

The tau-neutrino oscillation measurements at Super-Kamiokande detector and future prospects

Magdalena Posiadała-Zezula

University of Warsaw, Faculty of Physics

Photo Credit: Piotr Mijakowski

The Super-Kamiokande Collaboration

Kamioka Observatory, ICRR, Univ. of Tokyo, Japan	INFN
RCCN, ICRR, Univ. of Tokyo, Japan	NFN
University Autonoma Madrid, Spain	INFN
BC Institute of Technology, Canada	INFN
Boston University, USA	Kavli
University of California, Irvine, USA	Keio
California State University, USA	KEK,
Chonnam National University, Korea	King'
Duke University, USA	Kobe
Gifu University, Japan	Kyoto
GIST, Korea	Unive
University of Glasgow, UK	LLR,
University of Hawaii, USA	Miya
IBS, Korea	ISEE
IFIRSE, Vietnam	NCB
Imperial College London, UK	Niho
ILANCE, France/Japan	Okay

Magdalena Posiadala

~230 collaborators from 53 institutes in 11 countries

2023 Toyama meeting

Bari, Italyl Napoli, Italy Padova, Italy Roma, Italy IPMU, The Univ. of Tokyo, Japan University, Japan Japan 's College London, UK e University, Japan o University, Japan ersity of Liverpool, UK Ecole polytechnique, France gi University of Education, Japan , Nagoya University, Japan J, Poland n University, Japan yama University, Japan

Osaka Electro-Communication Univ., Japan University of Oxford, UK Rutherford Appleton Laboratory, UK Seoul National University, Korea University of Sheffield, UK Shizuoka University of Welfare, Japan Sungkyunkwan University, Korea Stony Brook University, USA Tohoku University, Japan Tokai University, Japan The University of Tokyo, Japan Tokyo Institute of Technology, Japan Tokyo University of Science, japan TRIUMF, Canada Tsinghua University, China University of Warsaw, Poland Warwick University, UK The University of Winnipeg, Canada Yokohama National University, Japan

- Atmospheric Tau Neutrinos (this talk), Nucleon Decay, Far detector for T2K

★ This tau analysis uses all pure water periods - SK -I - V.

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Atmospheric neutrinos

 Neutrinos are produced when cosmic protons interact with the nuclei in the atmosphere:

$$\begin{array}{l} \cdot p, A + air \rightarrow \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0} \\ \cdot \pi^{\pm}, K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) \\ \cdot \mu^{\pm} \rightarrow e^{\pm} + \nu_{e}(\bar{\nu}_{e}) + \nu_{\mu}(\bar{\nu}_{\mu}) \\ \cdot K^{\pm}, K_{L}^{0} \rightarrow [\pi^{\pm}, \pi^{0}] + e^{\pm} + \nu_{e}(\bar{\nu}_{e}) \\ \end{array}$$
Neutrinos with wide range of energy Me

produced isotropically about the Earth atmosphere

Photo: https://physicsopenlab.org/2016/01/10/cosmic-muons-decay/

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Travel distance

Atmospheric neutrino flux

- **The simulation of atmospheric neutrinos is** performed following the flux calculation of Honda et. al M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa (HKKM), and using the NEUT simulation software.
- The HKKM11 flux model predictions (Phys. Rev.) D 83, 123001) for the Kamioka site are also shown in solid (with oscillation) and dashed (without oscillation) lines

Phys.Rev.D 94 (2016) 5,052001

Magdalena Posiadala-Zezula, High Energy Physics seminar 28.04.2023

SI $\nu_{\mu} + \bar{\nu}_{\mu}$ sec⁻¹ ()cm⁻² 10^{-3} $\nu_e + \bar{\nu}_e$ [GeV 0^{-4} Ð 0 Super-Kamiokande I-IV v_u \mathbb{H}^2 Frejus v_u IceCube v_{μ} unfolding IceCube v_{μ} forward folding 10^{-6} AMANDA-II v_{μ} unfolding AMANDA-II v_{μ} forward folding ANTARES v_{μ} HKKM11 $\nu_{\mu} + \overline{\nabla}_{\mu}$ (w/ osc.) 10Super-Kamiokande I-IV v Frejus v IceCube/DeepCore 2013v 10^{-8} IceCube 2014 v HKKM11 $v_{e} + \overline{v}_{e}$ (w/ osc.) 10^{-9} Super-K $Log_{10}(E_{..}/GeV)$ IceCube 7

