Complementary between HK & DUNE to complete 3-flavor PMNS picture & beyond

Osamu Yasuda Tokyo Metropolitan University

July 17, 2023 19th Rencontres du Vietnam @ IFIRSE

1. Introduction

- Motivations for determination of mass ordering, CP phase
- Parameter degeneracy
- 2. Sensitivity of T2HK & DUNE to N_v =3 oscillation parameters
- Precision of $\Delta m_{31}^2 \& \theta_{23}$
- Mass ordering
- Octant degeneracy
- CP

3. Sensitivity to scenarios beyond the 3-flavor PMNS picture

v_s, NSI, scalar NSI, long-range force, Non-unitarity, LIV
 4. Conclusions

1. Introduction

Framework of 3 flavor v oscillation

All 3 mixing angles have been measured (2012):

V_{solar}+KamLAND (reactor)

$$\theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} \, eV^2$$

V_{atm}+T2K +MINOS+NOvA (accelerators)

DCHOOZ+Daya Bay+Reno (reactors), T2K+MINOS+Nova etc

$$\theta_{23} \cong \frac{\pi}{4}, |\Delta m_{32}^2| \cong 2.5 \times 10^{-3} \, \text{eV}^2$$

 $\theta_{13} \cong \pi / 20$

Next things to do are to determine the following: • $sign(\Delta m_{31}^2)$ • $\pi/4-\theta_{23}$ • δ

Motivation for determining mass ordering

(i) Guidelines for models (GUT etc.)

(ii) Influence on the measurement of CP phase

(iii) Implication for neutrinoless double β decay

Motivation for determining the CP phase

(i) Guidelines for models (GUT etc.)

(ii) Leptogenesis?

Both mass patterns are allowed

Status of 3v fit (1)

www.nu-fit.org v5.2 (Nov. 2022)

NO, $\delta \sim \pi$ seems to be preferred over IO, $\delta \sim 3\pi/2$

NO, **IO** (w/o SK-atm)

θ_{23} and δ have large errors

Status of 3v fit (2)

Appearance data of LBL show us potential tension for NO, although T2K dominates over NOvA in statistics.

www.nu-fit.org v5.2 (Nov. 2022)

Status of 3v fit (3)

www.nu-fit.org v5.2 (Nov. 2022)

Tension of Δm^2_{21} between solar v and KamLAND remains.

Tension may be a hint for Non Standard Interactions or sterile neutrinos.

Parameter degeneracy

Even if we know $P \equiv P(v_{\mu} \rightarrow v_{e})$ and $\overline{P} \equiv P(v_{\mu} \rightarrow \overline{v_{e}})$ in LBL experiments with energy E and baseline L, δ cannot be uniquely determined because of the 8-fold parameter degeneracy.

• octant degeneracy $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ (Fogli-Lisi, '96)

• intrinsic degeneracy (δ , θ_{13}) (Burguet-Castell et al, '01)

• sign degeneracy $\Delta m_{31}^2 \leftrightarrow \Delta m_{31}^2$ (Minakata-Nunokawa, '01) (sin²2θ₁₃, 1/s²₂₃) plane (P=const & P=const gives a quadratic curve)

Understanding degeneracy by appearance probabilities

Prakash, Raut, Sankar, PRD 86, 033012 (2012)

Agarwalla, Prakash, Sankar, JHEP 1307, 131 (2013)

Due to uncertainty in δ , the appearance probabilities has finite width. -> Each border is approximately realized for $\delta = +\pi/2$ or $-\pi/2$

Mass Ordering

At T2HK, MO separation is good only for $\delta \sim -\pi/2$ (NO), $\delta \sim +\pi/2$ (IO)

