relativity.
o Quantum field theory.

o Particle physics.
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References (for this stage)

© L. Ryder, "Quantum field theory”, Cambridge university press, Cambridge,
1996.

@ T.-P. Cheng & L.-F. Li, "Gauge theory for elementary particle physics’,
Oxfrod university press, Oxford, 2006.

© Ho Kim Quang & Pham Xuan Yem, "Elementary particles and their
interactions: concepts and phenomena”, Springer-Verlag, Berlin, 1998.

@ P. Pal, "An introduction course of particle physics”, CRC press, 2014.

@ R. Mohapatra & P. Pal, "Massive neutrinos in physics and astrophysics”,
World Sci. Lect. Notes Phys. 72, (2004) 1.

@ S. Bilenky, "An introduction to physics of massive and mixed neutrinos”,
Springer, Berlin, 2010.

@ Nguyen Anh Ky & Nguyen Thi Hong Van, "Was the Higgs boson
discovered?”, Commun. Phys. 25, 1 (2015) [arXiv:1503.08630 [hep-ph]].

See also " The review of particle physics”: http://pdg.Ibl.gov .
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Why neutrinos?

Origin and basic nature

@ introduced by W. Pauli in 1930 to explain 8 decays.

@ neutral fermions with spin 1/2.

@ massless or with very tiny masses.

Abundance

Born just after the Big Bang and most abundant in the Universe after
photons with the density
ny, ~ 110/cm?> (for one generation), ns, ~ 330/cm? (for three generations).
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Why neutrinos?

Origin and basic nature

@ introduced by W. Pauli in 1930 to explain 3 decays.

@ neutral fermions with spin 1/2.

@ massless or with very tiny masses.

Abundance

Born just after the Big Bang and most abundant in the Universe after
photons with the density

ny, ~ 110/cm?> (for one generation), ns, ~ 330/cm? (for three generations).

Importance

Important in particle physics, nuclear physics, cosmology, etc., in particular,
involved in nuclear reactions, e.g., $-decays
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Why neutrinos?

Origin and basic nature

@ introduced by W. Pauli in 1930 to explain 3 decays.

@ neutral fermions with spin 1/2.

@ massless or with very tiny masses.

Abundance

Born just after the Big Bang and most abundant in the Universe after
photons with the density

ny, ~ 110/cm?> (for one generation), ns, ~ 330/cm? (for three generations).

Importance

Important in particle physics, nuclear physics, cosmology, etc., in particular,
involved in nuclear reactions, e.g., 5-decays = weak interactions
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Origin and basic nature

@ introduced by W. Pauli in 1930 to explain 3 decays.

@ neutral fermions with spin 1/2.

@ massless or with very tiny masses.

Abundance

Born just after the Big Bang and most abundant in the Universe after
photons with the density

ny, ~ 110/cm?> (for one generation), ns, ~ 330/cm? (for three generations).

Importance

Important in particle physics, nuclear physics, cosmology, etc., in particular,
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Why neutrinos?

Origin and basic nature

@ introduced by W. Pauli in 1930 to explain 3 decays.

@ neutral fermions with spin 1/2.

@ massless or with very tiny masses.

Abundance

Born just after the Big Bang and most abundant in the Universe after
photons with the density

ny, ~ 110/cm?> (for one generation), ns, ~ 330/cm? (for three generations).

Importance

Important in particle physics, nuclear physics, cosmology, etc., in particular,
involved in nuclear reactions, e.g., 3-decays —» weak interactions — SM.
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eta decays before 193
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Figure: 8 energy spectrum [Ref. 7].

Figure: 5-decays before the v's introduction.
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Figure: B-decays after the v's introduction.
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Figure: B-decays after the v's introduction.
BT decays: Discovery of neutrinos

AN — ;AN + et +ve

p+ve — n+et
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éN—> Z+A]_Nl+e_+ﬂe

p,

Figure: B-decays after the v's introduction.

BT decays:
AN — ;AN + et +ve

AN +7e — AN + €T

Figure: Fermi's four-fermion interactions.

Discovery of neutrinos

p+ve — n+et

by C. Cowan and F. Reines in 1956.
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Symmetry in physics

Symmetry (in physics) =

Invariance (of a physics system) under some transformations
which may form a group called a symmetry group

(i-e., symmetry described by a symmetry group).

Note: Next few slides, some mathematical/theoretical background will be
recalled without strict details presented.
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Symmetry and symmetry groups

Symmetry in physics

Symmetry (in physics) =

Invariance (of a physics system) under some transformations
which may form a group called a symmetry group

(i-e., symmetry described by a symmetry group).

Note: Next few slides, some mathematical/theoretical background will be
recalled without strict details presented.

See also notes from the white boards!

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
itrinos?
d neutrinos
Neutrinos and Fermi’s theory

Symmetry and symmetry groups

Symmetry and symmetry groups

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why neutrinos?
and neutrinos
eutrinos and Fermi's theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why neutrinos?
Bet: nd neutrinos
Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why neutrinos?
and neutrinos
eutrinos and Fermi's theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why neutrinos?
and neutrinos
eutrinos and Fermi's theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

@ Global or local.

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References

and neutrinos
Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

@ Global or local.

Symmetry groups.

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References

and neutrinos
Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

@ Global or local.

Symmetry groups.

@ Some frequently used groups
in physics:

STANDARD MODEL AND NEUTRINOS



INTRODUCTION References
Why 107
Beta d neutrinos
Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

@ Global or local.

Symmetry groups.

@ Some frequently used groups
in physics:

o (Pseudo)-orthogonal
groups: O(n), SO(n),
O(p; q). SO(p, q), etc.

STANDARD MODEL AND NEUTRINOS



INTRODUCTION

Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be

@ External (space-time) or
internal,

@ Continuous or discrete,

@ Global or local.

Symmetry groups.

@ Some frequently used groups
in physics:

o (Pseudo)-orthogonal
groups: O(n), SO(n),
O(p, q), SO(p, q). etc.

o (Pseudo)-unitary
groups: U(n), SU(n),
U(p, q), SU(p, q), etc.

e etc.

STANDARD MODEL AND NEUTRINOS




INTRODUCTION References
Why neutrinos?
Beta decays and neutrinos
Neutrinos and Fermi’s theory

Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:
internal,

@ Continuous or discrete,

@ Global or local.

Symmetry groups.

@ Some frequently used groups
in physics:

o (Pseudo)-orthogonal
groups: O(n), SO(n),
O(p, q), SO(p, q), etc.

o (Pseudo)-unitary
groups: U(n), SU(n),
U(p, q), SU(p, q), etc.

e etc.

STANDARD MODEL AND NEUTRINOS




INTRODUCTION References
Why neutrinos?
Beta decays and neutrinos
Neutrinos and Fermi’s theory

Symmetry and symmetry groups

Symmetry and symmetry groups

Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:
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@ Continuous or discrete, boosts and spatial rotations)

@ Global or local.

Symmetry groups.
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groups: O(n), SO(n),
O(p, q), SO(p, q), etc.

o (Pseudo)-unitary
groups: U(n), SU(n),
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Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:

internal, o Lorentz group (containing spacetime inversions, Lorentz

@ Continuous or diSCrete, boosts and spatial rotations): O(l, 3) — chiral
(left-right spin) representation with
algebra su(2), ® su(2)r.

Symmetry groups- -] Poincaré ZrOUP (containing space-time translations and

@ Global or local.