HONDA 2016

 \star Clearly we see that most of the $u_{ au}$ appearance is coming from oscillations of a type $u_{\mu} o
u_{ au}$ $\star \nu_{\tau}$ events have upward - going directions

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

 \star Probabilities are calculated with the assumption of : $\sin^2 2\theta_{23} = 1$, $\Delta m_{32}^2 = 2.1 \times 10^{-3} \text{eV}^2$, $\sin^2 2\theta_{13} = 0.099$, NO

Flux of atmospheric ν_{τ} from neutrino oscillations at Super-K

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Extremely short lifetime of the τ

★ The tau lepton is not directly detected at the Super-K due to its short lifetime $\tau = 290 \times 10^{-15} s$ **★** We have also many tau decay channels and in hadronic ones there are many additional particles produced that will generate Cherenkov radiation in the Super-K *As a consequence we will have many multi -ring events coming from the tau decays

Decay mode	Branching ratio (%)	
$\mu^- ar{ u}_\mu u_ au$	17.41 ± 0.04	
$e^- \bar{\nu}_e \nu_{ au}$	17.83 ± 0.04	
$\pi^- u_{ au}$	10.83 ± 0.06	
$\pi^-\pi^0 u_ au$	25.52 ± 0.09	
$\pi^- 2\pi^0 \nu_{ au}$	9.3 ± 0.11	
$\pi^- 3 \pi^0 u_ au$	1.05 ± 0.07	Example
$\pi^-\pi^+\pi^- u_ au$	8.99 ± 0.06	event at
$\pi^-\pi^+\pi^-\pi^0 u_ au$	8.99 ± 0.06	
$h^-\omega u_ au$	2.00 ± 0.08	

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Tau neutrino selections at Super-K

•What is new in 2023 tau analysis ?

- •50% more data statistics added by:
 - •SK- IV added 2016-2018 full SK-V period
 - Expanded Fiducial Volume region
 - Reconstruction and PID algorithms have been improved for expanded region.

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

★ The large target mass of Super-K, coupling with the wide energy range of atmospheric neutrinos, makes it possible to detect CC tau interactions. Fully contained events

- \star The ν_{τ} selections at Super-K:
 - **★**Fully contained events
 - ★Vertex reconstructed 1 m from the nearest wall (expanded FV region)
 - $\star E_{vis} > 1.33 \text{ GeV} \text{multi-ring events}$

A neutral network algorithm to identify ν_{τ} interactions Preliminary Data Signal — Background Signal - Background Data 00 **50** 20 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 25 Ю 0.1 20 30 15 $\mu \rightarrow e$) Number of ring candidates Fraction of energy carried by the first ring Signal — Background — Background Data Signal Data 80 60 · 40 00 20 -250 -200 -150 -100 -300 -50 50 100 0.6 0.7 0.8 0.9 0 0.2 0.3 0.4 0.5 0.1 ID of ring with maximum energy Clustered sphericity **100**⊢ Signal — Background Signal — Background Data Data **300**F 60⊦ Signal 40 200 20ŀ 100 1 1.5 2 2.5 3 3.5 4 4.5 5 log₁₀ of maximum distance to decay electron in cm 0.5 3.5 5.5 4.5 log₁₀ of visible energy in MeV Maitrayee Mandal, NCBJ, Warsaw

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

We use seven input variables for the tau identification to the neural network (NN) algorithm:

 \star Log E_{vis} - total visible energy in the event **The particle identification of the most energetic ring**

\starNumber of decay electron candidates ($\pi \rightarrow \mu \rightarrow e$ or

The maximum distance between the primary interaction point and any decay electron

- *****Number of ring candidates
- **The clustered sphericity of the event**

★The fraction of total number of photoelectrons in the event carried by the first ring

 \propto MC and DATA plots showing the output distribution for the tau CC signal and the background for SK I-V.

Maitrayee Mandal, NCBJ, Warsaw

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

New tau appearance results

 $\mathsf{DATA} = \mathsf{PDF}_{\mathsf{BG}} + \alpha \times \mathsf{PDF}_{\mathsf{tau}} + \sum \epsilon_i \times \mathsf{PDF}_i$

 $\star \alpha = 1.36 \pm 0.29$ (stat. + syst.)

 \star 4.8 σ rejection of no tau appearance

 $\star 428 \pm 92$ observed tau events at Super-K pure water periods

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

2023 tau appearance result!!!!

