Constraining Unitarity of Three-flavor Neutrino Mixing in Next-generation Long-baseline Experiments

Based on: JHEP 07 (2022) 121 with S.K. Agarwalla, A. Giarnetti, D. Meloni

Sudipta Das
Institute of Physics, Bhubaneswar
India

Neutrino workshop at IFIRSE 2023, Vietnam 16-19 July 2023

Neutrino Mixing in Three Neutrino Framework

Flavor basis
$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \underbrace{\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}}_{\text{[ν_1]}} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{bmatrix} \times \begin{bmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13}
\end{bmatrix} \times \begin{bmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{13} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Atmospheric Reactor Solar
$$\sum_{i=1}^3 U_{\alpha i}^* U_{\beta i} = \delta_{\alpha \beta}$$
 Unitary condition $\Longrightarrow U^\dagger U = U U^\dagger = \mathbb{I} \Longrightarrow \sum_{i=1}^3 U_{\alpha i}^* U_{\beta j} = \delta_{ij}$

$$\sum_{\alpha=e,\mu,\tau}^{\overline{i=1}} U_{\alpha i}^* U_{\beta j} = \delta_{ij}$$

Neutrino Oscillation in Three-Flavor Framework

$$P(\nu_{\alpha} \to \nu_{\beta}) = |A(\nu_{\alpha} \to \nu_{\beta})|^{2} = \left| \sum_{i} U_{\alpha i}^{*} e^{-i\frac{m^{2}L}{2E}} U_{\beta i} \right|^{2}$$

$$= \left| U_{\alpha i}^{*} U_{\beta i} \right|^{2} - 4 \sum_{i < j} \operatorname{Re} \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2} \frac{\Delta_{ij}}{2}$$

$$= \delta_{\alpha\beta} \qquad \mp 2 \sum_{i < j} \operatorname{Im} \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin \Delta_{ij} \qquad \Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{2E}$$

Impact of matter in neutrino oscillation

$$V_{CC} = \sqrt{2}G_F N e \qquad V_{NC} = \frac{1}{\sqrt{2}}G_F N_n$$

$$H_{mat} = \underbrace{\frac{1}{2E_{\nu}}U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U^{\dagger} + \begin{bmatrix} V_{CC} + V_{NC} & 0 & 0 \\ 0 & V_{NC} & 0 \\ 0 & 0 & V_{NC} \end{bmatrix}}_{H_{vac}}$$

$$H_{mat} = \tilde{U}Diag. \left[\frac{\tilde{m}_{1}^{2}}{2E}, \frac{\tilde{m}_{2}^{2}}{2E}, \frac{\tilde{m}_{3}^{2}}{2E}\right] \tilde{U}^{\dagger} = \left|\sum_{i} \tilde{U}_{\alpha i}^{*} e^{i\frac{\tilde{m}_{i}^{2}L}{2E}} \tilde{U}_{\beta i}\right|^{2}$$

Non-unitarity Neutrino Mixing (NUNM)

Motivation

ullet Unitarity of PMNS matrix is theoritical assumption that is valid in 3u paradigm. Various neutrino mass-models predict more than three neutrino states.

JHEP 04 (2011) 123, Phys. Rev. D 92, (2015)

• In the presence of n-3 extra neutrino states, dimension of the mixing matrix is n.

Active-light mixing Active-heavy mixing

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \\ \vdots \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \vdots \end{bmatrix}$$
 Sterile-light mixing Sterile-heavy mixing

 $N \longrightarrow 3 \times 3$ Active neutrino mixing matrix is not unitary anymore.

Parameterization of NUNM matrix

General structure of N

$$N = \begin{bmatrix} \eta_{11} & 0 & 0 \\ \eta_{21} & \eta_{22} & 0 \\ \eta_{31} & \eta_{32} & \eta_{33} \end{bmatrix} \times U_{PMNS}$$

• Our convention

$$N = (\mathbb{I} + \alpha)U \qquad \qquad \alpha \to \begin{pmatrix} \alpha_{11} & 0 & 0 \\ |\alpha_{21}|e^{i\phi_{21}} & \alpha_{22} & 0 \\ \alpha_{31}e^{i\phi_{31}} & \alpha_{32}e^{i\phi_{32}} & \alpha_{33} \end{pmatrix}$$