@ Some frequently used groups Lorentz transformations): Massive and massless
in physics: representations = an arbitrary-spin
o (Pseudo)-orthogonal mass_less pa}rtiFlfa has.only one of two
groups: O(n), SO(n), p.OSSIble chiralities, either left-handed or
O(p, q), SO(p, q), etc. right-handed, but not both

simultaneously.
o (Pseudo)-unitary Y

groups: U(n), SU(n),
U(p, q), SU(p, q), etc.
e etc.
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Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:

internal, o Lorentz group (containing spacetime inversions, Lorentz

@ Continuous or diSCrete, boosts and spatial rotations): O(l, 3) — chiral
(left-right spin) representation with
algebra su(2), ® su(2)r.
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in physics: representations = an arbitrary-spin
o (Pseudo)-orthogonal mass_less pa}rtiFlfa has.only one of two
groups: O(n), SO(n), p.OSSIble chiralities, either left-handed or
O(p, q), SO(p, q), etc. right-handed, but not both

simultaneously.
o (Pseudo)-unitary Y

groups: U(n), SU(n), @ All particles respect the space-time symmetry

U(p, q), SU(p, q), etc.
e etc.
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Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:

internal, o Lorentz group (containing spacetime inversions, Lorentz

@ Continuous or diSCrete, boosts and spatial rotations): O(l, 3) — chiral
(left-right spin) representation with
algebra su(2), ® su(2)r.

Symmetry groups- -] Poincaré ZrOUP (containing space-time translations and

@ Global or local.

@ Some frequently used groups Lorentz transformations): Massive and massless
in physics: representations = an arbitrary-spin
o (Pseudo)-orthogonal mass_less pa}rtiFlfa has.only one of two
groups: O(n), SO(n), p.OSSIble chiralities, either left-handed or
O(p, q), SO(p, q), etc. right-handed, but not both

simultaneously.
o (Pseudo)-unitary Y

groups: U(n), SU(n), @ All particles respect the space-time symmetry
U(p, q), SU(p, q), etc. =
e etc.
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Symmetry and symmetry groups

Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:

internal, o Lorentz group (containing spacetime inversions, Lorentz

@ Continuous or diSCrete, boosts and spatial rotations): O(l, 3) — chiral
(left-right spin) representation with
algebra su(2), ® su(2)r.

Symmetry groups- -] Poincaré ZrOUP (containing space-time translations and

@ Global or local.

@ Some frequently used groups Lorentz transformations): Massive and massless
in physics: representations = an arbitrary-spin
o (Pseudo)-orthogonal mass_less pa}rtiFlfa has.only one of two
groups: O(n), SO(n), p.OSSIble chiralities, either left-handed or
O(p, q), SO(p, q), etc. right-handed, but not both

simultaneously.
o (Pseudo)-unitary Y

groups: U(n), SU(n), @ All particles respect the space-time symmetry
U(p, q), SU(p, q), etc. — all obey Klein-Gordon equation,
e etc.
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Symmetry could be Space-time symmetry

@ External (space-time) or @ Space-time symmetry groups:

internal, o Lorentz group (containing spacetime inversions, Lorentz

@ Continuous or diSCrete, boosts and spatial rotations): O(].7 3) — chiral
(left-right spin) representation with
algebra su(2), ® su(2)r.

SymmEtry groups- -] Poincaré ZrOUP (containing space-time translations and

@ Global or local.

@ Some frequently used groups Lorentz transformations): Massive and massless
in physics: representations = an arbitrary-spin
o (Pseudo)-orthogonal mass_less pa}rtiFlfe has.only one of two
groups: O(n), SO(n), p.055|ble chiralities, either left-handed or
O(p, q), SO(p, q), etc. right-handed, but not both

simultaneously.
o (Pseudo)-unitary Y

groups: U(n), SU(n), @ All particles respect the space-time symmetry
U(p, q), SU(p, q), etc. — all obey Klein-Gordon equation, and,
e etc. for spin-1/2 particles, also Dirac equation.
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Examples

Rotation in a 2D real or complex Euclidean space

Oy G2 s12
2x2 —s1p ¢ )
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Examples

Rotation in a 2D real or complex Euclidean space

' 6
ci2  S12 ' crpe’ sio€’
O = . =e'® . ] .
2%2 e s Upxo2 =e 5 cppe—if
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Examples

Rotation in a 2D real or complex Euclidean space

i o
C12 512 i C e’ﬁ syoe’
O2x2 = ( ) : Unxp = €' ( 2% 5 T2 s ).

—S12 €12 —S10€" Clge_"B

Rotation in a 3D real Euclidean space

1 0 0 C13 0 513 C12 512 0
O3x3=| 0 @3 3 0 1 0 —s12 c2 0
0 —S23 (23 —S13 0 C13 0 0 1
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Examples (cont.)

Transformation in an n-D real or complex space

x — x' = Ox

O - orthogonal matrix:

2 = 0TO=| =
det O = £1.

x? =X
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Examples (con

Transformation in an n-D real or complex space

x — x' = Ox z— 7 =Uz

O - orthogonal matrix: U - unitary matrix:

2 = 0T0=1 = Z2= P =UlU=1=
det O = +1. |detd| = 1.

x? =X
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Quantum field theories in brief

Klein-Gordon equation

The Klein-Gordon equation for a (free)
field of mass m

(O+ m*)p(x) =0 (1)

can be obtained from a Lagrangian
which in the case of a scalar ¢ has the
form

Ls = 2(0u0)1(0"9) - 2mPoto, (2)

where a = 1 for a real ¢ and a =2 for a
complex ¢.
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Quantum field theories in brief

Klein-Gordon equation

The Klein-Gordon equation for a (free)
field of mass m

(O+ m*)p(x) =0 (1)

can be obtained from a Lagrangian
which in the case of a scalar ¢ has the
form

Ls = 2(0u0)1(0"9) - 2mPoto, (2)

where a = 1 for a real ¢ and a = 2 for a
complex ¢.

The Dirac equation for a (free) spinor of
mass m

(i7u0" — m)ip(x) =0 (3)
can be obtained from the Lagrangian

Ly = (i 0y — m)y. (4)
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Quantum field theories in brief

Space-time symmetry: some notations

Lorentz index: can take a value in
[0,1,2,3]; for example, = 0,1,2,3.

Summation rule:
xuy“ = zi:o xuy“.
Metric (for Minkowski space-time):
Nuw = diag(1, -1, -1, -1), 7" nx = 85.
Lower and upper index:

W v

v
Vo =NV, Vo =17 Vu.

Scalar product between 4-vectors, say,
au and by:
a.b=mnua"b" = a,b" = agby — Y3 1aib;.
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Quantum field theories in brief

Space-time symmetry: some notations Space-time symmetry: some notations

Space-time derivatives:

Lorentz index: can take a value in
[0,1,2,3]; for example, = 0,1,2,3.

Summation rule:
po— y3 H
xuy" = X0 Xuy".

Metric (for Minkowski space-time):

nMV - dlag(17 _17 _17 _1)7 77“/\7])\1/ = 65

Lower and upper index:

W v

v
Ve =NV, Vi =10 v

Scalar product between 4-vectors, say,
a, and by:

a.b=mnua"b" = a,b" = agby — 3 aib;.

_ 0
O = s

0= 9,0~

Energy-momentum vector
(4-momentum):

E
pﬂ = (p07pk) = (?7pk)7 k= 172737

(quantization: p, — i9,).