New tau appearance results

2023 tau appearance result!!!!

ν_{τ} CC interaction cross -section

 $\star \nu_{\tau} CC$ interactions observed in Super-K give the opportunity to measure the CC cross section. By scaling the theoretical cross section in the MC simulations to match the data, we can measure the inclusive charged-current tau neutrino cross section in water:

$$\sigma_{measured} = \alpha \times \sigma_{theory}$$

$$\langle \sigma_{theory} \rangle = \frac{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} \sigma(E_{\nu}) dE_{\nu}}{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} dE_{\nu}},$$

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

PHYS. REV. D 98 052006 (2018)

The uncertainty on the tau cross-section is large (25%) and not well measured !!!!

Tau neutrino background in the atmospheric neutrino samples

- What are the next steps?
 - removing tau neutrino background from \bullet the multi-ring ν_e -like and $\bar{\nu}_e$ - like samples at Super-K which are used to study mass hierarchy.

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

DOI: https://doi.org/10.22323/1.414.1074

★ Moving from binary classifier to multi classifier. *Adding new information as input to the machine learning tools: using information on neutron capture - work ongoing, problems with neutron multiplicities

★AIM: To extract tau like events from multi-ring e-like samples which are sensitive to mass ordering searches.

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Maitrayee Mandal, NCBJ, Warsaw 20

UPER Recent and future prospects in tau searches

Low-energy tau neutrinos in IceCube

- **★**Tau neutrino candidates in the detector appear from atmospheric muon neutrino oscillations $\nu_{\mu} \rightarrow \nu_{\tau}$
 - \star For CC ν_{τ} interactions in GeV energy region we immediate tau decays which produce single cascades in the detector
 - \star By allowing for a ν_{τ} appearance contribution to all cascade events, the so-called tau normalisation can be fitted

★Analysis A targets high acceptance of all flavour neutrino events and its bkg estimation is simulation driven **Analysis B** is optimised for higher rejection of nonneutrino events and its atmospheric muon bkg estimation is data driven

Phys. Rev. D 99, 032007 (2019)

High-energy tau neutrinos in IceCube

Tau neutrino candidates in the detector:

 \star For CC ν_{τ} interactions we have so called "double cascade" event when two showers are separated by the tau decay distance.

 \star 7.5 years of high energy events were scanned - two candidates for tau events were found

Eur. Phys. J. C (2022) 82

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Fig. 4 Double-cascade event #2 (2014). The reconstructed doublecascade vertex positions are indicated as grey circles, the direction indicated with a grey arrow. The size of the circles illustrates the relative deposited energy, the color encodes relative time (from red to blue). Bright DOMs are excluded from this analysis

Other prospects in tau searches - Km3Net

★KM3NeT will be constructed at two separate geographical locations:

*a densely instrumented detector called Km3Net ORCA will be built off the French coast and will study lowenergy atmospheric neutrino oscillations **★**a more sparsely instrumented detector called Km3Net ARCA will be built off the Italian coast near Sicily for the study of high-energy astrophysical neutrinos

	IceCube Upgrade	KM3NeT ORCA
Completion	2022-2023 [12]	2023 [13]
Tau normalisation	13% constrained	20% constrained at 3ϕ
Neutrino mass ordering $(*)$	3σ in 3-8 years	3-6 σ in 3 years
Δm^2_{32} relative uncertainty (RU)	3%	3%
$\sin^2(\theta_{23})$ RU at maximal mixing	14%	13%
$\sin^2(\theta_{23})$ RU off-maximal mixing	8%	4%

https://arxiv.org/pdf/1812.01036.pdf

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Digital Optical Module (DOM)

- Multi-PMT: 31 x 3" PMTs
- Gbit/s on optical fiber
- Positioning & timing

- 18 DOMs
- Low-drag design

Aart Heijboer, Neutrino 2022

 $S\sigma$ after 1 year

Future prospects in tau searches - Hyper Kamiokande

- +Hyper-Kamiokande experiment starts data taking in 2027
- **Tank will have 260 kton with FV of ~186 kton which is ~6.8** times larger than Super-K expanded FV 27.2 kton)
- **Hyper-K** will be able to accumulate atmospheric neutrinos at a rate more than 10 times as fast as Super-K, significantly reducing the statistical uncertainty in atmospheric neutrino analyses.
- **★**Current Hyper-K analysis uses the same methodology as Super-K
- \star In 10 years of data in Hyper-K we expect ~2000 ν_{τ} CC events - no improvements assumed in systematic errors or detector performance
- \star Expect improvements with the CC ν_{τ} cross-section measurements

complete Super-K I-V pure water data sets: tau appearance \star What next? sensitive to mass ordering searches

Hyper-Kamiokande - stay tuned!