NO
IO

$$-\delta = \pi/2$$

 $-\delta = -\pi/2$
 $-\delta = \pi/2$
 $-\delta = -\pi/2$

Fukasawa, Ghosh, OY, NPB 918 ('17) 337

At DUNE, NO-IO separation is good for any δ

Complementarity of T2HK and DUNE

T2HK pro: #(events) (∝ L ⁻²) is large con: little matter effect	DUNE pro: #(events) (∝ L ⁻²) is smaller			
Matter effect becomes most conspicuous if $\Delta Ecos2\theta = A$ is satisfied.				
$P(\nu_{\mu} \to \nu_{e}) = \left(\frac{\Delta E \sin 2\theta}{\Delta \tilde{E}}\right)^{2} \sin^{2}\left(\frac{1}{2}\right)^{2} \sin^$	$\left(\frac{\Delta \tilde{E}L}{2}\right) \tan 2 \tilde{\theta} = \frac{\Delta E \sin 2 \theta}{\Delta E \cos 2 \theta - A}$			
$\Delta \widetilde{E} = \left[(\Delta E \cos 2 \theta - A)^2 + (\Delta E \sin 2 \theta - A)^2 \right]$	$\mathbf{\Theta}$) ²] ^{1/2} $\mathbf{A} \equiv \sqrt{2}\mathbf{G}_{F}\mathbf{n}_{e}(\mathbf{x})$			
In this case, the baseline length L has to be large				
• • • • • • • • • • • • • • • • • • • •				

 \rightarrow L> π /A~O(1000km) \rightarrow It is satisfied by DUNE but not by T2HK.

2. Sensitivity of T2HK & DUNE to N_v =3 oscillation parameters

Uncertainty in matter density taken into account

Ghosh-OY, NPB 989 ('23) 116142

The parameters assumed here:

T2HK

- 187 kton fiducial volume
- ν:ν = 1:1

Total exposure: 2.7 x 10²² POT

DUNE

- 40 kt LiAr detector,
- $v:\overline{v} = 1:1$

Total exposure: 1.1 X 10²¹ POT

Reference value: $\theta_{23} = 42^{\circ} \text{ or } 48^{\circ},$ $\delta = -90^{\circ},$ $\Delta m^2_{31} = 2.51 \times 10^{-3} \text{eV}^2,$ $\Delta \rho / \rho = 0, 5\%, 10\%$

DUNE&T2HK vs Present status of global fit

	Ref	∆m² ₃₁ /10 ⁻³ eV²	θ ₂₃ [°]
Global fit	www.nu-fit.org v5.2 (Nov. 2022)	2.507+0.026-0.027	42.2+1.1-0.9
Future exp	T2HK Ghosh-OY('23)	2.510+0.013-0.014	42.0±0.5
	DUNE Ghosh-OY('23)	2.510+0.015-0.014	42.0±0.5
	DUNE+T2HK Ghosh-OY('23)	2.510±0.010	42.0+0.4-0.3

2.2 Sensitivity to Mass Ordering

Ghosh-OY, NPB 989 ('23) 116142

Δρ/ρ=0% Δρ/ρ=5% Δρ/ρ=10%

Uncertainty in matter density has some effect on DUNE <- DUNE has longer baseline L=1300km

2.3 Sensitivity to Octant degeneracy

HO-LO Separation is possible for T2HK & DUNE w/ v & \overline{v} for most of δ

Ghosh-OY, NPB 989 ('23) 116142

$$\theta_{23} = 42^{\circ}$$

Uncertainty in matter density has some effect on DUNE. <- DUNE has longer baseline L=1300km However even with $\Delta\rho/\rho$ =10%, the sensitivity is excellent.

2.4 Sensitivity to CP(1)

Ghosh-OY, NPB 989 ('23) 116142

Uncertainty in matter density has some effect on the precision $\Delta\delta$ both for T2HK & DUNE.

 $\Delta\delta/\delta$ has mild dependence on δ but not much.

2.4 Sensitivity to CP(2)

Δρ/ρ=0% Δρ/ρ=5% $\Delta \rho / \rho = 10\%$

Ghosh-OY, NPB 989 ('23) 116142

2.4 Sensitivity to CP(3)

Agarwalla, Das, Giarnetti, Meloni, Singh, 2211.10620 [hep-ph]

Coverage in δ (= the range of δ for which leptonic CPV can be established at 3σ) is the largest by combining T2HKK & DUNE.

For details, see talk by Masoom Singh on July 19.

