

Istituto Nazionale di Fisica Nucleare SEZIONE DI PISA

Neutrino Flavour Models

Arsenii Titov

Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Italy INFN, Sezione di Pisa, Italy

19th Recontres du Víetnam

Neutrino Workshop at IFIRSE

Quy Nhon, Vietnam 18 July 2023

- 3-neutrino mixing
- Flavour puzzle
- Non-Abelian discrete flavour symmetries
- Modular flavour symmetries
- Conclusions

3-neutrino mixing

Charged current weak interactions

$$-\mathscr{L}_{\rm CC} = \frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\mathscr{\ell}_L}(x) \, \gamma_\alpha \, \nu_{\ell L}(x) \, W^{\alpha\dagger}(x) + \text{h.c.}$$

Mismatch between the interaction and mass eigenstates

$$\nu_{\ell L}(x) = \sum_{j=1}^{3} U_{\ell j} \nu_{jL}(x), \quad \nu_{j} \text{ has mass } m_{j}, \ j = 1, 2, 3$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix

The standard parameterisation (adopted by the PDG)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{31}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Atmospheric angle θ_{23} Reactor angle θ_{13} Solar angle θ_{12} Majorana phases α_{21} and α_{31} (if ν are Majorana)
Arsenii Titov (University of Pisa) Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 3

Global fit to neutrino oscillation data

Capozzi et al., 2107.00532; see also Esteban et al., 2007.14792 and de Salas et al., 2006.11237

Global fit to neutrino oscillation data

Mass-squared differences

 $\delta m^2 \equiv m_2^2 - m_1^2 = 7.36 \times 10^{-5} \text{ eV}^2 (2.3\%) \text{ [b.f.v. (relative } 1\sigma \text{ error)]}$ $\Delta m^2 \equiv m_3^2 - \left(m_1^2 + m_2^2\right)/2$ $= 2.485 \times 10^{-3} \text{ eV}^2 (1.1\%) \text{ for NO or } -2.455 \times 10^{-3} \text{ eV}^2 (1.1\%) \text{ for IO}$

Mixing angles

$$\begin{split} \sin^2\theta_{12} &= 0.303 \ (4.5\%) & -> \text{Large} \\ \sin^2\theta_{23} &= 0.455 \ (6.7\%) \text{ for NO or } 0.569 \ (5.5\%) \text{ for IO} & -> \text{Large (maximal?)} \\ \sin^2\theta_{13} &= 0.0223 \ (3\%) & -> \text{Small, but } \neq 0 \end{split}$$

CP-violating (CPV) phases

 $\delta/\pi = 1.25 \ (16\%) \text{ for NO or } 1.52 \ (9\%) \text{ for IO} \qquad -> \text{Maximal?}$ $\alpha_{21} = ?$ $\alpha_{31} = ?$

Capozzi et al., 2107.00532; see also Esteban et al., 2007.14792 and de Salas et al., 2006.11237

Global fit to neutrino oscillation data

Mass-squared differences

 $\delta m^2 \equiv m_2^2 - m_1^2 = 7.36 \times 10^{-5} \text{ eV}^2 (2.3\%) \text{ [b.f.v. (relative } 1\sigma \text{ error)]}$ $\Delta m^2 \equiv m_3^2 - \left(m_1^2 + m_2^2\right)/2$ $= 2.485 \times 10^{-3} \text{ eV}^2 (1.1\%) \text{ for NO or } -2.455 \times 10^{-3} \text{ eV}^2 (1.1\%) \text{ for IO}$

Mixing angles

$$\begin{split} \sin^2\theta_{12} &= 0.303 \; (4.5\%) & -> \text{Large} \\ \sin^2\theta_{23} &= 0.455 \; (6.7\%) \; \text{for NO or } 0.569 \; (5.5\%) \; \text{for IO} & -> \text{Large (maximal?)} \\ \sin^2\theta_{13} &= 0.0223 \; (3\%) & -> \text{Small, but } \neq 0 \end{split}$$

CP-violating (CPV) phases

 $\delta/\pi = 1.25 (16\%) \text{ for NO or } 1.52 (9\%) \text{ for IO} \quad -> \text{Maximal?}$ $\alpha_{21} = ?$ $\alpha_{31} = ?$ What are the data telling us?

Capozzi et al., 2107.00532; see also Esteban et al., 2007.14792 and de Salas et al., 2006.11237

Flavour puzzle: masses

What is the value of the lightest neutrino mass?

- Why is the mass of neutrino ~10⁷ times smaller than that of electron?
- What is the mechanism of neutrino mass generation?

- Why are there **3** families?
- Is there any organising principle behind the values of fermion masses?