Pauli matrices: & = (0%, 02,0°) = o,

0. 4%),

Dirac matrices: 7" = (7°,7) = (v
. . . 0 ot
A
in the chiral basis: " = ( 50 ) ,

o' = (1,0, 5" =(1,-0"), " =1.
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n for massive particles
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Quantum field theories in brief

Dirac eq n for massive particles
(70" = m)ip(x) = 0 (5)

(or a conjugate equation).
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(or a conjugate equation). Here,

Yu: 4 x 4 Dirac matrices, ¢ =0,1,2,3,
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Quantum field theories in brief

Dirac equation for massive particles
(70" = m)ip(x) = 0 (5)

(or a conjugate equation). Here,

Yu: 4 x 4 Dirac matrices, ¢ =0,1,2,3,

1. 4-component Dirac spinor:

v=( ), (6)
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Quantum field theories in brief

Dirac equation for massive particles
(70" = m)ip(x) = 0 (5)

(or a conjugate equation). Here,

Yu: 4 x 4 Dirac matrices, ¢ =0,1,2,3,

1. 4-component Dirac spinor:

v=( ), (6)

&/ xXr: 2-component left/right-handed Weyl spinors
(chiral-representation states of the Lorentz group).
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Quantum field theories in brief

Dirac equation for massive particles
(70" = m)ip(x) = 0 (5)

(or a conjugate equation). Here,

Yu: 4 x 4 Dirac matrices, ¢ =0,1,2,3,

1. 4-component Dirac spinor:

v=( ), (6)

&/ xXr: 2-component left/right-handed Weyl spinors
(chiral-representation states of the Lorentz group).

Note: & and xg are not decoupled in the Dirac equation (5).
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Quantum field theories in brief

Dirac equation for massive particles
(i — m)d(x) = 0 (5)

(or a conjugate equation). Here,

Yu: 4 x 4 Dirac matrices, ¢ =0,1,2,3,

1. 4-component Dirac spinor:

v=( ), (6)

&/ xXr: 2-component left/right-handed Weyl spinors
(chiral-representation states of the Lorentz group).

Note: & and xg are not decoupled in the Dirac equation (5).

Example: Electrons are massive spinors, thus, desribed by Dirac spinors. )
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Quantum field theories in brief

Dirac eq. for massless particles

Eq. (5) at m = 0 is broken into two
Weyl equations:

Fu0"€1(x) =0, (7)

0,0 xr(x) = 0. (8)
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Quantum field theories in brief

Dirac eq. for massless particles

Eq. (5) at m = 0 is broken into two
Weyl equations:

Fu0"€1(x) =0, (7)

oud*xr(x) = 0. (8)

Note: £ and xR are decoupled in the
Weyl equations (7) and (8)
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Dirac eq. for massless particles

Eq. (5) at m = 0 is broken into two
Weyl equations:

Fu0"¢1(x) =0, (7)
o' xR()=0.  (8)
Note: £ and xR are decoupled in the

Weyl equations (7) and (8) —

A massless spinor can be either only
left-handed or only right-handed.
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Dirac eq. for massless particles

Eq. (5) at m = 0 is broken into two
Weyl equations:

Fu0"¢1(x) =0, (7)
o' xR()=0.  (8)
Note: £ and xR are decoupled in the

Weyl equations (7) and (8) —

A massless spinor can be either only
left-handed or only right-handed.
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Quantum field theories in brief

Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

Note: £ and xR are decoupled in the
Weyl equations (7) and (8) —

A massless spinor can be either only
left-handed or only right-handed.

v

STANDARD MODEL AND NEUTRINOS




INTRODUCTION References
Why neutrinos?
Beta decays and neutrinos

Neutrinos and Fermi’s theory
Symmetry and symmetry groups

Quantum field theories in brief

Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

In the standar model (SM), neutrinos
Note: £ and xR are decoupled in the are massless
Weyl equations (7) and (8) —

A massless spinor can be either only
left-handed or only right-handed.

v
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Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

In the standar model (SM), neutrinos
Note: £ and xR are decoupled in the are massless —> described by Weyl
Weyl equations (7) and (8) — spinors (but left- or right-handed ?).

A massless spinor can be either only
left-handed or only right-handed.

v
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Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

In the standar model (SM), neutrinos
Note: £ and xR are decoupled in the are massless —> described by Weyl

Weyl equations (7) and (8) — spinors (but left- or right-handed ?).
A massless spinor can be either only Experiment: neutrinos are (almost)
left-handed or only right-handed. left-handed

v
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Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

In the standar model (SM), neutrinos
Note: £ and xR are decoupled in the are massless —> described by Weyl

Weyl equations (7) and (8) — spinors (but left- or right-handed ?).
A massless spinor can be either only Experiment: neutrinos are (almost)
left-handed or only right-handed. left-handed but not clear yet

v
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Quantum field theories in brief

Dirac eq. for massless particles
. e Y = Cy¥, (9)

Eq. (5) at m = 0 is broken into two Majorana spinor:
Weyl equations:

5,0°€1(x) = 0, ) (M) = ™. (10)

o, 0" xR(x) = 0. (8) Example: Neutrinos in the SM

In the standar model (SM), neutrinos
Note: £ and xR are decoupled in the are massless —> described by Weyl

Weyl equations (7) and (8) — spinors (but left- or right-handed ?).
A massless spinor can be either only Experiment: neutrinos are (almost)
left-handed or only right-handed. left-handed but not clear yet if they are

Majorana particles or not.

v
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Quantum field theories in brief

Dirac Lagrangian

Lp, = »(x) (i’y“@u — m) P(x), (11)
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Dirac Lagrangian

Lpy = ¥(x) (i7" — m) ¥(x), (11)

Symmetry of Lp,

The Lagrangian (11) has a global but not local U(1) symmetry:
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Quantum field theories in brief

Dirac Lagrangian

Lpy = ¥(x) (i7" — m) ¥(x), (11)

Symmetry of Lp,

The Lagrangian (11) has a global but not local U(1) symmetry:
- invariant under the global U(1) transformation

Y(x) = e7"P(x), a = const.
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Quantum field theories in brief

Dirac Lagrangian

Lpy = ¥(x) (i7" — m) ¥(x), (11)

Symmetry of Lp,

The Lagrangian (11) has a global but not local U(1) symmetry:
- invariant under the global U(1) transformation
Y(x) = e7"P(x), a = const.
- but not invariant under the local U(1) transformation

w N e—l‘a(X)qb(X)7
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Quantum field theories in brief

Dirac Lagrangian

Lpy = ¥(x) (i7" — m) ¥(x), (11)

Symmetry of Lp,

The Lagrangian (11) has a global but not local U(1) symmetry:
- invariant under the global U(1) transformation
Y(x) = e7"P(x), a = const.
- but not invariant under the local U(1) transformation
v — e My(x),
— to be considered in the next section!.
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GAUGE THEORY Abeli

GAUGE THEORY )

1 Abelian gauge theory
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GAUGE THEORY )

1 Abelian gauge theory

2 Non-Abelian gauge theory
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge transformations

As stated above, the Lagrangian

Lpy = ¥(x) (i — m) Y(x), (4)

is not invarianr under the local U(1)-transformations

= = U)(x), U(x)=e "X (12)
ﬁDo — ﬁlDO = ﬁDo 4 AﬁDO, (13)

Butb = (9u) # U(x)dutp = ALp, £ 0
ALp, = ... (14)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge transformations

As stated above, the Lagrangian
Lp, = ¥(x) (I8 — m) Y(x), (4)

is not invarianr under the local U(1)-transformations

Y= = UCh(x), Ulx) = e 09, (12)
£Do = ﬁlDO = EDO = AﬁDO, (13)

By — (Bu) # U(x)Buth = ALp, #0:
N — (14)

