

19th Rencontres du Vietnam, Neutrino Workshop at IFIRSE, July 16th - July 19th, 2023

JUNO Collaboration

75 institutes and more than 700 collaborators

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China 🗧	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China 🤎	USTC	Italy	INFN di Frascati
Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China 🔔	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		

JUNO site

JUNO: A multi-purpose observatory

Reactor neutrino oscillation

✓ Optimized distance

- ✓ Excellent *E* resolution(3%@1 MeV)
- ✓ Low Background

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17

J. Phys. G43:030401 (2016)

How to achieve incredible energy resolution

- \checkmark JUNO is largest liquid scintillator target with 20 kt LS
- High-yield scintillator and attenuation length > 20 m
 @ 430 nm
- Double calorimetry with ~78% photo coverage for 20"
 PMTs + 3" PMTs
- ✓ Highly efficient PMTs (PDE~30%)
- Complementary calibration systems to reduce energy scale uncertainty to <1%

How to achieve incredible energy resolution

JUNO: Energy Resolution 3% @ 1MeV	The second secon			
	KamLAND [2]	Borexino [3]	SNO+ [4]	JUNO
Target Mass [kilotons]	1	0.3	0.78	20
Number of PMTs	1900	2200	10,000	18,000 + 26,000
PMT Coverage	~34%	~30%	~50%	~80%
Light Collection [photoelectrons/MeV]	~250	~450	~520	>1300

IBD signal and backgrounds

Sensitivities of NMO

✓ Fit the spectrum assuming the normal ordering or inverted ordering with the χ^2 method and take the difference of the minima as a measure of the median NMO sensitivity

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure

Estimation of NMO sensitivity with combined reactor + atmospheric neutrino analysis under preparation

Precision measurement of oscillation parameters

- ✓ JUNO will be the first to simultaneously observe an oscillation pattern containing two independent frequencies
- ✓ Measure neutrino mixing parameters at sub-percentage level: Δm_{31}^2 , Δm_{21}^2 , $sin^2 \theta_{12}$

	Δm_{31}^2	Δm^2_{21}	$\sin^2 \theta_{12}$
Dominant Exps.	T2K	KamLAND	SNO+SK
Individual 1o	2.6%	2.4%	4.5%
PDG2020	1.4%	2.4%	4.2%
JUNO 6 years	~0.2%	~0.3%	~0.5%

J. Phys. G43:030401 (2016)

Solar neutrinos

Yongpeng Zhang | Neutri

2

3

5

0.2

0.15

10 Energy [MeV] 0.25

0.3

 $\sin^2\theta_{12}$

0.35

0.4

0.45

2 4 6 8

 $\Delta \chi^2$

Atmospheric neutrino

JUNO NMO sensitivity from atmospheric neutrinos is complementary to that from the reactor neutrino results.

5

Φ[GeV cm⁻²

- > Exploit matter effects for neutrinos crossing the Earth.
- > Contributions to the sensitivity of NMO, θ_{23} and δ_{CP} .

J. Phys. G: Nucl. Part. Phys. 43 030401 (2016)

- > Promising potential towards the low energy range.
 - \checkmark Atmospheric ν spectrum measurement.

Eur. Phys. J. C (2021) 81:887

JUNO detector

- Acrylic panels
 - Half of total 265 pieces installed
- Stainless Steel structure
 - Assembly finished
- 20012 20" PMTs + 25600 3" PMTs
 - Production and performance test done
 - Waterproof potting finished
 - Under installation
- Liquid scintillator
 - Purification plants under onsite construction

Central detector (acrylic vessel)

LS container:

Inner diameter: 35.40±0.04 m Thickness: 124±4 mm Light transparency > 96% @ LS Radiopurity: U/Th/K < 1 ppt

Central detector (acrylic vessel)

Yongpeng Zhang

Veto detector (Water Cherenkov)

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu}$ = 4 Hz in LS, < E_{μ} > = 207 GeV

- ✓ In LS, about 127 9 Li and 40 8 He isotopes, but 57 $\bar{v_e}$ /day
- ✓ Effective veto strategy keeps 47.1 $\bar{v_e}$ /day but only 0.8 residual Li/He background

 Image: organization of the second second

35 kton of ultrapure water serving as passive shield and water Cherenkov detector.

- $\checkmark~$ 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%
- ✓ Keep the temperature uniformity $21^{\circ}C \pm 1^{\circ}C$
- ✓ Quality: 222 Rn < 10 mBq/m³, attenuation length 30~40 m

Veto detector (Top Tracker)

Plastic scintillator from the OPERA experiment

- ✓ About 50% coverage on the top, three layers to reduce accidental coincidence
- ✓ All scintillator panels arrived on site in 2019
- ✓ Provide control muon samples to validate the track reconstruction and study cosmogenic backgrounds
- ✓ The Top Tracker support bridge is ready for production.

Liquid scintillator (20 kton)

Four purification plants to achieve target radio-purity 10^{-17} g/g U/Th and 20 m attenuation length at 430 nm.

SS pipes to underground

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17

Online Scintillator Internal Radioactivity Investigation System (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and during

filling to the central detector

- ✓ Few days: U/Th (Bi-Po) ~ 1×10^{-15} g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1×10^{-17} g/g (solar ideal case)
- ✓ Other radiopurity can also be measured: ^{14}C , ^{210}Po and ^{85}Kr

Under commissioning now.

