

Constraint to the CPT violation with neutrino oscillation experiments

Tran Van Ngoc S. Cao, N. T. Hong Van, P. T. Quyen

v workshop, ICISE, 17 July 2023

Contents

- 1. Introduction
- 2. Experiment simulation
- 3. Constraint to the CPT violation
- 4. Conclusion

Testing CPT invariance with neutrino oscillation experiment

- CPT theorem: All interactions described by a Lorentz-invariant local quantum field theory must be invariant under combined CPT transformation.
- CPT invariance => $m_{\text{particle}} = m_{\text{antiparticle}}$
- Direct CPT testing: comparing m_{particle} and $m_{\text{antiparticle}}$ at oscillation experiments: $K^0 \overline{K}^0, B^0 \overline{B}^0, ...,$ and neutrino
- Current best constraint in terms of relative mass difference in neutral meson system is given by $K^0 \overline{K}^0$ system: $\left| \frac{m(K^\circ) - m(\overline{K}^\circ)}{m_K} \right| < 6 \times 10^{-19} \Rightarrow |m^2(K^\circ) - m^2(\overline{K}^\circ)| < 0.3 \ eV^2$
- In neutrino sector: $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} eV^2$, $\Delta m_{31}^2 \approx 2.55 \times 10^{-3} eV^2 =>$ possible explore CPT violation at lower mass-squared level

Testing CPT invariance with neutrino oscillation experiment

Testing CPT invariance with neutrino oscillation experiment

- CPT asymmetry: $\mathscr{A}_{CPT} = P(\nu_{\alpha} \to \nu_{\beta}) P(\overline{\nu}_{\beta} \to \overline{\nu}_{\alpha})$
- Accelerator-based experiments study 4 channels: $\tilde{\nu}_{\mu} \rightarrow \tilde{\nu}_{e}$ and $\tilde{\nu}_{\mu} \rightarrow \tilde{\nu}_{\mu}$
- Accelerator-based experiments can not test CPT symmetry via appearance channels since they don't focus on $\overline{\nu}_e \rightarrow \overline{\nu}_\mu$ channel
- Accelerator-based experiments can test CPT by their own disappearance channels $P(\tilde{\nu}_{\mu} \rightarrow \tilde{\nu}_{\mu}) \approx 1 - \sin^2 2\tilde{\theta}_{23} \sin^2 \left(\frac{\Delta \tilde{m}_{31}^2 L}{4E}\right)$

Testing CPT invariance with neutrino oscillation experiment

• The most up-to-date bounds on CPTV at 3σ with ν experiments $(|\delta(X)| = |X - \overline{X}|)$

 $\begin{aligned} |\delta(\sin^2\theta_{12})| &< 0.14 \\ |\delta(\sin^2\theta_{13})| &< 0.029 \\ |\delta(\sin^2\theta_{23})| &< 0.19 \\ |\delta(\Delta m_{21}^2)| &< 4.7 \times 10^{-5} \ eV^2 \\ |\delta(\Delta m_{31}^2)| &< 2.5 \times 10^{-4} \ eV^2 \end{aligned}$

Neutrino oscillation experiments

• Accelerator-based experiments: T2K(-II), NOvA(-II), Hyper-K, and DUNE

• Reactor-based experiment: JUNO

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - 2\sin^2 2\overline{\theta}_{13} \sin^2 \frac{\Delta \overline{m}_{31}^2 L}{4E} - \sin^2 2\overline{\theta}_{12} \overline{s}_{13}^4 \sin^2 \frac{\Delta \overline{m}_{21}^2 L}{4E}$$

2. Experiment simulation

• GLoBES: The General Long Baseline Experiment Simulator

2. Experiment simulation

• GLoBES setup for T2K-II, NOvA-II, JUNO, Hyper-K, and DUNE

	T2K-II	NOvA-II	JUNO	Hyper-K	DUNE
Baseline (km)	295	810	52.5	295	1285
Matter density g/cm ³	2.6	2.8	2.6	2.6	2.85
Detector mass (kt)	22.5	14	20	187	40
Exposure	$10 \times 10^{21} POT$	$7.2 \times 10^{21} POT$	6 years	10 years	10 years nominal
Power	0.77 MW	0.74 MW	26.6 GWth	1.3 MW	1.2 MW

