Ultimate Precision on 2-3 Oscillation Parameters using the Synergy between DUNE and T2HK

<u>Ritam Kundu</u>^{1,2}, Masoom Singh^{1,3}, Sanjib Kumar Agarwalla^{1,2,4}

¹Institute of Physics, Bhubaneswar, India, ²HBNI, Mumbai, ³Utkal University, India ⁴University of Wisconsin, U.S.A

19th RENCONTRES DU VIETNAM, NEUTRINO WORKSHOP AT IFIRSE July 16 - 19, 2023

July 19, 2023

Neutrino Oscillation in 3ν -paradigm

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{PMNS matrix (U)}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

• The three-flavor neutrino oscillation probability is given by

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j < i} \operatorname{Re}(U_{\alpha i}U_{\beta i}^*U_{\alpha j}^*U_{\beta j})\sin^2(1.27\Delta m_{ij}^2L/E)$$

$$-2\sum_{j$$

where, $\Delta m_{ij}^2 = m_i^2 - m_j^2$ (in eV²), *L* is the baseline (in km), and *E* is the energy of neutrino (in GeV).

- Neutrinos interact with matter via weak interactions by coherent forward elastic scattering.
- Charged-current interaction of ν_e with electrons creates an extra effective matter potential for ν_e , i.e, $A=2\sqrt{2}G_F N_e E = 2V_{CC} E$.
- The Hamiltonian corresponding to CC-interaction with matter is, $H = U[\frac{1}{2E} \text{diag}(m_1^2, m_2^2, m_3^2)]U^{\dagger} + \text{diag}(V_{CC}, 0, 0).$

Present global-fit scenario in 3*v*-paradigm

Ritam Kundu (IFIRSE 2023)

Itimate Precision on 2-3 Oscillation Parame

July 19, 2023

Deviation of θ_{23} from maximal mixing

- $\mu \rightarrow \tau$ symmetry $|\nu_2\rangle = \cos \theta_{23} |\nu_{\mu}\rangle + \sin \theta_{23} |\nu_{\tau}\rangle$ $|\nu_3\rangle = -\sin \theta_{23} |\nu_{\mu}\rangle + \cos \theta_{23} |\nu_{\tau}\rangle$
- If $\theta_{23} = 45^{\circ}$, i.e for MM, ν_2 and ν_3 have equal contributions of ν_{μ} and ν_{τ} .

Model	θ_{23}	$ heta_{13}$	$ heta_{12}$
Tri-bimaximal	45°	0°	35°
Bi-maximal	45°	0°	45°
Tri-maximal	δ dependent	0°	35.26°
Tri-bimaximal Cabibbo	45°	8.54°	35°
Bi-large	39°	12.12°	39°
Bi-trimaximal	36.23°	12.18°	36.23°

https://arxiv.org/abs/hep-ph/9604415, https://arxiv.org/abs/1402.4271v1

July 19, 2023

イロト 不得下 イヨト イヨト

Roles of different channels in our study

• The appearance probability
for
$$\nu_{\mu} \rightarrow \nu_{e}$$
 channel
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2}(2\theta_{13}) \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$
$$-\alpha \sin(2\theta_{13})\zeta \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$
$$+\alpha \sin(2\theta_{13})\zeta \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$

• The disappearance probability for $\nu_{\mu} \rightarrow \nu_{\mu}$ channel

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2(\Delta)$ $+ (\alpha \Delta) c_{12}^2 \sin^2(2\theta_{23}) \sin(2\Delta)$

$$-2lpha\zeta\cos(\delta_{CP})\cos(\Delta)rac{\sin(\hat{A}\Delta)}{\hat{A}}rac{\sin[(\hat{A}-1)\Delta]}{(\hat{A}-1)}$$

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.033$$

$$\Delta = \Delta m_{31}^2 L/4E$$

$$\zeta = \cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}$$

Appearance channel helps in θ_{23} octant exclusion. Disappearance channel helps in the precision

of θ_{23} .

$$+\frac{2}{(\hat{A}-1)}\alpha\zeta\cos(2\theta_{23})\cos(\delta_{CP})\sin(\Delta)[\hat{A}\sin(\Delta)-\frac{\sin(\hat{A}\Delta)}{\hat{A}}\cos((\hat{A}-1)\Delta)]$$