Eur.Phys.J.C 81 (2021) 11, 973

Photomultiplier Tubes

Photomultiplier Tubes

Yongpeng Zhang

Electronics

Underwater electronics to improve signal-to-noise ratio for better energy resolution

3 20-inch PMTs connected to one underwater box

128 3-inch PMTs connected to one underwater box

Electronics assembly ongoing ²³

Calibration

1D,2D,3D scan systems with multiple calibration sources to control the energy scale, detector response non-uniformity, and < 1% energy non-linearity

 Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%

Taishan Antineutrino Observatory (TAO)

Physics potential

- ✓ Precise measurement of antineutrino spectra
- $\checkmark\,$ Sterile neutrino searches
- $\checkmark\,$ Provide a reference spectrum for JUNO, nuclear databa

\checkmark	etc.	arXiv: 2005.08745		
	2.8 ton GdLS detector			
	Baseline	~30 m		
	Reactor Thermal Power	4.6 GW		
	Light Collection	SiPM		
	Photon Detection Efficiency	>50%		
	Working Temperature	<mark>-50 ℃</mark>		
	Dark Count Rate [Hz/mm ²]	~100		
	Coverage	~94%		
	Detected Light Level [PE/MeV]	<mark>4500</mark>		
	Energy resolution	< 2% @ 1 MeV		

- ✓ 10 m² SiPM is used to achieve high light yield with ~94% coverage
 - → 4500 PEs/MeV & energy resolution < 2% @ 1 MeV
- ✓ Gd-LS works at -50°C to lower the dark noise of SiPM

- JUNO detector with huge target mass and extremely high energy resolution will make incredible contributions to the field of neutrinos.
- > JUNO will measure mass order (3σ with 6 years data taking based on only reactor ν) and precision oscillation parameters to sub-percentage level.
- \succ JUNO have rich physics potential beyond reactor neutrinos analysis.

Keep digging new physics !

Geo Neutrinos

- Unique neutrino source to probe the inner structure of Earth, from ²³⁸U and ²³²Th decays in Earth's mantle and crust
- Measurement of the thorium to uranium ratio can provide valuable insight to the Earth's origin and evolution.
- > Provide an exciting opportunity to obtain a high statistics measurement of geo-neutrinos.
- Detection channel: IBD
- ➤ ~400 events/year are expected
- Main background is reactor neutrinos

Chin. Phys. C 40 (2016) 3, 033003

Supernova neutrinos(SN)

- A high-statistics detection of neutrinos from a galactic SN will provide us with precious information about the explosion mechanism and intrinsic properties of neutrinos themselves.
- > JUNO has excellent capability of detecting all flavors of the O(10 MeV) postshock neutrinos.
- Determination of the time evolution, energy spectra and flavor contents of SN neutrinos
- > Main detection channel: IBD, ν -p ES, and ν -e ES
- ➢ Real-time detection of ~5000 IBD, ~1000 v-p ES and ~4000 v-e ES events for a SN @10kpc, assuming 0.2
 MeV threshold and with special triggers design

Diffuse Supernova Neutrino Background (DSNB)

- The integrated neutrino flux from all past core-collapse events in the visible universe forms the diffuse supernova neutrino background (DSNB)
- Provide information: the red-shift dependent supernova rate, average SN neutrino energy spectrum and the fraction of black hole formation in core-collapse SNe
 J. Phys. G43:030401 (2016)
- ➢ Detection channel: IBD
- Background
 - \checkmark $\overline{v_e}$ from reactor and atmospheric neutrino
 - Visible energy range (10 , 30) MeV
 - ✓ atmospheric neutrino NC
 - PSD helps to suppress
 - cosmogenic isotopes/fast neutron

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17 FOr $\langle E_{\nu} \rangle \ge 15$ MeV, 3σ evidence after 10 years.

Exotic process

Proton decay

- ▶ Main search channel: $p \rightarrow \bar{\nu}K^+$
- Clear signature from 3–fold coincidence in JUNO

 K^+ ionization $\rightarrow \mu^+$ ionization from K^+ decay $\rightarrow e^+$ from μ^+ decay

- Background:
 - Muon muon veto

220 200 180

> 160 140

120 100

> 80 60 40

20

Expected sensitivity: 8.34 x 10³³ years (90% CL) in 10 years data-taking

Other new physics

- ✓ Indirect dark matter search
 ✓ Light sterile neutrino searches
- J. Phys. G43:030401 (2016) JCAP01 039 (2016) Chinese Phys. C 40 033003 (2016)

 10^{2}

hit time (ns)

10

✓ Lorentz Invariance Violation ✓ Majorana neutrinos (Phase 2, upgraded JUNO)

Yongpeng Zhang | Neutrino Workshop at IFIRSE | 2023-07-17

• e⁺

 10^{3}

Multi-messager astrophysics

Real-time monitoring of the MeV transient neutrino sky

- > Two major trigger systems in JUNO:
 - Global trigger (threshold ~ 200 keV)
 - Multi –messenger (MM) trigger threshold: $\sim 0(10)$ keV
- > MM trigger
 - Fast filtering algorithms on FPGA to reject >99.9% dark noise
- Improve physics potential in the unprecedentedly low-threshold
 - Low energy solar neutrinos
 - Neutrino magnetic moment

• ••

Major role in the next-generation Supernova Early Warning System (SNEWS2.0) for MM astronomy