3. Sensitivity to scenarios beyond the 3-flavor PMNS picture

Scenarios suggested by experiments:

3.1 sterile v \Leftarrow LSND/MiniBooNE, Reactor/Gallium v anomaly 3.2 NSI \Leftarrow Tension of Δm^2_{21} between solar v and KamLAND

Scenarios which are not suggested by experiments:
3.3 Scalar NSI
3.4 Flavor-dependent long-range interactions
3.5 Non-unitarity
3.6 Lorentz Invariance Violation
No affirmative hints for these, but discovery of these would give a clue for Physics Beyond the Standard Model

3.1 Sensitivity of T2HK & DUNE to Sterile ν

Choubey, Dutta, Pramanik, Eur.Phys.J.C78('18)4, 339

(2) Accelerator v(DUNE w/ v_{τ})

Ghoshal-Giarnetti-Meloni, JHEP 12 (2019) 126

$$\Delta m_{41}^2 = 1.0 \text{ eV}^2$$

$$V_{\tau} + V_{\mu} + V_{e}$$

Accelerator v has better (worse) sensitivity to θ_{24} (θ_{34}) than v_{atm} (depicted by)

HK, arXiv:1805.04163v2

HK Sensitivity to θ_{34} (θ_{24}) is (is not much) improved compared to SK: 90% CL (solid) 99% CL (dashed)

Tension of Δm^2_{31} between solar v and KamLAND may be accounted for by NSI.

CP-conserving Global fit (except T2K & NOvA
appearance data) of NSI: Terrestrial v basis
$$\begin{aligned}
\text{Coloma et al. arXiv:2305.07698v1} \\
\text{[hep-ph]}
\end{aligned}$$

$$\mathcal{E}_{\alpha\beta}(x) &= \varepsilon_{\alpha\beta} \left[\xi^e + \xi^p + Y_n(x)\xi^n \right] = \sqrt{5} \left[\cos \eta \left(\cos \zeta + \sin \zeta \right) + Y_n(x) \sin \eta \right] \\
&= \sqrt{5} \left[\cos \eta' + Y_n(x) \sin \eta' \right] \varepsilon'_{\alpha\beta} \tan \eta' \equiv \tan \eta / \left(\cos \zeta + \sin \zeta \right) \\
&= \sqrt{5} \left[\cos \eta' + Y_n(x) \sin \eta' \right] \varepsilon'_{\alpha\beta} \tan \eta' \equiv \tan \eta / \left(\cos \zeta + \sin \zeta \right) \\
&= \varepsilon_{\alpha\beta} \sqrt{1 + \cos^2 \eta \sin(2\zeta)} \\
\text{GLOB-OSC w NSI in ES+CE_{\nu}NS} \\
&= \varepsilon_{\alpha\beta} \sqrt{1 + \cos^2 \eta \sin(2\zeta)} \\
&=$$

Before the work 1805.04530, fit only for the cases $tan\eta = 1/2$ ($\varepsilon_{\alpha\beta}^{d}=0$; η=26.6°) and tanη=2 ($\varepsilon_{\alpha\beta}^{u}=0$; η=64.4°) were known. \rightarrow On the next page, significance of NSI at DUNE, v_{atm} @HK, **T2HKK** (possible extension of T2HK) is compared only the case for tan $\eta = 1/2$ ($\epsilon^{d} = 0$; $\eta = 26.6^{\circ}$) and tan $\eta = 2$ ($\epsilon^{u} = 0$; η=64.4°), assuming old design of HK (0.56 Mton fiducial volume x 12 yrs).

→ After the work 1805.04530, the best fit is η~ arctan(-1/Y_n) = -43.6°, and LBL experiments are useless for this value because ε_{αβ} ~ 0.
 → Do the CP phases of ε_{αβ}, which were ignored in the analysis, change the best fit point η~-43.6°?

•Comparison of sensitivity T2HKK, DUNE, vatm@HK

Ghosh & OY, MPL A35 ('20) 17, 2050142

In the case of NO, v_{atm}@HK is the best

In the case of IO, DUNE is the best

3.3 Sensitivity of T2HK & DUNE to Scalar NSI

Medhi, Devi, Dutta, JHEP 01 (2023) 079

$$\mathcal{L}_{\text{eff}}^{\text{S}} = \frac{y_f y_{\alpha\beta}}{m_{\phi}^2} (\bar{\nu}_{\alpha} \nu_{\beta}) (\bar{f}f) \qquad \mathcal{H} \approx E_{\nu} + \frac{(M + \delta M) (M + \delta M)^{\dagger}}{2E_{\nu}} \pm V_{\text{SI}}$$

$$\delta \widetilde{M} \equiv \sqrt{\Delta m_{31}^2} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{\mu e} & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{\tau e} & \eta_{\tau\mu} & \eta_{\tau\tau} \end{pmatrix}$$