3. Constraint to the CPT violation

• Assume CPT is conserved, 2D contours at 3σ C. L. are made

• Assume CPT is conserved, we calculate the bound on CPTV with $\delta(\Delta m_{31}^2)$ within 3σ range of $\sin^2 \theta_{23}$ [0.40 - 0.62]

- Hyper-K will provide the best constraint to the CPTV in terms of Δm_{31}^2 among single detector experiments
- Hyper-K + JUNO will give best constraint that ever made

• Energy resolution, systematics, and neutrino mode configuration slightly affect to the bound on CPTV

 $= \sqrt{\Delta \chi^2}$

- 2% difference for each 0.5% improvement in energy resolution
- 7% increase in bound value if using statistics only
- 2% better constraint of $\nu : \bar{\nu} = 1 : 1$ configuration than $\nu : \bar{\nu} = 3 : 1$ configuration

- The bound on $\delta(\Delta m_{31}^2)$ reduce half compared to nominal setup (10 years) after 50 years
- Improved one order after
 100 years

The bound on $\delta(\Delta m_{31}^2)$ at $3\sigma C \cdot L$ versus statistics (run time)

3. Sensitivity to CPT violation with $\delta(\Delta m_{31}^2)$

• If T₂K best fits on Δm_{31}^2 and $\Delta \overline{m}_{31}^2$ are assumed to be true, Hyper-K will be able to exclude CPT conservation at $5\sigma C \cdot L$.

3. Constraint to the CPT violation Constraint with $\delta(\sin^2 \theta_{23})$

- Assume CPT is conserved, we calculate the bound on CPTV with $\delta(\sin^2 \theta_{23})$
 - Hyper-K will provide the best constraint to the CPTV in terms of mixing angle θ_{23}

• The bound with $\delta(\sin^2 \theta_{23})$ at 3σ

Ехр	DUNE	Hyper-K	T2K-II + NOvA-II + JUNO
$\sin^2\theta_{23} = 0.45$	0.145	0.135	0.161
$\sin^2\theta_{23} = 0.50$	0.083	0.063	0.097
$\sin^2\theta_{23} = 0.60$	0.192	0.188	0.211

Conclusion

- Hyper-K will provide the best constraint on CPTV in terms of mass squared difference and mixing angle among the single detector experiments
- Hyper-K + JUNO has more stringent constraint to the CPTV than Hyper-K + DUNE
- Improvement in energy resolution and systematics slightly affect to the CPTV sensitivity
- $\nu : \bar{\nu} = 1 : 1$ configuration has slightly better constraint to the CPTV than $\nu : \bar{\nu} = 3 : 1$ configuration
- Hyper-K has the sensitivity to CPTV at $5\sigma C \cdot L$. if the current best fits of T₂K on Δm_{31}^2 and $\Delta \overline{m}_{31}^2$ are still true

Thank you very much for your attention

	DUNE	DUNE	DUNE + JUNO	Hyper-K	Hyper- K+JUNO	T2K- II+NOvA- II+JUNO
$\sin^2\theta_{23} = 0.45$	5.75E-05	5.54E-05	2.93E-05	2.81E-05	1.94E-05	5.75E-05
$\sin^2\theta_{23} = 0.50$	5.48E-05	5.28E-05	2.83E-05	2.68E-05	1.89E-05	5.33E-05
$\sin^2\theta_{23} = 0.60$	6.03E-05	5.83E-05	3.09E-05	2.96E-05	2.05E-05	6.15E-05

Backup: Matter effect in CPT violation search

If $\mathscr{A}_{\alpha\beta}^{CPT} \neq 0$ in disappearance channels => more chance it is $\mathscr{A}_{intrinsic}^{CPT}$

3. Constraint to the CPT violation Constraint with $\delta(\sin^2 \theta_{23})$

- Assume CPT is conserved, we calculate the bound on CPTV with $\delta(\sin^2 \theta_{23})$
 - Hyper-K will provide the best constraint to the CPTV in terms of mixing angle θ_{23}

• The bound with $\delta(\sin^2 \theta_{23})$ at 3σ

Ехр	DUNE	Hyper-K	T2K-II + NOvA-II + JUNO
$\sin^2\theta_{23} = 0.45$	0.145	0.135	0.161
$\sin^2\theta_{23} = 0.50$	0.083	0.063	0.097
$\sin^2\theta_{23} = 0.60$	0.192	0.188	0.211