Probing Lorentz invariance violation using atmospheric and accelerator neutrinos at upcoming neutrino detectors: INO-ICAL, DUNE, and T2HK

> Sadashiv Sahoo Institute of Physics, Bhubaneswar, India Bhabha Atomic Research Center, Mumbai, India Homi Bhabha National Institute, Mumbai, India

> > Neutrino workshop at IFIRSE 2023, Vietnam 17th -19th July, 2023

Probing Lorentz invariance violation using atmospheric and accelerator neutrinos at upcoming neutrino detectors: INO-ICAL, DUNE, and T2HK

Based on two papers: JHEP 03 (2022) 050 (S Sahoo, A Kumar, and S K Agarwalla) & arXiv: 2302.12005 [accepted in JHEP] (S K Agarwalla, S Das, S Sahoo, and P Swain)

Motivation to Lorentz Invariance Violation

4

5

Breaking of Lorentz Symmetry Explicit \leftarrow Breaking \rightarrow Spontaneous

Spontaneous Lorentz Symmetry Breaking & Standard Model Extension

• At Planck Scale ($M_P \sim 10^{19}$ GeV), there is possibility of breaking of Lorentz, and Charge-Parity-Time (CPT) Symmetry at a higher dimension of space-time (> 4).

- At Planck Scale ($M_P \sim 10^{19}$ GeV), there is possibility of breaking of Lorentz, and Charge-Parity-Time (CPT) Symmetry at a higher dimension of space-time (> 4).
- Such a violation in Lorentz and CPT symmetry may be realised in Nature, i.e., in realistic dimension 4 space-time.

- At Planck Scale ($M_P \sim 10^{19}$ GeV), there is possibility of breaking of Lorentz, and Charge-Parity-Time (CPT) Symmetry at a higher dimension of space-time (> 4).
- Such a violation in Lorentz and CPT symmetry may be realised in Nature, i.e., in realistic dimension 4 space-time.
- Using effective field theory formulation, such effect can be treated as a new interaction in a minimal extension Standard Model of Particle Physics.

- At Planck Scale ($M_P \sim 10^{19}$ GeV), there is possibility of breaking of Lorentz, and Charge-Parity-Time (CPT) Symmetry at a higher dimension of space-time (> 4).
- Such a violation in Lorentz and CPT symmetry may be realised in Nature, i.e., in realistic dimension 4 space-time.
- Using effective field theory formulation, such effect can be treated as a new interaction in a minimal extension Standard Model of Particle Physics.
- However, the strength of such interaction would be expected to be suppressed by $1/M_{\mbox{\tiny P}}$

–––– New Interaction induced due to LIV

Spontaneous Lorentz Symmetry Breaking

$$\Rightarrow \mathcal{L}' \supseteq \frac{\lambda}{(M_p)^k} \langle T \rangle \overline{\psi} \Gamma (i\partial)^k \psi + h.c., \qquad k = 0, 1$$

CPT violation and the standard model Don Colladay and V. Alan Kostelecký Phys. Rev. D 55, 6760 – Published 1 June 1997

Spontaneous Lorentz Symmetry Breaking

$$\begin{aligned} \mathcal{L}' &\supseteq \frac{\lambda}{(M_p)^k} \langle T \rangle \,\overline{\psi} \,\Gamma \left(i\partial \right)^k \psi + h.c., \qquad k = 0, \, 1 \\ k &= 0, \, \langle T \rangle \sim \left(\frac{m^2}{M_p} \right); \, (\,\text{leads to CPT} - \text{violating LIV}) \\ k &= 1, \, \langle T \rangle \sim m; \qquad (\,\text{leads to CPT} - \text{conserving LIV}) \\ \mathcal{L}' &= \frac{1}{2} \left[a_\mu \overline{\psi} \gamma^\mu \psi + b_\mu \overline{\psi} \gamma_5 \gamma^\mu \psi - i c_{\mu\nu} \overline{\psi} \gamma^\mu \partial^\nu \psi - i d_{\mu\nu} \overline{\psi} \gamma_5 \gamma^\mu \partial^\nu \psi \right] + h.c. \end{aligned}$$