We need to add something to compensate ALp, in order to recover the
symmetry !
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Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge symmetry
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Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge symmetry

Replace the derivative d;, in (11) by the so-called covariant derivative D,:
Dy = 0, + ieAu(x)

with A, (x) a new field transforming under (12) as

Aux) = Au() + Z0,0(2)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge symmetry

Replace the derivative d;, in (11) by the so-called covariant derivative D,:
Dy = 0, + ieAu(x)
with A, (x) a new field transforming under (12) as
Au(x) = Au(x) + éauoz(x).
Thus, the resulting Lagrangian

Lp =9(x) (i7" Dy — m) (), (15)

is invariant under the gauge transformations (12)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge symmetry

Replace the derivative d;, in (11) by the so-called covariant derivative D,:
Dy = 0, + ieAu(x)
with A, (x) a new field transforming under (12) as
Au(x) = Au(x) + éauoz(x).
Thus, the resulting Lagrangian

Lp =9(x) (i7" Dy — m) (), (15)

is invariant under the gauge transformations (12) —
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge symmetry

Replace the derivative d;, in (11) by the so-called covariant derivative D,:
Dy = 0, + ieAu(x)
with A, (x) a new field transforming under (12) as
Au(x) = Au(x) + éauoz(x).
Thus, the resulting Lagrangian

Lp =9(x) (i7" Dy — m) (), (15)

is invariant under the gauge transformations (12) —

The U(1)-symmetry is recovered !
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Abelian gauge theory

U(1)-gauge theory

To give the field A, (x) an own life = add its kinetic term Lgayge to (15):
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Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge theory
To give the field A, (x) an own life = add its kinetic term Lgayge to (15):

_ . 1
Liot =Lp + ﬁgauge = '@ZJ(X) ("YMD,u - m) w(X) - ZFMVFMW (16)

1
Lgauge = _ZFWFW’ Fuy = 0uAL, — O A,. (17)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge theory

To give the field A, (x) an own life = add its kinetic term Lgayge to (15):

_ . 1
Liot =Lp + ﬁgauge = '@ZJ(X) ("YMD,u - m) w(X) - ZFMVFMW (16)
1
Lgauge = —ZF‘“VFM,,, Fuy = 0uAL, — O A,. (17)

It is an example of an U(1)-gauge theory with A, being a gauge field.

Note: there is no mass term for A, in (16) as either it is not needed (for a
massless gauge field, e.g., the electromagnetic (EM) field, see below) or it
violates the gauge symmetry.

STANDARD MODEL AND NEUTRINOS
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Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge theory

Note: Lot is exactly the Lagrangian of an EM interaction,
Liot = Lfree + Linterac
= Tx) (0 — m) 60) — 3 F" Fuus — €507 60 Au), - (18)
with the interaction term
Linterac = —ep(x)7"1)(x).Au(x) = —eJ#(x).Au(x), (19)

JH(x) = (x)7"(x). (20)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Abelian gauge theory

U(1)-gauge theory

Note: Lot is exactly the Lagrangian of an EM interaction,
Liot = Lfree + Linterac
= Tx) (0 — m) 60) — 3 F" Fuus — €507 60 Au), - (18)
with the interaction term

Linterac = —eP(x)71)(x).Au(x) = —eJ*(x).Au(x), (19)

JH(x) = D(x)y*e(x). (20)
It is a currentxfield interaction familiar in electrodynamics with the EM field
being a gauge field.
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Non-Abelian gauge theory

Non-Abelian gauge theory

Start again with a Lagrangian of type (11)

Ly = P(x) (iv*0, — m)(x), (21)
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Non-Abelian gauge theory

Non-Abelian gauge theory

SU(2) gauge symmetry

Start again with a Lagrangian of type (11)

Ly = P(x) (iv*0, — m)(x), (21)
but now the spinor v is an SU(2)-doublet
¥(x) = (Y1, 42)" = 9i(x), i=1,2, (22)
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Non-Abelian gauge theory

Start again with a Lagrangian of type (11)

Ly = P(x) (iv*0, — m)(x), (21)
but now the spinor v is an SU(2)-doublet
¥(x) = (Y1, 42)" = 9i(x), i=1,2, (22)

The Lagrangian (21) is invariant under a global- but not local SU(2) gauge
transformation,

¥ (x) = U(u(x), U(x)=e % 797, (23)
where, & = (0, 0%,0%) = 0; are Pauli matrices, and where, 6;(x), i =1,2,3, are
arbitrary functions of x.

Note: the vector notation here should not be confused with that for an ordinary
3D-space vector.
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GAUGE THEORY Abelian gauge theory
Non-Abelian gauge theory

Non-Abelian gauge theory

SU(2) gauge symmetry
Following the way for the Abelian case, introduce the covariant derivative
1. | =
D, =0, + EIgO'.A#, (24)

with AT“ transforming under (23) as

—

-/ = ]_ - — —
Au(x) = A, (x) = Au(x) — E@,ﬁ(x) —0(x) x Au(x). (25)
Replacing 0y, in (11) by Dy, the resulting Lagrangian

Lp = ¥(x) (V"D — m) 1h(x), (26)
is invariant under the local SU(2)-transformation (23). Thus,

the SU(2)-symmetry is recovered.
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Non-Abelian gauge theory

Non-Abelian gauge theory

SU(2)-gauge theory

Adding a free Lagrangian of AﬂM to (26) we get the total Lagrangian
Lrae =) (7" Dy = m) 9x) — 3 Fan()-F (), (27)
Fou(x) = 0,A,(x) — 0, Au(x) — gAu(x) x A,(x). (28)
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Non-Abelian gauge theory

SU(2)-gauge theory
Adding a free Lagrangian of AﬂM to (26) we get the total Lagrangian
Lree = () (0" Do = m) () = 3 Fan()-F (), (27)
Fou(x) = 0,A,(x) — 0, Au(x) — gAu(x) x A,(x). (28)

NOTE: there is no mass term for A , as it violates the SU(2)-gauge invariance.
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Non-Abelian gauge theory

SU(2)-gauge theory
Adding a free Lagrangian of AﬂM to (26) we get the total Lagrangian
Lree = () (0" Do = m) () = 3 Fan()-F (), (27)
Fou(x) = 0,A,(x) — 0, Au(x) — gAu(x) x A,(x). (28)

NOTE: there is no mass term for A , as it violates the SU(2)-gauge invariance.
There is also a term of currentxfield interaction (as in the Abelian case),

Line = —gJp(x).A"(x) = —gZJ Al(x (29)

Ju(x) = w(X)WET Y(x), (30)
but there is a self-interaction term L ;. which is absent in the Abelian case
Lo o —2g [aﬂﬁy(x) - auﬁu(x)] : [ﬁ“ x /TV] + g [KH X E,] . [Eﬂ X E”] . (31)
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Non-Abelian gauge theory

Electroweak theory as a non-Abelian
gauge theory

An example of a gauge theory is the
electroweak (EW) model with the gauge
group being a direct product of an
Abelian subgroup and a non-Abelian
subgroup:

SU2). x U(1)y. (32)
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Electroweak theory as a non-Abelian
gauge theory

An example of a gauge theory is the
electroweak (EW) model with the gauge
group being a direct product of an
Abelian subgroup and a non-Abelian
subgroup:

SU2). x U(1)y. (32)
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Electroweak theory as a non-Abelian
gauge theory

An example of a gauge theory is the
electroweak (EW) model with the gauge
group being a direct product of an
Abelian subgroup and a non-Abelian
subgroup:

SU2). x U(1)y. (32)

NOW, there are no mass terms in the
Lagrangian for both gauge fields and
"matter” fields, as these mass terms
violate the gauge symmetry
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Non-Abelian gauge theory

Electroweak theory as a non-Abelian
gauge theory

An example of a gauge theory is the
electroweak (EW) model with the gauge
group being a direct product of an
Abelian subgroup and a non-Abelian
subgroup:

SU2). x U(1)y. (32)

NOW, there are no mass terms in the
Lagrangian for both gauge fields and
"matter” fields, as these mass terms
violate the gauge symmetry —>
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Non-Abelian gauge theory

Electroweak theory as a non-Abelian Standard model
gauge theory

The standard model (SM) based on the

An example of a gauge theory is the gauge symmetry

electroweak (EW) model with the gauge

group being a direct product of an SU(3)c x SU(2). x U(1)y. (33)
Abelian subgroup and a non-Abelian
subgroup: combines the EW theory and QCD based
on the non-Abelian gauge symmetry
SU(2)L x U(1)y. (32) SU(3)..

