Revisit the octant ambiguity and resolvability of the θ_{23} mixing angle

2023 July 18, Neutrino Workshop at IFIRSE 2023

Son Cao and Quyen Phan **IFIRSE**

Neutrino oscillation in brief

$$U_{\text{PMNS}} = \underbrace{\begin{matrix} \mathcal{V}_{1} \\ \mathcal{C}_{12}c_{13} \\ \mathcal{C}_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} \\ -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} \\ -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} \\ c_{13}c_{23} \\ c$$

 $c_{ij} = \cos \theta_{ij}, \ s_{ij} = \sin \theta_{ij}$ 2

Present landscape of the leptonic mixing

Borexino; IceCube, Super-K

$$\begin{split} \theta_{12}[^{o}] &= 33.41^{+0.75}_{-0.72} \quad \text{2.2\% precision} \\ \theta_{13}[^{o}] &= 8.54^{+0.11}_{-0.12} \quad \text{1.4\% precision} \\ \theta_{23}[^{o}] &= 49.1^{+1.1}_{-1.4} \quad \text{Do not exclude } \theta_{23} = 45^{\circ} 8 \\ \text{octant yet. } 1\sigma \text{ precision is miss} \\ \delta_{CP}[^{o}] &= 197^{+42}_{-25} \quad \text{Note: mild tension btw T2K weights} \end{split}$$

Three unknowns to solve for completing neutrino oscillation picture

CP-violation phase in the leptonic mixing matrix
Neutrino mass ordering

• Whether the leptonic mixing angle θ_{23} maximal or not

Our main objective: θ_{23} precise determination

• CP-violation phase in the leptonic mixing matrix Neutrino mass ordering • Whether the leptonic mixing angle θ_{23} maximal or not

If $\theta_{23} = \pi/4$, ν_3 shares the same fractions of flavor-muon and flavor-tau. Similar to ν_1 and ν_2 if $\delta_{CP} = \pm \pi/2$

Current understanding of the θ_{23} mixing angle

	T2K	NOνA	MINOS	Super-K	IceCube	NuFIT 5.2
Constraint $\sin^2 \theta_{13}/10^{-2}$	2.18 ± 0.07	2.10 ± 0.11	2.10 ± 0.11	2.10 ± 0.11	2.224 ± 0.11	2.203 ± 0.0575
Best fit $\sin^2 \theta_{23}$	$0.561\substack{+0.019\\-0.038}$	$0.57\substack{+0.03\\-0.04}$	$0.43\substack{+0.20\\-0.04}$	$0.425\substack{+0.051\\-0.034}$	0.51 ± 0.05	$0.572^{+0.018}_{-0.023}$
Octant Rej.	$\sim 1.22\sigma$	$\sim 0.37\sigma$	$\sim 0.53\sigma$	$\sim 0.85\sigma$	0	$\sim 0.89\sigma$

Note: Most experiments use external constraint of θ_{13} from reactors but the value is not exactly the same

Two hypothesis tests for θ_{23} precise measurement

- Practical approach for the statistical test:
- First, perform $\sin^2 \theta_{23} = 0.5$ hypothesis test
- After we definitely exclude the maximal mixing hypothesis, we then find the "right" octant by excluding the "wrong" octant hypothesis
- The statistical significance for the former test is typically higher than the later test.

Questions we focus in this study

- Do the known unknowns (δ_{CP} and neutrino mass ordering (MO)) affect the θ_{23} precise determination?
- How does of the θ_{13} precision impact on the θ_{23} measurement?
- What are contributions of neutrino and anti-neutrino appearance samples to resolve the θ_{23} ambiguity?
- \circ Is the θ_{23} precise determination driven by statistical or systematical errors? • Is there range of θ_{23} where its ambiguity can not be solved definitively?

Overall strategy to measure θ_{23} mixing angle

- Most effective strategy: combine disappearance — appearance samples in the accelerator/atmospheric -based exp. and constrain on θ_{13} from reactor-based exp.
 - Both neutrinos and anti-neutrinos
- Using other baseline/energy also can help
- Using $\nu_e \rightarrow \nu_{\tau}$ (in possible neutrino factory) can help (if the statistics is at level of $\nu_{\mu} \rightarrow \nu_{e}$)

- ^O Discrete clone solutions of θ_{23} with marginal δ_{CP} dependence when true θ_{23} is significantly off from $\pi/4$
- ^O When true θ_{23} is close to $\pi/4$ and in higher octant, "continuous" same-octant clone solution with relatively strong dependence on $\cos \delta_{CP}$ observed
- Iso-probability pattern is symmetric about $\sin^2 \theta_{23} \sim \frac{0.5}{\cos^2 \theta_{13}} \approx 0.511$ $P_{\nu_{\mu}\to\nu_{\mu}} = 1 - (\cos^4\theta_{13}) \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \theta_{23} \sin^2 \theta_{31}$

$$\Phi_{31} = \Delta m_{31}^2 \cdot \frac{L}{4E}; \quad \epsilon_m =$$

On the $\nu_{\mu} \rightarrow \nu_{\mu}$ survival (disappearance) measurement

 $= \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.03; \quad J_{123} = \sin 2\theta_{12} \cdot \sin 2\theta_{23} \cdot \sin 2\theta_{13};$

on θ_{13} resolvability (*next slides*)