Ritam Kundu (IFIRSE 2023)

July 19, 2023

Salient features of DUNE and T2HK

Features	DUNE	T2HK	
Baseline	1300 km	295 km	
	(Larger matter effect)	(Smaller matter effect)	
Detector Mass	40 kt	187 kt	
	(Smaller statistics)	(Larger statistics)	
Detection technique	LArTPC	Water Cherenkov	
Beam type	Wide-band, on-axis	Narrow-band, off-axis (2.5°)	
Beam Power	1.2 MW	1.3 MW	
Run time	5 years $ u$ + 5 years $ar{ u}$	2.5 years $ u$ + 7.5 years $ar{ u}$	
P.O.T/year	$1.1 imes10^{21}$	$2.7 imes10^{21}$	
Systematics in			
App. (Disapp.) channel	2% (5%)	5% (3%)	

Abi. B et al., https://arxiv.org/abs/2103.04797; K. Abe et al., https://arxiv.org/abs/1611.06118 + 4 = + 4 = + 4

Benchmark values of neutrino oscillation parameters in our work

Parameters	Best-fit	1σ range	3σ range	
$\Delta m^2_{21}/10^{-5}~eV^2$	7.36	7.21-7.52	6.93-7.93	Fixed
$\sin^2 heta_{12}/10^{-1}$	3.03	2.90-3.16	2.63-3.45	Fixed
$\sin^2 heta_{13}/10^{-2}$	2.23	2.17-2.30	2.04-2.44	Fixed
$\sin^2 heta_{23}/10^{-1}$	4.55	4.40-4.73	4.16-5.99	Free
$\Delta m^2_{31}/10^{-3}~eV^2$	2.522	2.490-2.545	2.436-2.605	Free
$\delta_{CP}/^{\circ}$	223	200-256	139-355	Free

Capozzi et al., https://arxiv.org/abs/2107.00532

Ritam Kundu (IFIRSE 2023)

Definition of χ^2 used in our analysis

$$\chi^2 = \min_{(\vec{\zeta_s}, \vec{\zeta_b})} \left\{ 2 \sum_{i=1}^n (\tilde{y_i} - x_i - x_i \ln \frac{\tilde{y_i}}{x_i}) + \zeta_s^2 + \zeta_b^2 \right\},\$$

where, n is the total number of bins and

$$\tilde{y}_i(\{\omega\},\{\zeta_s,\zeta_b\})=N_i^{th}(\{\omega\})[1+\pi^s\zeta_s]+N_i^b(\{\omega\})[1+\pi^b\zeta_b].$$

Here,

- $N_i^{th}(\{\omega\}) = \text{Predicted no. of events in i-th bin in theory for a set of osc. params } \omega$.
- N^b_i({ω}) = No. of background events in the i-th bin where CC background depends on ω but NC does not.
- $\pi^s, \pi^b = \text{Systematic errors in signal and background.}$
- $\zeta_s, \zeta_b = 'Pulls'$ due to systematic errors in signal and background respectively.
- $x_i = N_i^{ex} + N_i^b$ (where, $N_i^{ex} = No.$ of observed CC signal events in the i-th bin in data, $N_i^b = No.$ of the background events in data at i-th bin).

https://arxiv.org/pdf/1509.03517.pdf.

Deviation from maximal θ_{23}

• In Nature, if true $\sin^2 \theta_{23}$ attains the lower value of the current 1σ uncertainty (0.473), only DUNE+T2HK can achieve 3σ sensitivity of non-maximal θ_{23} with the present benchmark values.

Ritam Kundu (IFIRSE 2023) Ultimate Precision on 2-3 Oscillation Paramet July 19, 2023

Precision measurement of θ_{23} and Δm^2_{31}

• The combination of DUNE and T2HK outperforms their individual performances to the precision measurement of θ_{23} and Δm_{31}^2 .