In the unitary case: $\alpha_{ij} \to 0$

• Case: $\alpha_{ij} \neq 0$

$$N^{\dagger}N \to \begin{pmatrix} 1 + \alpha_{11}^{2} & \alpha_{11}\alpha_{21}^{*} & \alpha_{11}\alpha_{31}^{*} \\ \alpha_{11}\alpha_{21} & 1 + \alpha_{22}^{2} + |\alpha_{21}|^{2} & \alpha_{22}\alpha_{32}^{*} \\ \alpha_{11}\alpha_{31} & \alpha_{22}\alpha_{32}^{*} & 1 + \alpha_{33}^{2} + |\alpha_{31}|^{2} + |\alpha_{32}|^{2} \end{pmatrix}$$

Flavor Transition in NUNM Scenario

• Neutrino flavor transition probability

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{i} N_{\alpha i}^{*} e^{i\frac{m_{i}^{2}L}{2E}} N_{\beta i} \right|^{2} \neq \delta_{\alpha\beta}$$

$$= \left| \sum_{i} N_{\alpha i}^{*} N_{\beta i} \right|^{2} - 4 \sum_{i < j} Re(N_{\alpha i}^{*} N_{\beta i} N_{\alpha j} N_{\beta j}^{*}) \sin^{2} \frac{\Delta_{ij}}{2}$$

$$\mp 2 \sum_{i < j} Im(N_{\alpha i}^{*} N_{\beta i} N_{\alpha j} N_{\beta j}^{*}) \sin \Delta_{ij}$$

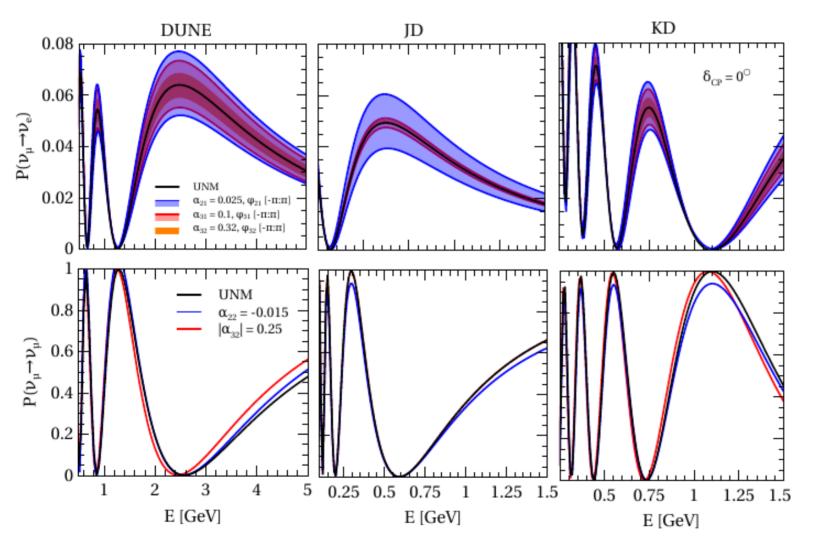
<u>Consequence</u>

Zero-distance effect: $P_{\mu e}(L=0) \to \alpha_{11}^2 |\alpha_{21}|^2$, $P_{\mu\mu}(L=0) \to |\alpha_{21}|^2 + \alpha_{22}^2$

• Propagation Hamiltonian in matter

$$H = \frac{1}{2E_{\nu}} \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} + N^{\dagger} \begin{pmatrix} a_e + a_n & 0 & 0 \\ 0 & a_n & 0 \\ 0 & 0 & a_n \end{pmatrix} N \end{bmatrix} \qquad a_e = 2\sqrt{2}E_{\nu}G_F N_e$$

$$a_n = -\sqrt{2}E_{\nu}G_F N_n$$


Experimental Details

	DUNE	JD/KD*
Detector Mass	40 kt LArTPC	187 kt WC (each)
Baseline	1300 km	295/1100 km
Proton Energy	120 GeV	80 GeV
Beam Type	Wide-band, on-axis	Narrow-band, off-axis
Beam Power	1.2 MW	1.3 MW
P.O.T./year	1.1 × 10 ²¹	2.7×10^{21}
Run time $(\nu + \bar{\nu})$	3.5 yr + 3.5 yr	2.5 yr + 7.5 yr