NOW, there are no mass terms in the
Lagrangian for both gauge fields and
"matter” fields, as these mass terms
violate the gauge symmetry —> in the
real world the gauge symmetry must be
broken (see details later).
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Non-Abelian gauge theory

Electroweak theory as a non-Abelian Standard model
gauge theory

. The standard model (SM) based on the
An example of a gauge theory is the gauge symmetry
electroweak (EW) model with the gauge
group being a direct product of an SU(3)c x SU(2). x U(1)y. (33)
Abelian subgroup and a non-Abelian
subgroup: combines the EW theory and QCD based

on the non-Abelian gauge symmetry
SU(2)L x U(1)y. (32) SU(3)c.

NOW, there are no mass terms in the The symmetry SU(3). remaining always
Lagrangian for both gauge fields and unbroken, unlike the electroweak gauge
"matter” fields, as these mass terms symmetry SU(2). x U(1)y which will be
violate the gauge symmetry — in the broken at the end to a stable U(1)
real world the gauge symmetry must be symmetry, leading to a massless gauge
broken (see details later). field - the EM field.
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* Spontaneous breaking of discrete symmetry

2 Spontaneous breaking of Abelian symmetry
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* Spontaneous breaking of discrete symmetry

2 Spontaneous breaking of Abelian symmetry

8 Spontaneous breaking of non-Abelian symmetry
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.

Consider a Lagrgangian of a scalar field ¢(x),

Lo = 2(0,0)(0"6) ~ V(4). (34)

A
V(6) = 5i20 + o* (35)
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.

Consider a Lagrgangian of a scalar field ¢(x),

Lo = 2(0,0)(0"6) ~ V(4). (34)

A
V(6) = 5i20 + o* (35)

If A <0, the system has no ground state = \ > 0.
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.

Consider a Lagrgangian of a scalar field ¢(x),

Lo = 2(0,0)(0"6) ~ V(4). (34)

1 A
V(¢) = 51 + ;" (35)
If A <0, the system has no ground state = \ > 0.

L is invariant under the transformation ¢ — —¢ = Z symmetry.
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Spontaneous breaking of discrete symmetry

Here we take a Z, symmetry as an example of a discrete symmetry.

Consider a Lagrgangian of a scalar field ¢(x),

Lo = 2(0,0)(0"6) ~ V(4). (34)

1 A
V(¢) = 51 + ;" (35)
If A <0, the system has no ground state = \ > 0.

L is invariant under the transformation ¢ — —¢ = Z symmetry.

Abbreviation used below: VEV = vacuum expectation value.
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

ov(e) _
¢ =0

v
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

T =0 = ¢(1* +2¢°) = 0

v
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.

v
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =
() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

v

STANDARD MODEL AND NEUTRINOS



Spontaneous breaking of discrete symmetry
Spontaneous breaking of Abelian symmetry

SPONTANEQUS SYMMETRY BREAKING Spontaneous breaking of non-Abelian symmetry

Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal

value at (¢) = 0 and minimal values
at (@) = tv

v
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)

v
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry
spontaneously.

v
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Spontaneous breaking of discrete symmetry

22 symmetry breaking A quantum field (QF) must have a zero

Let us look for a VEV (¢), a real value of VEV
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry
spontaneously.
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22 symmetry breaking A quantum field (QF) must have a zero

Let us look for a VEV (¢), a real value of VEV = define a new field H(x),
¢, where V(¢) gets a minimum:
H(x) = ¢(x) — v, (36)

with a zero VEV,

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.
@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry
spontaneously.
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Spontaneous breaking of discrete symmetry

22 symmetry breaking A quantum field (QF) must have a zero

Let us look for a VEV (¢), a real value of VEV = define a new field H(x),
¢, where V(¢) gets a minimum:
H(x) = ¢(x) — v, (36)

%6 =0 = ¢(1* + A§) =0 =

09 .
1) = B 2o ity v = \/Tz/)\ with a zero VEV, thus, (34) becomes
@ If 4> > 0: V(¢) has a minimum at Ln= 1(0.H)(0"H) - AH?
(¢) =0. —AvH® — 2HY (37)

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry
spontaneously.
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.

@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry

spontaneously.

A quantum field (QF) must have a zero
VEV = define a new field H(x),

H(x) = ¢(x) — v, (36)
with a zero VEV, thus, (34) becomes
Ln= 1(0.H)(0"H) - AH?
—AvH? — 2 H*, (37)

Observation from (37):

@ H is a massive field with mass My,

M3 = 22V, (38)
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Spontaneous breaking of discrete symmetry

Z, symmetry breaking

Let us look for a VEV (¢), a real value of
¢, where V(¢) gets a minimum:

2D =0 = ¢(u® + A¢%) =0 =

() =0,£v with v = \/—p2/A.

@ If u2 >0 : V(¢) has a minimum at
(¢) =0.

o If u? < 0: V(¢) gets a local maximal
value at (¢) = 0 and minimal values
at (¢) = £v = two possible ground
states (degenerate ground states)
—> choosing any of them, say
(¢) = +v, breaks the Z,-symmetry

spontaneously.

A quantum field (QF) must have a zero
VEV = define a new field H(x),

H(x) = ¢(x) — v, (36)
with a zero VEV, thus, (34) becomes
Ln= 1(0.H)(0"H) - AH?
—AvH? — 2 H*, (37)

Observation from (37):

@ H is a massive field with mass My,
M3 = 22V, (38)

@ the Z, symmetry is broken as Ly is
not invariant under change H — —H.
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Spontaneous breaking of Abelian symmetry

U(1) symmetry

Consider now a theory of a complex scalar
field &(x),

Ly = (0u0)'(0"¢) — V(9), (39)
V() = 1’6'o + A(6'9)°,  (40)
where, X and p? are real, but A > 0.
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Spontaneous breaking of Abelian symmetry

U(1) symmetry

Consider now a theory of a complex scalar
field &(x),
Ly=(0.0)'(0"0) = V(#),  (39)
V(9) = 1*¢'¢ + A@'0)°,  (40)
where, X and p? are real, but A > 0.

Easy to see L, is invariant under the U(1)
transformation

b — e“gp. (41)
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Spontaneous breaking of Abelian symmetry

U(1) symmetry

Consider now a theory of a complex scalar
field &(x),

Ly = (0u0)'(0"¢) — V(9), (39)
V() = 1’6'o + A(6'9)°,  (40)
where, X and p? are real, but A > 0.