Ritam Kundu (IFIRSE 2023) Ultimate Precision on 2-3 Oscillation Paramet July 19, 2023

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition of Relative 1 σ precision and $\Delta \chi^2_{PM}$

The relative 1σ precision in the measurement of oscillation parameters ζ is estimated as follows:

$$p(\zeta) = rac{\zeta^{ ext{max}} - \zeta^{ ext{min}}}{6.0 imes \zeta^{ ext{true}}} imes 100\%.$$

 ζ^{\max} and ζ^{\min} are the allowed 3σ upper and lower bounds, respectively.

$$\Delta \chi^2_{\mathsf{PM, \, sin^2} \, \theta_{23}} = \min_{(\delta_{CP}, \Delta m^2_{31})} \left\{ \chi^2 \left(\mathsf{sin^2} \, \theta^{\mathrm{test}}_{23} \in [0.4, 0.6] \right) - \chi^2 \left(\mathsf{sin^2} \, \theta^{\mathrm{true}}_{23} = [0.455] \right) \right\},$$

$$\Delta \chi^{2}_{\mathsf{PM},\ \Delta m^{2}_{31}} = \min_{\left(\delta_{CP}, \sin^{2}\theta_{23}\right)} \left\{ \chi^{2} \left(\sin^{2}\theta^{\mathrm{test}}_{23} \in [2.4, 2.6] \times 10^{-3} \right) - \chi^{2} \left(\sin^{2}\theta^{\mathrm{true}}_{23} = 2.522 \times 10^{-3} \right) \right\}$$

	Relative 1σ precision (%) [Agarwalla, Kundu, Singh (work in progress)].						
Parameter	T2HK	DUNE	T2HK+DUNE	$T2K+NO\nu A$	Capozzi <i>et al</i> .	JUNO	
$\sin^2 \theta_{23}$	1.18	1.40	0.88	7.10	6.72		
Δm_{31}^2	0.25	0.31	0.20	0.99	1.09	0.2	

NavasNicolas:2023fza

Ritam Kundu (IFIRSE 2023)

Ultimate Precision on 2-3 Oscillation Parame

July 19, 2023

Potential of exclusion of the wrong octant of θ_{23}

- At lower confindence, T2HK wins due to larger statistics whereas, at higher confidence DUNE wins due to lesser systematics in appearance channel.
- The combined setup of DUNE and T2HK boosts their individual performances to exclude the wrong octant solution.

12 / 22

Ritam Kundu (IFIRSE 2023) Ultimate Precision on 2-3 Oscillation Paramet July 19, 2023

Allowed regions in $\sin^2 \theta_{23} - \Delta m_{31}^2$ plane

Agarwalla, Kundu, Singh (work in progress)

- The combination of DUNE and T2HK can exclude the higher octant (HO) only in antineutrino mode at 3σ C.L. breaking sin² θ₂₃ δ_{CP} degeneracy due to higher ν
 statistics in T2HK. So, majority of the appearance events are free from fake (matter-induced) CP-phase.
- HO can be ruled out when both ν and $\bar{\nu}$ modes are considered together.

Comparison of the precision measurements of $\sin^2 \theta_{23} \& \Delta m_{32}^2$ by the other experiments

Ritam Kundu (IFIRSE 2023)

Ultimate Precision on 2-3 Oscillation Param

Takehome messages

- Ongoing long-baseline and atmospheric experiments (e.g.- T2K, NO ν A, MINOS+, Super-K etc.) strongly suggest deviation from maximal mixing of θ_{23} .
- DUNE has large matter effect so is expected to measure Δm_{31}^2 precisely. But the larger matter effect induces fake CP-asymmetry which is negligible in T2HK.
- The disappearance statistics of T2HK for the antineutrinos is larger whereas, DUNE has larger matter effect. So, the combined setup improves the present achievable precision of $\sin^2 \theta_{23}$ and Δm_{31}^2 by a factor of 7 and 5, respectively.
- Synergy between DUNE and T2HK helps to boost the performance of measuring non-maximal θ_{23} , precision of $\sin^2 \theta_{23}$ and Δm_{31}^2 , and exclusion of the wrong octant solution than their standalone performances with a high confidence.

Thank You !!!