Summary

- * New 2023 tau neutrino appearance results were presented using
 - \star we get $\alpha = 1.36 \pm 0.29$ (stat. + syst.) with 4.8 σ rejection of no
 - \star this corresponds to 428 ± 92 observed tau events at Super-K.
 - * extract tau like events from multi-ring e-like samples which are
- *Other interesting tau searches: IceCube, Km3Net and future

Thank you!

Photo Credit: Piotr Mijakowski

Systematic uncertainties in the tau analysis

★ The uncertainty in the tau normalisation was most affected by the change in the event rates due to the uncertainty in the NC/CC ratio when looking at the systematics' sources without correlations.

Dominant systematics are cross section related but flux errors also play a role

Figure 8: Post-fit pulls for the different systematic uncertainties showing the uncertainty in nearly all sources is within the 1σ range.

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

		files	systematic error in the study	normalisation
	1	NC_CC_ratio	0.97 +/- 0.23	24%
	2	DIS_xsec	0.98 +/- 0.22	22%
	3	fsi_hadprod_up_set8	1.05 +/- 0.23	22%
·	4	dis_q2_high_W	0.97 +/- 0.21	21%
		DIS_model_difference	1.02 +/- 0.20	20%
	5	dis_had_mult	1.04 +/- 0.19	19%
	6	gs_1pi_axial_coupling	1.05 +/- 0.19	19%
	7	dis_norm_low_W	1.04 +/- 0.19	18%
	8	dis_q2_vec_low_W	1.04 +/- 0.19	18%
·	9	fsi_hadprod_down_set13	1.04 +/- 0.19	18%
ĺ	10	nubar_nu_1pi_ratio	1.05 +/- 0.19	18%
	11	dis_q2_axi_low_W	1.04 +/- 0.19	18%
ĺ	12	mec_on_off	1.06 +/- 0.19	18%
	13	gs_1pi_bkg	1.05 +/- 0.19	18%
İ	14	neut axial mass	1.06 +/- 0.19	18%
	15	gs_1pi_CA5	1.06 +/- 0.19	18%
	16	CCQE_xsec_shape	1.04 +/- 0.19	18%
	17	CCQE_nu_nubar_ratio	1.04 +/- 0.19	18%
	18	CCQE_numu_nue_ratio	1.04 +/- 0.19	18%
	19	coherent_pi_xsec	1.05 +/- 0.19	18%
·	20	pi0_qpi_ratio	1.06 +/- 0.19	18%
	21	CCQE_xsec_norm_mult	1.06 +/- 0.19	18%

Tau normalisation

in the case of

introducing a single

Key name of the systematic

uncertainty in the Fij root

Uncertainty

ın tau

Maitrayee Mandal, NCBJ, Warsaw

 \simeq Oscillograms plotted with: $\Delta m_{21}^2 = 7.7 \times 10^{-5}$, $\sin^2 \theta_{23} = 0.50$, $\sin^2 \theta_{12} = 0.30$, $\sin^2 \theta_{13} = 0.0219$ and $\delta_{CP} = 0$ 2 Phys. Rev. D. 97 072001

• Impact of matter effects:

- NO: enhancement of ν_{e} appearance
- NO: effect is not
- present for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- IO; situation is reversed

• Thanks to presence of matter effects we are sensitive to mass hierarchy

	1
	0.9
-	0.8
-	0.7
-	0.6
-	0.5
-	0.4
-	0.3
_	0.2
_	0.1
	0

• Three flavour analysis with:

- Matter effects: sensitive to mass hierarchy
- Oscillations of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ are also

sensitive to octant θ_{23} and δ_{CP}

• ν_e samples:

- Multi-GeV e-like ν_e
- Multi-Ring e-like ν_{ρ}

• $\bar{\nu}_e$ samples:

- Multi-GeV e-like $\bar{\nu}_e$
- Multi-Ring e-like $\bar{\nu}_{e}$

Magdalena Posiadala-Zezula, Neutrino Workshop at IFIRSE, Vietnam 18.07.2023

Normal Ordering (NO)