Easy to see L, is invariant under the U(1)
transformation

b — e“gp. (41)
For u? < 0, L4 get minima at

KoY = —, v=v—-u?/x  (42)

Sl
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Spontaneous breaking of Abelian symmetry

U(1) symmetry
Consider now a theory of a complex scalar
field &(x),
Ly=(0.0)'(0"0) = V(#),  (39)
V(9) = 1*¢'¢ + A@'0)°,  (40)
where, X and p? are real, but A > 0.

Easy to see L, is invariant under the U(1)
transformation

b — e“gp. (41)
For u? < 0, L4 get minima at

|<¢>|:ﬁ’ v=y-p?/A (42)

The vacuum is infinitely degenerate (with
the phase rotation).
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Spontaneous breaking of Abelian symmetry

U(1) symmetry U(1) symmetry breaking

— fixing the phase of (¢) breaks the
U(1) symmetry spontaneously!.

Consider now a theory of a complex scalar
field &(x),
Ly=(0.0)'(0"0) = V(#),  (39)
V(9) = 1*¢'¢ + A@'0)°,  (40)
where, X and p? are real, but A > 0.

Easy to see L, is invariant under the U(1)
transformation

b — e“gp. (41)
For u? < 0, L4 get minima at

|<¢>|:ﬁ’ v=y-p?/A (42)

The vacuum is infinitely degenerate (with
the phase rotation).
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Spontaneous breaking of Abelian symmetry

U(1) symmetry

Consider now a theory of a complex scalar
field &(x),
Ly = (9:9)"(9"9) — V(9),
V(9) = 1’6" + A@'0)’,
where, X and p? are real, but A > 0.

Easy to see L, is invariant under the U(1)
transformation

(39)
(40)

b — €. (41)
For u? < 0, L4 get minima at
(o) = ==, v=v=i2/A  (42)

V2
The vacuum is infinitely degenerate (with
the phase rotation).

U(1) symmetry breaking

— fixing the phase of (¢) breaks the
U(1) symmetry spontaneously!.

Choosing, without loss of generality,
(¢) = v/\/2, and re-expressing ¢(x) via two
QF's H(x) and n(x) as follows,

1 .
P(x) = 7 [v 4+ H(x) + in(x)],

we get a U(1)-symm.-breaking theory of a
massive field H(x) with mass my = 2Av?,
and a massless field n(x):

1 1
Lo = 5(8:.H)(0"H) + 5(8,:m)(8"n)
— A\H? — AVH(H? + 1)

_A
4

(43)

(H* +n°)". (44)
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SPONTANEOUS SYMMETRY BREAKING

V(H)

Im(H)

Figure: Spontaneous symmetry breaking
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Spontaneous breaking of non-Abelian symmetry
SU(2) symmetry

Consider an SU(2)-doublet
complex scalar

o=(%)
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Spontaneous breaking of non-Abelian symmetry

SU(2) symmetry
Consider an SU(2)-doublet

complex scalar
+
(%) @

=(%)
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Spontaneous breaking of non-Abelian symmetry

SU(2) symmetry

Consider an SU(2)-doublet
complex scalar

= (2)=(%) @

with an SU(2)-symmetric
Lagrangian

Ls=0xp'0 ¢ — V(¢'¢), (46)
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Spontaneous breaking of non-Abelian symmetry

SU(2) symmetry
Consider an SU(2)-doublet

complex scalar
+
(%) @

_( #
o= (%)
with an SU(2)-symmetric
Lagrangian
Ls=0x0'0"¢— V(¢'9), (46)

V(6'¢) = —uio’ o + An(o79)>.
(47)

V.
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Spontaneous breaking of non-Abelian symmetry

SU(2) symmetry

SU(2) symmetry breaking

Consider an SU(2)-doublet

complex scalar

= (2)=(%) @

with an SU(2)-symmetric
Lagrangian

Ls=0xp'0 ¢ — V(¢'¢), (46)

V(6'¢) = —uio’ o + An(o79)>.
(47)

V(¢ ¢) has a minimum V/(¢T¢)min = _4#7)?,/1 -

v

=] 7610,
%0 /2

where p is a real parameter and v is a VEV of

©:
v = \/p%/)\h.

(48)

(49)
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Spontaneous breaking of non-Abelian symmetry

SU(2) symmetry
Consider an SU(2)-doublet

complex scalar

= (2)=(%) @

with an SU(2)-symmetric
Lagrangian

Ls=0xp'0 ¢ — V(¢'¢), (46)

V(6'¢) = —uio’ o + An(o79)>.
(47)

SU(2) symmetry breaking
4
V(¢ ¢) has a minimum V/(¢T¢)min = _4#7)\;,/1 at

AT
= ——e 9
LY

where p is a real parameter and v is a VEV of

©:
v = \/p%/)\h.

Fixing p breaks this SU(2) symmetry
spontaneously.

(48)

(49)

SSB of a global symmetry
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£5 =~ £ A007un()-E0n ¥ (), (50)
or more general,
G
e —72 D Us(x)0 W1 (x).U3(x) 034 (x), (51)
i
where, O; =1, 5, Yu, YuY5, Ouv or their combinations.
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Ju=Y w(l=)vl + D, (Uckm)ab Ua(1—8)7Dp
l=e,u,T a,b=1,2.3

Jlep

STANDARD MODEL AND NEUTRINOS



Neutrinos an e standard model
Symmetry an ructure of the standard model
Brout-Englert-Higgs mechanism

STANDARD MODEL Charged and neutral currents

Neutrinos beyond the standard model

Neutrinos and the standard model

Ju= Y m@ =)yl + > (Uckm)ab Ua(l = 75)y. Db (54)
e:e7u/77— a7b:1’2.3

Jiep Jhad

STANDARD MODEL AND NEUTRINOS



Neutrinos and the standard model
Symmetry and structure of the standard model
Brout-Englert-Higgs mechanism

STANDARD MODEL Charged and neutral currents

Neutrinos beyond the standard model

Neutrinos and the standard model

Gr
Ly_x=——=Ji 53
voa=—"5Jk (53)
Ju= Y m@ =)yl + > (Uckm)ab Ua(l = 75)y. Db (54)
Z:evu/ﬂ— a7b:1’2.3
Jiep Jhad

This theory with [Gg] = M*2, however, is not renormalisable and violates
the unitarity!
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the unitarity! — new theory:

= an example
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Symmetry and structure of the standard model

Gauge group

The standard model (SM) is based on the gauge symmetry

SUB)c® SU(2), ® U(1)y (55)

STANDARD MODEL AND NEUTRINOS



Neutrinos and the standard model
Symmetry and structure of the standard model
Brout-Englert mechanism
STANDARD MODEL Charged and neutral currents
Neutrinos beyond the standard model

Symmetry and structure of the standard model

Gauge group

The standard model (SM) is based on the gauge symmetry

SUB)c® SU(2), ® U(1)y (55)

SU(3)c: unbroken and describing the strong interaction.
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Gauge group

The standard model (SM) is based on the gauge symmetry

SUB)c® SU(2), ® U(1)y (55)

SU(3)c: unbroken and describing the strong interaction.

SU(2)L ® U(1)y: broken and unifying the electromagnetic and weak interactions.
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Symmetry and structure of the standard model

Gauge group

The standard model (SM) is based on the gauge symmetry

SUB)c® SU(2), ® U(1)y (55)

SU(3)c: unbroken and describing the strong interaction.