Backup 01 - Effect of Systematics of DUNE in probing non-maximal θ_{23}

Backup 02 - Table of systematics in DUNE

True	Channels	2%, 5%	0%, 0%	5%, 5%	5%, 10%	10%, 10%
$\sin^2 \theta_{23}$						
	App.+Disapp.	17.64	24.13	16.88	16.74	15.42
0.455	App.	3.52	4.05	2.33	2.33	1.05
(Best-fit)	Disapp.	14.31	18.79	14.31	14.16	14.16
	App.+Disapp.	4.28	5.72	3.88	3.84	3.42
0.473	App.	1.27	1.47	0.84	0.84	0.38
$(1\sigma$	Disapp.	2.99	3.88	2.99	2.97	2.97
upper						
bound)						

글에 비 글에 다

э

Backup 03 - Matter Effect

- Neutrinos interact with matter by coherent forward elastic scattering.
- Charge current interaction of ν_e with electrons creates an extra effective matter term for ν_e, i.e, A=2√2G_FN_eE.
- Matter term changes sign when we switch from neutrino to anti-neutrino mode.
- Matter term modifies oscillation probability differently depending on the sign of Δm^2 .
- The Hamiltonian corresponding to interaction with matter via CC-interaction is, $H = U[\frac{1}{2E} \text{diag}(m_1^2, m_2^2, m_3^2)]U^{\dagger} + \text{diag}(V_{CC}, 0, 0)$

Backup 04 - Total number of events in DUNE and T2HK

Channe	Channel LO (sin ² $\theta_{23} = 0.455$)		MM (sin ² $\theta_{23} = 0.5$)		HO $(\sin^2 \theta_{23} = 0.599)$		
		DUNE	T2HK	DUNE	T2HK	DUNE	T2HK
App.	ν	1601 [1586]	1598 [1588]	1729 [1712]	1725 [1713]	2004 [1983]	1996 [1981]
	$\bar{\nu}$	297 [187]	919 [755]	328 [209]	1021 [844]	399 [260]	1251 [1044]
Disapp.	ν	15529 [14286]	10064 [9487]	15209 [13974]	9628 [9057]	15857 [14597]	10661 [10074]
	$\bar{\nu}$	9008 [4433]	13949 [8985]	8884 [4333]	13541 [8643]	9252 [4648]	14613 [9553]

Table: Total (Signal + Background) appearance and disappearance event rates in DUNE and T2HK assuming 480 kt·MW·years and 2431 kt·MW·years of exposure, respectively. Events in parenthesis does not include the effect of wrong-sign contamination. The events are simulated by General Long Baseline Experiment Simulator (GLoBES).

- Contribution of wrong sign events is more in $\bar{\nu}$ mode than ν due to the cross-section suppression.
- Initially pions or kaons are produced due to pp or pn collision. Positive chaged mesons are abundant than the negative one. Hence, contamination of ν in $\bar{\nu}$ beam is more.

(日本 (雪本 (日本))

Backup 05 - Definition of $\Delta \chi^2_{\mathsf{DM}}$

$$\Delta \chi^{2}_{\mathsf{DM}} = \min_{(\vec{\lambda})} \left\{ \chi^{2} \left(\sin^{2} \theta^{\text{true}}_{23} \in [0.4, 0.6] \right) - \chi^{2} \left(\sin^{2} \theta^{\text{test}}_{23} = 0.5 \right) \right\},\,$$

where, $\lambda = \delta_{\rm CP}, \ \Delta m_{31}^2$ are the marginalised parameters.

3

► < Ξ ►</p>

Backup 06 - Definition of $\Delta \chi^2_{ m octant}$

• For
$$\sin^2 \theta_{23}$$
 (true)<0.5 (LO),

$$\Delta \chi^{2}_{\text{octant}} = \min_{(\vec{\lambda})} \left\{ \chi^{2} \left(\sin^{2} \theta^{\text{true}}_{23} = [0.4, 0.5) \right) - \chi^{2} \left(\sin^{2} \theta^{\text{test}}_{23} = (0.5, 0.6] \right) \right\}$$

• For $\sin^2 \theta_{23}$ (true)>0.5 (HO),

$$\Delta \chi^{2}_{\text{octant}} = \min_{(\vec{\lambda})} \left\{ \chi^{2} \left(\sin^{2} \theta^{\text{true}}_{23} = (0.5, 0.6] \right) - \chi^{2} \left(\sin^{2} \theta^{\text{test}}_{23} = [0.4, 0.5) \right) \right\}$$

where, $\lambda = \delta_{\rm CP}, \ \Delta m_{31}^2$ is the marginalized parameters.

4 3 3

Total event rates in DUNE and T2HK

Ritam Kundu (IFIRSE 2023)

Itimate Precision on 2-3 Oscillation Paramet

July 19, 2023