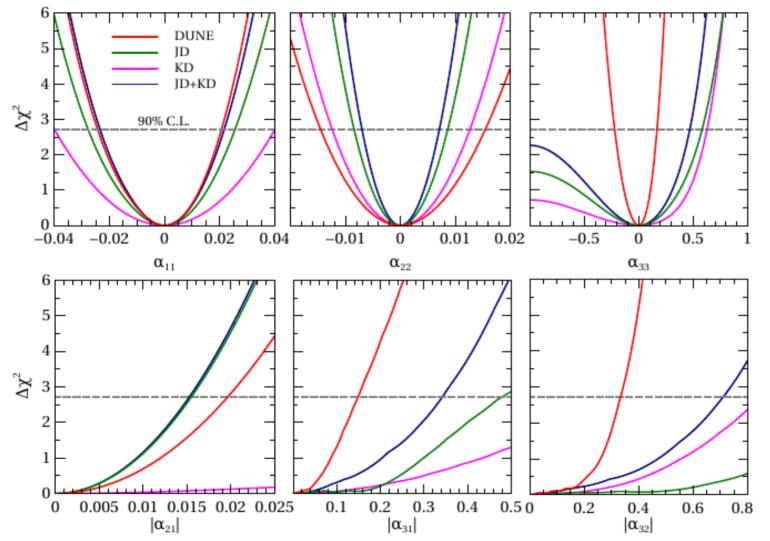
* JD – Japanese detector (T2HK)

KD - Korean Detector (T2HKK)

Flavor transition in NUNM scenario

- α_{21} shows largest impact in appearance channel
- α_{31} And α_{32} always coupled to matter terms
- α_{22} shows largest impact in disappearance channel

Chi-square Analysis


$$\chi^{2}(\vec{\omega}, \kappa_{s}, \kappa_{b}) = \min_{(\vec{\lambda}, \kappa_{s}, \kappa_{b})} \left\{ 2 \sum_{i=1}^{n} (\tilde{y}_{i} - x_{i} - x_{i} \ln \frac{\tilde{y}_{i}}{x_{i}}) + \kappa_{s}^{2} + \kappa_{b}^{2} \right\}$$
$$\tilde{y}_{i}(\vec{\omega}, \{\kappa_{s}, \kappa_{b}\}) = N_{i}^{th}(\vec{\omega}) [1 + \pi^{s} \kappa_{s}] + N_{i}^{b}(\vec{\omega}) [1 + \pi^{b} \kappa_{b}]$$
$$x_{i} = N_{i}^{ex} + N_{i}^{b}$$

- $N_{i}^{th}\left(\vec{\omega}\right)$ Predicted number of signal events in the i-th energy bin from theory
- N_i^{ex} Signal events at i-th bin from the prospective data
- N_i^b Background events at i-th bin from the prospective data

$$\Delta \chi^2 = \min_{(\theta_{23}, \delta_{CP}, \phi_{ij}, \lambda_1, \lambda_2)} \left[\chi^2(\alpha_{ij} \neq 0) - \chi^2(\alpha_{ij} = 0) \right] ,$$

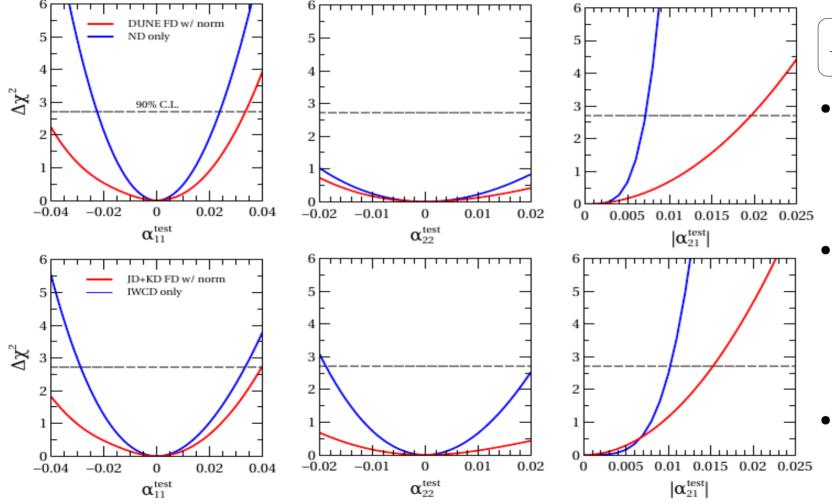
- $\chi^2(\alpha_{ij} \neq 0)$ Calculated by fitting data assuming NUNM
- $\chi^2(\alpha_{ij}=0)$ No new physics in the theory

Constraints on NUNM Parameters

- JD+KD (T2HKK) have better sensitivites to α_{21} and α_{22} than DUNE.
- DUNE shows better sensitivites to α_{31} , α_{32} , and α_{33} than JD+KD.
- Sensitivity to α_{11} is similar in both the setups.