SU(2)L ® U(1)y: broken and unifying the electromagnetic and weak interactions.

s Below, consider only the electroweak gauge subgroup
SU22) L ® U(1)y. (56)
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Symmetry and structure of the standard model

Gauge group

The standard model (SM) is based on the gauge symmetry

SUB)c® SU(2), ® U(1)y (55)

SU(3)c: unbroken and describing the strong interaction.

SU(2)L ® U(1)y: broken and unifying the electromagnetic and weak interactions.

s Below, consider only the electroweak gauge subgroup
SU22) L ® U(1)y. (56)

Gell-Mann-Nishijima formula y
E.

R=hk+ (57)
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Symmetry and structure of the standard model

Particle-field structure

Matter sector:

Generation 1: < u,- ) , ( - ) , UR,dR,e€R; (58)
d 0 € n
Generation 2: ( C,- ) , ( g ) , CR, SR, lUR; (59)
s' ), v,
. t' Vs
Generation 3: < i ) s ( _ ) , tr,br, TR, (60)
b n T n

where i = 1,2,3 are SU(3)c indices.
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Symmetry and structure of the standard model

Particle-field structure

Matter sector:
Generation 1: < u,- ) , ( - ) , UR,dR,e€R; (58)
d J, € n
Generation 2: ( C,- ) , ( g ) , CR, SR, lUR; (59)
s' ), v,
. t Vs
Generation 3: < ; ) , ( i ) , tr,br,Tr, (60)
b n T n
where i = 1,2,3 are SU(3)c indices.
Gauge field sector: o
W=,Z,7,g. (61)
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Symmetry and structure of the standard model

Particle-field structure

Matter sector:

Generation 1: < u,- ) , ( - ) , UR,dR,e€R; (58)
d 0 € n
Generation 2: ( C,- ) , ( g ) , CR, SR, lUR; (59)
s' ), v,
. t' Vs
Generation 3: < i ) s ( _ ) , tr,br, TR, (60)
b n T n

where i = 1,2,3 are SU(3)c indices.

Gauge field sector: o
W=,Z,v,8. (61)

Scalar sector: o
o= % ). (62)
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Brout-Englert-Higgs mechanism

Recall: the Glashow-Weiberg-Salam electroweak model is based on the gauge
group SU(2); x U(1)y.
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Brout-Englert-Higgs mechanism

Recall: the Glashow-Weiberg-Salam electroweak model is based on the gauge
group SU(2); x U(1)y.

Covariant derivative

LT = i
Do = (o +ieg A+ 5681 ) 0 (63)
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Brout-Englert-Higgs mechanism

Recall: the Glashow-Weiberg-Salam electroweak model is based on the gauge
group SU(2); x U(1)y.

Covariant derivative

LT = i
Do = (o +ieg A+ 5681 ) 0 (63)

Again with the Lagrangian of type (46)
£s = (Do)t (D*0) - V(sT0). (64)
At the minimum of V/(¢!¢) as illustrated in Fig. 5, we choose VEV

(9o = ( i ) (65)
v
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Brout-Englert-Higgs mechanism

Use the unitary parametrization

0=(% )= 5" (b ) @

where #/(x) are NG bosons.
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Brout-Englert-Higgs mechanism

Use the unitary parametrization

0=(% )= 5" (b ) @

where 6(x) are NG bosons. They can be rotated out.
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STANDARD MODEL
Neutrinos beyond the standard model

Brout-Englert-Higgs mechanism

Use the unitary parametrization
+ 1 i 0
_ [ ¥ _ iT'0'(x)
¢(X) - ( 0 > - \/ie ( v+ H(X) > ) (66)

where 0/(x) are NG bosons. They can be rotated out. The corresponding
degrees of freedom are transferred to those gauge fields becoming massive

due to the SSB !

¢ = U(x)p= ( (HH?X))/\@ ) Uy = ™90 (67)

- é(auuv))w(x)
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Brout-Englert-Higgs mechanism

From (64) we get

g2+g?
8

A
— 3 (@vH + H?)?, (69)

2
Ls = %aAHaAH+gT(v+H)2WATWA+ (v+ H)2z, 2>

where, \ \

_ A7 — iA3
\/§ )

Zy =C059|/VAI)\3 —sinfy By, Ay =sin GWAI)?—&—COSGWB,\, (71)

/

g
g’+g

W/\

g

Vel +g?
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Boson masses
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Brout-Englert-Higgs mechanism

Boson masses

Boson mass terms

1 1
L.y, = my Wiw> + Sy 2N = S myH?, (73)
o _1oo5 o 1 5 15 9
my = 2877, mz—4(g +g )7,
m2; = 2\v? = 24, my = 0. (74)
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Brout-Englert-Higgs mechanism

Boson masses

Boson mass terms

1 1
L.y, = my Wiw> + Sy 2N = S myH?, (73)
o _1oo5 o 1 5 15 9
my = 2877, mz—4(g +g )7,
m2; = 2\v? = 24, my = 0. (74)

Experimental data

myy = 80.385 + 0.015 GeV, myz = 91.1876 + 0.0021 GeV/,
my =125.15+0.24 GeV, m, < 10718 ev. (75)
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Brout-Englert-Higgs-Weinberg mechanism

Fermion Lagrangian

Lr= Z Quuin* DY Que + ZukR”Y N + ZDW’Y DD (76)

k=1 k=1

+ Z Do i DL )per + Z 2rD{" 0 + Yukawa terms,

l=e,p,T l=e,p,T
D =<a +,g2 AH+,2g qu) (77)
D :<a —l—/g A +,f YL’e"BM), (78)
o (o ).
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Brout-Englert-Higgs-Weinberg mechanism

Fermion masses

Yukawa couplings

Ly =— Z (F(kf)@mﬁ@m = F(kj’)@ﬁblm) — Z rglzfp)Euq%R + H.c. (80)

kyJj E,Z’:e,,u,-r
- 900*
= ot = _ 81
G=ine=( £ ) (61)
V.
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Brout-Englert-Higgs-Weinberg mechanism

Fermion masses

Mass terms

£ = S UMD Up — S DuMODr — Y UMPlp+ he (82)
ksj ks

Z,Elze,u,r
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Brout-Englert-Higgs-Weinberg mechanism

Fermion masses

Mass terms

£ = S UMD Up — S DuMODr — Y UMPlp+ he (82)
k.j k.j Z,Elze,u,r

MY — W Y a0y _ (D) Y pller) — (ep) 4

Kj N Kj kj ﬁ’ 0 o ﬁ (83)
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Brout-Englert-Higgs-Weinberg mechanism

Fermion masses

Mass terms

£, = ZL{,LMkJ VU — ZD,LM(D = Y. LM Pl +he  (82)

Z,Elze,u,r
(V) _ r_v (D) _ (D) v (lep) _ (lep) _V
My~ =T V2 My~ =T V2’ My =T N5 e8]
MY = vy m wi,
M) = vp m® wj,
M(Iep) -V, m(charged lep.) WgTa (84)
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Brout-Englert-Higgs-Weinberg mechanism

Fermion masses

Quark masses

my, O 0 my O 0
0 0 m 0 0 my

Fermion masses

Lepton masses

me O 0
m(charged lep.) _ 0 m, O , m®) = 0. (86)
0 0 mr
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Charged and neutral currents

Interaction Lagrangian

Ly = LFC + L)', (87)
where
L€ = (MJEC WH + H.c. ) (88)

with JHCC being a charged current, and

NC _ g NC EM
. — 7H A
L = st e M A, (89)
with
INE =213 —2sin? 0y JEM (90)

being a neutral current.
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Charged and neutral currents (cont.)