To simplify the analysis, only three cases were considered:

$$\delta \widetilde{M} \propto \text{diag}(\eta_{ee}, 0, 0), \text{diag}(0, \eta_{\mu\mu}, 0), \text{diag}(0, 0, \eta_{\tau\tau})$$

Reference value: NO, θ_{23} = 47°, δ = -90°, $\eta_{\alpha\alpha}$ = 0.1 (α =e, μ , τ)

Medhi, Devi, Dutta, JHEP 01 (2023) 079

1

3.4 Sensitivity of T2HK & DUNE to Flavordependent long-range neutrino interactions

Singh, Bustamante, Agarwalla, 2305.05184 [hep-ph]

A possible flavor dependent long-range force, mediated by a very light gauge boson, between neutrinos and astrophysical objects (Earth, Moon, Sun, Milky Way, the cosmological distribution of matter in the local Universe) is considered.

3.5 Sensitivity of T2HK & DUNE to Non-unitarity

Dutta, Roy, J.Phys.G 48 (2021) 4, 045004

$$N = N^{NU}U = \begin{bmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} U$$

Sensitivity of T2HK & DUNE is comparable except for α_{33} .

See also talk by Sudipta Das on July 19.

3.6 Sensitivity of T2HK & DUNE to Lorentz Invariance Violation

Agarwalla, Das, Sahoo, Swain, 2302.12005 [hep-ph]

$$H = UMU^{\dagger} + V_e + H_{\rm LIV}$$

$$H_{\rm LIV} = \begin{pmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^{\star} & a_{\mu\mu} & a_{\mu\tau} \\ a_{e\tau}^{\star} & a_{\mu\tau}^{\star} & a_{\tau\tau} \end{pmatrix} - \frac{4}{3}E \begin{pmatrix} c_{ee} & c_{e\mu} & c_{e\tau} \\ c_{e\mu}^{\star} & c_{\mu\mu} & c_{\mu\tau} \\ c_{e\tau}^{\star} & c_{\mu\tau}^{\star} & c_{\tau\tau} \end{pmatrix}$$

independent of
energy & matter
density

For details, see talk by Sadashiv Sahoo on July 19.

Raikwala, Choubey, Ghosh, 2303.10892v1 [hep-ph]

Sensitivity to $a_{\alpha\alpha}$ (independent of E): ICAL > DUNE > T2HK

Sensitivity to $c_{\alpha\alpha}$ (proportional to E): ICAL >> DUNE >> T2HK

4. Conclusions

Precision measurements of mixing angles, mass ordering and CP phase are important for research on Physics Beyond SM.

- Resolution of parameter degeneracy can be possible by combining v & \overline{v} at T2HK & DUNE.
- Measurements of anti-neutrino appearance are in general important to lift degeneracy.
- T2HK+DUNE gives us excellent precision in θ_{23} (1%), Δm_{32}^2 (0.5%), δ (20%).
- HK+DUNE have some sensitivity to scenarios beyond std PMNS

(v_s , scalar NSI, long-range force, Lorentz Invariance Violation, etc).

• For the best fit η =-43.6°, LBL has no sensitivity to NSI, which is suggested by the solar ν tension.

Backup slides

Ghosh-OY, NPB 989 ('23) 116142

octant degeneracy at DUNE

Ghosh-OY, NPB 989 ('23) 116142

Probability vs octant degeneracy at T2HK

Ghosh-OY, NPB 989 ('23) 116142

Probability vs octant degeneracy at DUNE

Ghosh-OY, NPB 989 ('23) 116142

For T2HK, $(\delta, DS)=(-64^{\circ}, 1.0)$ is degenerate with $(-61^{\circ}, 1.1)$. For δ (true) = -90°, $(\delta$ (test),DS(test)) = $(-61^{\circ}, 1.0)$ is excluded but $(\delta$ (test),DS(test)) = $(-61^{\circ}, 1.1)$ is allowed.

For DUNE, $(\delta, DS)=(-74^{\circ}, 1.0)$ is degenerate with (-69°, 1.1). For δ (true) = -90°, (δ (test),DS(test)) = (-69°, 1.0) is excluded but (δ (test),DS(test)) = (-69°, 1.1) is allowed.