Hamiltonian in Minimal Standard Model Extension

$$H_{ij} = E\delta_{ij} + \frac{m_{ij}^2}{2E} + \frac{1}{E} \left(a_L^{\mu} p_{\mu} - c_L^{\mu\nu} p_{\mu} p_{\nu} \right)_{ij}$$

$$p \equiv (E, -E\hat{p})$$

 \mathbf{O}

$$i,\,j\,
ightarrow\,$$
 Flavour indices

 $\mu, \nu
ightarrow$ Space-time indices

$$m_{ij}^2 \rightarrow Mass$$
-squared splitting in flavour bases

PhysRevD.69.016005, A., Kostelecky and M., Matthew

Choice of Inertial Frame of Reference

Effect of LIV on atmospheric neutrino oscillation

$$H = \frac{1}{2E} U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U^{\dagger} \pm \begin{bmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^* & a_{\mu\mu} & a_{\mu\tau} \\ a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{bmatrix}_{0}^{\pm} \sqrt{2} G_F \begin{bmatrix} N_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- CPT-Violating parameter "a" with isotropic components
- "+" sign is assigned for neutrino and "-" sign for antineutrino
- $\sqrt{2}G_FN_e$ is standard matter interaction potential of neutrino and antineutrino

Benchmark Oscillation Parameters

$\sin^2 2\theta_{12}$	$\sin^2 heta_{23}$	$\sin^2 2\theta_{13}$	$\Delta m_{\mathrm{eff}}^2 \; (\mathrm{eV}^2)$	$\Delta m^2_{21} \ ({\rm eV^2})$	$\delta_{ m CP}$	Mass Ordering
0.855	0.5	0.0875	2.49×10^{-3}	7.4×10^{-5}	0	Normal (NO)

Exploring LIV at INO-ICAL JHEP 03 (2022) 050 (S Sahoo, A Kumar, and S K Agarwalla)

- 50 kt Magnetized Iron Calorimeter (ICAL) of field strength ~1.3 Tesla, enables to distinguish atmospheric neutrino and antineutrino events, separately.
- ICAL has ~10% resolution of muon momentum ranging 1-25 GeV and ~1° zenith angle resolution over 15-12800 km range of baselines

ICAL Collaboration (White Paper): Pramana 88 (2017) 5, 79

Bounds of CPT-Violating parameters with Charge Identification Capability

Comparison of ICAL LIV Sensitivity with the Current Experimental Limits

Constraints on CPT-violating LIV parameters					
Experiments		$a_{\mu\tau} [10^{-23} \text{ GeV}]$	$a_{e\mu}[10^{-23} \text{ GeV}]$	$a_{e\tau}[10^{-23} \text{ GeV}]$	
IceCube (99% C.L.)		$ \text{Re}(a_{\mu\tau}) < 0.29$ $ \text{Im}(a_{\mu\tau}) < 0.29$	_	—	
Super-K (95% C.L.)		$\begin{aligned} \operatorname{Re}(a_{\mu\tau}) &< 0.65\\ \operatorname{Im}(a_{\mu\tau}) &< 0.51 \end{aligned}$	$\operatorname{Re}(a_{e\mu}) < 1.8$ $\operatorname{Im}(a_{e\mu}) < 1.8$	$\operatorname{Re}(a_{e\tau}) < 4.1$ $\operatorname{Im}(a_{e\tau}) < 2.8$	
ICAL (95% C.L.)	w/o CID w/ CID	$-0.59 \le \operatorname{Re}(a_{\mu\tau}) \le 0.67$ $-0.23 \le \operatorname{Re}(a_{\mu\tau}) \le 0.22$	$-3.97 \le \text{Re}(a_{\mu\tau}) \le 3.37 \\ -1.97 \le \text{Re}(a_{\mu\tau}) \le 1.34$	$-4.71 \le \text{Re}(a_{\mu\tau}) \le 3.96 -2.80 \le \text{Re}(a_{\mu\tau}) \le 1.58$	

JHEP 03 (2022) 050 (This Work)	Nature Phys. 14 (2018) 9, 961-966	Phys.Rev.D 91 (2015) 5, 052003
S Sahoo, A Kumar, and S K Agarwalla	IceCube Collaboration	Super-K Collaboration

Exploring LIV at future LBL Experiments arXiv: 2302.12005 (S K Agarwalla, S Das, S Sahoo, and P Swain)

Brief description on next generation LBL Experiments: DUNE and T2HK

	DUNE	T2HK	
Detector Mass	40 kt LArTPC	187 kt WC	
Baseline	$1285 \mathrm{~km}$	$295 \mathrm{~km}$	
Proton Energy	$120 \mathrm{GeV}$	80 GeV	
Beam type	Wide-band, on-axis	Narrow-band, off-axis (2.5°)	
Beam power	1.2 MW	1.3 MW	
P.O.T./year	1.1×10^{21}	2.7×10^{21}	
Run time $(\nu + \bar{\nu})$	5 yrs + 5 yrs	2.5 yrs + 7.5 yrs	
Normalization error	2% (app.) $5%$ (disapp.)	5% (app.), $3.5%$ (disapp.)	
	JINST 15 (2020) 08, T08008 DUNE Collaboration	arXiv: 1805.04163 Hyper-K Collaboration	