Interaction Lagrangian (full)

cC g NC EM
=(—= WH + h. —_— zH — AH. 1
L) = < 2\f‘jﬂ + c> 2cos€WJ 2y (91)
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Charged and neutral currents (cont.)

W=, 7.~

Figure: Electro-weak currents.
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Neutrino masses and mixing
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Neutrinos beyond the standard model

Neutrino masses and mixing

@ Experimental observations of neutrino oscillations [Super-Kamiokande, SNO, 1998 —
2002].
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Neutrinos beyond the standard model

Neutrino masses and mixing

@ Experimental observations of neutrino oscillations [Super-Kamiokande, SNO, 1998 —
2002].

@ Neutrinos have masses and mix: the flavour neutrinos v, o = e, i, 7, are mixed
states of mass-states v;, i = 1,2, 3.
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Neutrinos beyond the standard model

Neutrino masses and mixing

@ Experimental observations of neutrino oscillations [Super-Kamiokande, SNO, 1998 —
2002].

@ Neutrinos have masses and mix: the flavour neutrinos v, o = e, i, 7, are mixed
states of mass-states v;, i = 1,2, 3.

Neutrino mixing matrix — Pontecorvo-Maki-Nakagawa-Sakata matrix

lve) = Uy, U=URURUD.  og=e 7 i=1,23.
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Neutrinos beyond the standard model

ino masses and mixing

@ Experimental observations of neutrino oscillations [Super-Kamiokande, SNO, 1998 —

2002].
@ Neutrinos have masses and mix: the flavour neutrinos vo, o = e, u, 7, are mixed
states of mass-states v;, i = 1,2, 3.

Neutrino mixing matrix — Pontecorvo-Maki-Nakagawa-Sakata matrix

lve) = Uy, U=URURUD.  og=e 7 i=1,23.

1 0 0 C13 0 513e_i‘5 C12 s;2 O
U= 0 3 o3 0 1 0 —s;p cp O x P
0 —sp3 o3 —s13efd 0 c13 0 0 1
C13512 C13512 si3e~70
= | —ca3s12 — sp3cios13e”®  cpzcio — spzsiosize’® cizsz | x P
s23512 — Co3cresize’’ —spzcip — cazssize® e
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Neutrinos beyond the standard model

Current experimental data

e > m; <0.12 eV.

o Am3, =754 x107° eV?, |Am3,| =243 x1073 eV2.

("] 923 ~ 41.40, 912 ~ 33.70,

o 013 ~ 8.8° [Daya Bay, SNO, RENO, T2K, 2010 — 2011], 613 ~ 8.47°
[T2K, 2016].

STANDARD MODEL AND NEUTRINOS



Neutrinos ar dard model
Symmetry al e of the standard model
Brout-Engle schanism

STANDARD MODEL Charged and neutral currents

Neutrinos beyond the standard model

Neutrinos beyond the standard model

Current experimental data

e > m; <0.12 eV.
o Am?, =754 x107° V2, |Am};| =243 x 1073 eV2.
@ O3 ~ 41.4°, 015 ~ 33.7°,

e 013 ~ 8.8° [Daya Bay, SNO, RENO, T2K, 2010 — 2011], ;3 ~ 8.47°
[T2K, 2016].

013 = 0 (by 2010), thus, U has a

tribimaximal form

2 1
3 3 0
am=| Vi V3 -3
_/1r J1i /1
6 \/3 3
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Neutrinos beyond the standard model

Current experimental data

e > m; <0.12 eV.
o Am?, =754 x107° V2, |Am};| =243 x 1073 eV2.
@ O3 ~ 41.4°, 015 ~ 33.7°,

e 013 ~ 8.8° [Daya Bay, SNO, RENO, T2K, 2010 — 2011], ;3 ~ 8.47°
[T2K, 2016].

013 = 0 (by 2010), thus, U has a

tribimaximal form

There is no unique
2 i 0 theory or formalism to
U — | _ /1 11 describe this case,
tbm 6 3 2 013 # 0.
_. /1 1 1
6 3 2

STANDARD MODEL AND NEUTRINOS



Neutrinos ar tandard model
Symmetry al ture of the standard model
Brout-Engle s mechanism
STANDARD MODEL Charged and neutral currents
Neutrinos beyond the standard model

Neutrinos beyond the standard model

Experimental Pontecorvo-Maki-Nakagawa-Sakata matrix

0824001 054+0.02  —0.15+0.03
Upiinvg = | —0.354+0.06 0.70+0.06  0.62+0.06 x P,
044+006 —0.45+0.06 0.77 40.06

with the Dirac phase § omitted.
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Neutrinos BSM: neutrino mass generation

Neutrinos have masses but
very tiny. How to generate
them?
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Neutrinos BSM: neutrino mass generation

Neutrinos have masses but
very tiny. How to generate
them?

There are many models for
neutrino masses.

Two very popular ways of
neutrino mass generation:

- Radiative corrections,
- Seasaw mechanism.
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Neutrinos BSM: neutrino mass generation

Seesaw mechanism

Neutrinos have masses but https://www.overleaf.com/project/5fd81dbbdf1
very tiny. How to generate
them?

([&x]

There are many models for
neutrino masses.

Two very popular ways of
neutrino mass generation:

- Radiative corrections,
- Seasaw mechanism.

Figure: Illustration (by an unknown author).
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Neutrinos BSM: Relation to physics at collide

General ne

Vo =Uqivi + Oai Ny,

o =€ U,T,
i=1,23,
k=1,2,....n.
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Neutrinos BSM: Relation to physics at colliders

Heavy neutrino production at colliders

q IAs

W+

q’ N

A scheme of a heavy neutrino production [NJP 17 (2015) 075019].

STANDARD MODEL AND NEUTRINOS



Neutrinos and the standard model

Symmetry and structure of the standard model

Brout-Englert-Higgs mechanism
STANDARD MODEL Charged and neutral currents
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Neutrinos BSM: Relation to physics at colliders

Heavy neutrino production and decay

A scheme of a heavy neutrino production and decay [arXiv: 1703.04669
[hep-ph]].
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Neutrinos BSM: Relation to physics at colliders

A lepton-number-violation B-decay [Phys. Lett. B 763 (2016) 393].
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Neutrinos in the standard model

@ Neutrinos are spin 1/2 particles and have no masses,

@ Neutrinos are left-handed (anti-neutrinos are right-handed).
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Experiment fact

@ Neutrinos mix and have masses,

@ The standard model must be extended.
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@ Neutrinos mix and have masses,

@ The standard model must be extended.

Experimental challenges

e Type of neutrinos (Dirac or Majorana type?)

e CP violation in the lepton sector and Dirac violation phase § (how big?).
e Neutrino mass spectrum and hierarchy (normal or inverse?).

e Determination of v's absolute masses (very tiny but only upper limits known).
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CONCLUSION

CONCLUSION

@ Neutrinos are spin 1/2 particles and have no masses,

@ Neutrinos are left-handed (anti-neutrinos are right-handed).

Experiment fact

@ Neutrinos mix and have masses,

@ The standard model must be extended.

Experimental challenges

e Type of neutrinos (Dirac or Majorana type?)

e CP violation in the lepton sector and Dirac violation phase § (how big?).
e Neutrino mass spectrum and hierarchy (normal or inverse?).
e Determination of v's absolute masses (very tiny but only upper limits known).

e Sterile neutrinos (their existence and masses).
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THANK YOU FOR YOUR ATTENTION! |

GOOD LUCK WITH NEUTRINO PHYSICS!
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