Constraints on the NUNM Parameters

90% C.L. limits


Individual

	DUNE	JD
α_{11}	[-0.02,0.02]	[-0.025,0.025]
α_{22}	[-0.014,0.014]	[-0.009,0.009]
α_{33}	[-0.2,0.17]	< 0.6
$ \alpha_{21} $	< 0.022	< 0.015
$ \alpha_{31} $	< 0.15	< 0.48
$ \alpha_{32} $	< 0.33	< 1.2

Combinations

	JD+KD	JD+KD+DUNE
α_{11}	[-0.022,0.022]	[-0.017,0.017]
α_{22}	[-0.007,0.004]	[-0.006,0.006]
α_{33}	< 0.476	[-0.17,0.17]
$ \alpha_{21} $	< 0.016	< 0.012
$ \alpha_{31} $	< 0.34	< 0.11
$ \alpha_{32} $	< 0.71	< 0.27

Benefits of Near Detectors and Impact of Normalization

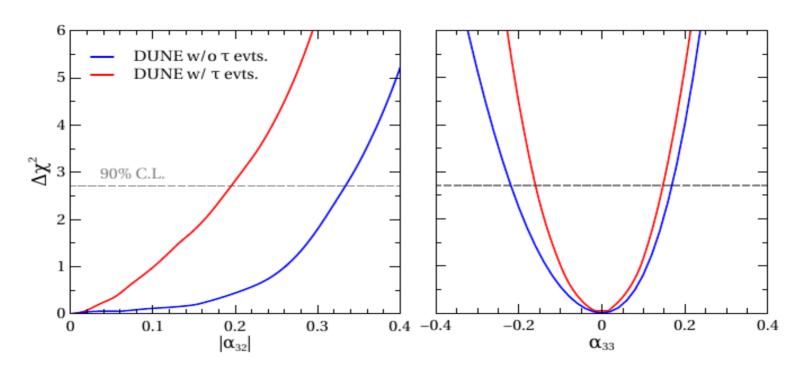
$$P_{\alpha\beta}^{eff} = \frac{P_{\alpha\beta}}{|(NN^{\dagger})_{\alpha\alpha}|^2}$$

- DUNE ND
 67 tons LarTPC
 detector, 574 m
 from the source.
- T2HK ND (IWCD)
 1 kt water Cerenkov detector,
 1 km from the source.
- Data from ND alone have better sensititvities.

11

Benefits of Near Detectors and Impact of Normalization

90% C.L. limits


DUNE

	DUNE ND	DUNE (FD w/ norm)
α_{11}	[-0.02, 0.024]	[-0.043, 0.034]
α_{22}	[-0.033, 0.037]	[0.036, 0.048]
$ \alpha_{21} $	< 0.007	< 0.022

T2HKK

	JD+KD (IWCD)	JD+KD (FD w/ norm)
α_{11}	[-0.029, 0.033]	[-0.048, 0.04]
α_{22}	[-0.019, 0.02]	[0.038, 0.05]
$ \alpha_{21} $	< 0.01	< 0.015

Improvement Due to T Neutrino Sample in DUNE

90% C.L. limits

	w/o $\nu_{ au}$ appearanece	w/ $\nu_{ au}$ appearanece
$lpha_{33}$	[-0.2, 0.17]	[-0.16, 0.15]
$ \alpha_{32} $	< 0.33	< 0.19

Conclusion

- 1. T2HKK constrains α_{21} and α_{22} better compared to DUNE as it has larger statistics in appearance channel and less systematics in disappearance channel.
- 2. DUNE has better sensitivities for α_{31} , α_{32} , and α_{33} as their sensitivities depend on matter effect.
- 3. Limits on the NUNM parameters can be improved further by combining the data from DUNE and T2HKK.
- 4. Possible FD and ND correlation has significant impact on the sensitivities for α_{11} α_{21} , and α_{22} due to the zero-distance effect.
- 5. ν_{τ} appearance events in DUNE will improve the limits on α_{32} and α_{33} .

Thank You