<u>CPT-conserving LIV off-diagonal parameters</u>

Representation of LIV parameters as: $c_{\alpha\beta} = |c_{\alpha\beta}| \cdot e^{-i\Phi}$

	DUNE	T2HK	DUNE+T2HK
$ a_{e\mu} \ [10^{-23} \text{ GeV}]$	< 1.0	< 5.15	< 0.32
$ a_{e\tau} \ [10^{-23} \text{ GeV}]$	< 1.05	< 5.3	< 0.55
$ a_{\mu\tau} \ [10^{-23} \text{ GeV}]$	< 1.26	< 5.5	< 1.1
$ c_{e\mu} \ [10^{-24}]$	< 0.66	< 17.1	< 0.64
$ c_{e\tau} \ [10^{-24}]$	< 1.65	< 71.1	< 1.49
$ c_{\mu\tau} \ [10^{-24}]$	< 0.97	< 42.4	< 0.95

arXiv: 2302.12005 S K Agarwalla, S Das, S Sahoo, and P Swain Bounds on LIV parameters at 95% C.L. with 1 d.o.f

Summary & Remark

- The upcoming magnetised ICAL detector at INO can play a crucial role to establish three-flavour neutrino oscillation framework by observing atmospheric neutrino and antineutrino separately, in the multi-GeV energy range over a wide range of baselines.
- Using its excellent muon detection sensitivity, for an exposure of 500 kt·yr we calculate the expected limits on CPT-violating LIV parameters $(a_{\mu\tau}, a_{e\mu}, a_{e\tau})$, one-at-a-time at 95% C.L. (1 d.o.f), which is slightly better than the current Super-K limits.
- We calculate the expected limits on LIV parameters using the detector sensitivity of future long-baseline neutrino oscillation experiments: DUNE and T2HK.
- For the first time, we place the expected bounds on CPT-conserving LIV parameters using DUNE and T2HK detector sensitivities.
- We demonstrate that how the combined sensitivity of DUNE and T2HK would enhance the limits on LIV parameters.

Thanking You !!!

- NUANCE MC Generator using Neutrino Flux (Honda) at INO site
- Three-Flavour Oscillation Framework; PREM profile; 500 kt·yr (10 yr)
- Migration matrices from ICAL-Geant4 simulation [arXiv:1304.5115, 1405.7243]

Observable	Range	Bin width	Total bins
	[1, 11]	1	10
$E_{\mu}^{\rm rec} ({\rm GeV})$	[11,21]	5	2 > 13
	[21, 25]	4	1
and Arec	[-1.0, 0.0]	0.1	10
$\cos v_{\mu}$	[0.0, 1.0]	0.2	$5 \int 10$
	[0,2]	1	2
$E'_{\rm had}^{\rm rec} ({\rm GeV})$	[2, 4]	2	1 > 4
	[4, 25]	21	1)

$$\begin{array}{l} \textbf{Method of } \chi^2 \textbf{ Analysis:} \\ \chi^2_{-} &= \min_{\zeta_l} \sum_{i=1}^{N_{E_{had}}} \sum_{j=1}^{N_{E_{\mu}-}} \sum_{k=1}^{N_{\cos\theta\mu}} 2 \left[N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}} - N_{ijk}^{\text{data}} \ln \left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}} \right) \right] + \sum_{l=1}^{5} \zeta_l^2 \\ \chi^2_{+} &= \min_{\zeta_l} \sum_{i=1}^{N_{E_{had}}} \sum_{j=1}^{N_{E_{\mu}+}} \sum_{k=1}^{N_{\cos\theta\mu}} 2 \left[N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}} - N_{ijk}^{\text{data}} \ln \left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}} \right) \right] + \sum_{l=1}^{5} \zeta_l^2 \\ N_{ijk}^{\text{theory}} &= N_{ijk}^0 \left(1 + \sum_{l=1}^{5} \pi_{ijk}^l \zeta_l \right) ; \\ \chi^2_{-} &= \chi^2_{-} + \chi^2_{+} \\ \Delta \chi^2_{-} &= \chi^2_{std+liv} - \chi^2_{std} \end{array}$$