On the $\nu_{\mu} \rightarrow \nu_{e}$ appearance measurement

- Energy(baseline)-dependent $\theta_{23} \delta_{CP}$ continuous degeneracy but having marginal effect

On the effect of δ_{CP} and mass ordering

anti-neutrino (*if at the same statistical level*)

• The iso-probability curve is energy dependence, spectral measurement helps to mitigate this degeneracy • The relative difference btw. *normal* and *inverted* mass ordering (MO) is independent to $\theta_{23} \rightarrow$ whether MO is *normal* or *inverted*, *known* or *unknown* has mild impact on the θ_{23} resolvability

^O The octant resolvability of neutrino exp. like T2HK, DUNE doesn't depend much on the truth value of δ_{CP} • $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ probabilities share a mirror symmetry and thus cancel out if combine neutrino and

On the effect of δ_{CP} and mass ordering

The octant resolvability has marginal dependence on δ_{CP} and does not dependence much on the mass ordering understanding

Octant resolving with T2HK

Contribute to octant resolving: disappearance and appearance

- measurement unless $0.5 < \sin^2 \theta_{23} \lesssim 0.54$

• For excluding $\sin^2 \theta_{23} = 0.5$, main contribution is from disappearance

• For octant resolving, mostly driven by the appearance unless $\sin^2 \theta_{23} \leq 0.4$ • Typically, octant resolvability is better if θ_{23} lies in the lower octant.

Contribution of neutrino appearance and anti-neutrino sample

- If $\nu_e, \bar{\nu}_e$ appearance samples are the same statistical level, their contribution to the θ_{23} octant resolving are not the same
- In DUNE, with $\nu: \bar{\nu} = 1: 1$, statistics of neutrino is more dominant, thus a driving factor for octant resolving

Systematic effects and θ_{13} constraint

- reach but not 3σ

• Systematic improvement (if possible) impact on the octant resolvability: $4\% \rightarrow 2\%$ systematic error is equivalent to a double of statistics

• Further improvement of θ_{13} (2.6% \rightarrow 1.0%) give some extension of 5σ

Ultimate reach for θ_{23} precision measurement?

^O A combination of T2HK, DUNE with further constraint on θ_{13} is supposed to provide an ultimate reach for θ_{23}

^o Can rule out whole present 1σ region (NuFIT 5.2) with more than 3σ

• If θ_{23} lies between [0.48,0.54], it is almost impossible to resolve the θ_{13} ambiguity with high statistic significance

- Do the known unknowns (δ_{CP} and neutrino mass ordering) affect the θ_{23} precise determination?
- How does of the θ_{13} precision impact on the θ_{23} measurement?
- What are contributions of neutrino and anti-neutrino appearance samples to resolve the θ_{23} ambiguity?
- Is the θ_{23} precise determination driven by statistical or systematical errors?
- Is there range of θ_{23} where its ambiguity can not be solved definitively?

Summary

The work is in preparation for arXiv

Contribute to octant resolving: disappearance and appearance

• For excluding $\sin^2 \theta_{23} = 0.5$, main contribution is from disappearance measurement unless $0.5 < \sin^2 \theta_{23} \lesssim 0.54$

^O Typically, octant resolvability is better if θ_{23} lies in the lower octant.

- For octant resolving, mostly driven by the appearance (unless $\sin^2 \theta_{23} \lesssim 0.4$)

Not depend on the Mass ordering / CP violation

Note: use reactor and they are not the same external constraint

Correlation with dcp in appearance

- Mirror symmetric

But the octant resolvability doesn't depend on the truth value of dCP and its precision

• Sum of neutrino and anti-neutrino probability is breaking the degeneracy between dcp and sinsq23

• theta_23 resolving is marginally depending on the center value of dcp and its uncertainty

Correlation with dcp in appearance

But the octant resolvability doesn't depend on the truth value of dCP and its precision

Inverted almost the same pattern, but with

^O Strong correlation between θ_{23} and δ_{CP} presented in the appearance probability

- Ο
 - same statistical level)
- Contribution of neutrino and anti-neutrino sample for octant resolving are not the same

On correlation with δ_{CP} in $\nu_{\mu} \rightarrow \nu_{e}$ appearance

But the octant resolvability of neutrino experiment like T2HK, DUNE doesn't depend much on the truth value of δ_{CP} • Neutrino and anti-neutrino share a mirror symmetry and thus cancel out if combine neutrino and anti-neutrino (if at the

• The iso-probability curve is energy dependence, spectral measurement helps to mitigate the degeneracy