6

Flavour puzzle: mixing and CP

2 large and 1 small (but non-zero) mixing angles -> very different from quarks

$$|U_{\rm PMNS}|^2 \simeq \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix} \qquad |U_{CKM}|^2 = \bullet \bullet \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

Images: Phill Litchfield

 $(s_{12}^2, s_{23}^2, s_{13}^2) \sim (0.3, 0.5, 0.022)$ vs $(0.05, 1.8 \times 10^{-3}, 1.4 \times 10^{-5})$

- Why are these mixing patterns so different?
- Is there any organising principle behind the values of mixing parameters?
- What is the mechanism of CP violation? ($\delta_{\text{PMNS}} = \mathcal{O}(1)$? $\delta_{\text{CKM}} \approx 1.2$, $\bar{\theta} \approx 0$)

Tri-bimaximal (TBM) mixing

Harrison, Perkins, Scott, hep-ph/0202074

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$
$$U_{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\sin^2 \theta_{23} = \frac{1}{2} \qquad \sin^2 \theta_{13} = 0 \qquad \sin^2 \theta_{12} = \frac{1}{3}$$
allowed at 2σ excluded at many σ allowed at 2σ

Flavour symmetry

At high energies, the theory is invariant under

$$\begin{array}{ccc} \varphi(x) \rightarrow \rho(g) \, \varphi(x) \,, & g \in G_{\!f} & \text{e.g.} & \varphi = \begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} \\ \hline \end{array} \\ \begin{array}{c} \text{representation of } G_{\!f} & \text{flavour symmetry group} \end{array}$$

At low energies, flavour symmetry has to be broken

Clever way of breaking:

$$G_{e} \subset G_{f}$$
residual symmetries
$$G_{\nu} \subset G_{f}$$

$$\rho(g_{e})^{\dagger}M_{e}M_{e}^{\dagger}\rho(g_{e}) = M_{e}M_{e}^{\dagger}$$

$$\rho(g_{\nu})^{T}M_{\nu}\rho(g_{\nu}) = M_{\nu}$$

$$U_{e}^{\dagger}M_{e}M_{e}^{\dagger}U_{e} = \text{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right)$$

$$U_{\nu}^{T}M_{\nu}U_{\nu} = \text{diag}\left(m_{1}, m_{2}, m_{3}\right)$$

$$U_{e}^{\dagger}\rho(g_{e})U_{e} = \rho(g_{e})^{\text{diag}}$$

$$U_{\nu}^{\dagger}\rho(g_{\nu})U_{\nu} = \rho(g_{\nu})^{\text{diag}}$$

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023

Non-Abelian discrete symmetries

Generated by two elements S and T

$$\langle S, T | S^2 = (ST)^3 = T^N = I \rangle$$
, $N = 2, 3, 4, 5$

Another convenient presentation for S_4

$$\langle S, T, U | S^2 = T^3 = U^2 = (ST)^3 = (SU)^2 = (TU)^2 = (STU)^4 = I \rangle$$

 A_4 , S_4 , and A_5 admit a 3-dimensional irrep (unification of families) Reviews: Altarelli, Feruglio, 1002.0211; Ishimori et al., 1003.3552; King, Luhn, 1301.1340; Petcov, 1711.10806; Feruglio, Romanino, 1912.06028

Example: TBM mixing from S4

$$\begin{split} & G_f = S_4 \\ & G_e = Z_3^T \\ & G_\nu = Z_2^S \times Z_2^U \\ & \rho(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \\ & \left[\begin{array}{c} \rho(S) = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \\ & \theta(U) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ & \omega = e^{2\pi i/3} \\ & U_e = \mathbb{I} \\ & \text{diagonalised by } U_\nu = U_{\text{TBM}} \\ & U_{\text{PMNS}} = U_e^{\dagger} U_\nu = U_{\text{TBM}} \end{split}$$

In concrete models, flavour symmetry breaking occurs spontaneously when flavons (scalar fields not charged under the SM) acquire VEVs

$$\langle \phi^e \rangle \propto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 preserves T and $\langle \phi^\nu \rangle \propto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ preserves S and U

Reconciling TBM mixing with data

Break T: charged lepton corrections

 U_e free and $U_\nu = U_{\rm TBM}$

Different ansatzes: $U_e^{\dagger} = U_{ij} \left(\theta_{ij}^e, \delta_{ij}^e \right)$, $U_e^{\dagger} = U_{ij} \left(\theta_{ij}^e, \delta_{ij}^e \right) U_{kl} \left(\theta_{kl}^e, \delta_{kl}^e \right)$, ...

$$U_{13}\left(\theta^{e},\delta^{e}\right) = \begin{pmatrix} \cos\theta^{e} & 0 & \sin\theta^{e}e^{-i\delta^{e}} \\ 0 & 1 & 0 \\ -\sin\theta^{e}e^{i\delta^{e}} & 0 & \cos\theta^{e} \end{pmatrix}$$

 θ^e and δ^e are free parameters

Example:
$$U_{e}^{\dagger}=U_{12}\left(\theta^{e},\delta^{e}
ight)$$

 $\sin \theta_{13} = \frac{1}{\sqrt{2}} \sin \theta^{e}$ neutrino mixing sum rules $\sin^{2} \theta_{23} = \frac{1 - 2 \sin^{2} \theta_{13}}{2(1 - \sin^{2} \theta_{13})} \approx 0.489$ neutrino mixing sum rules Marzocca, Petcov, Romanino, Sevilla, 1302.0423 Petcov, 1405.6006 Girardi, Petcov, AT, 1410.8056, 1504.00658 Girardi, Petcov, Stuart, AT, 1509.02502 $\cos \delta = \frac{(1 - 2 \sin^{2} \theta_{13})^{\frac{1}{2}}}{\sin 2\theta_{12} \sin \theta_{13}} \left[\frac{1}{3} + \left(\sin^{2} \theta_{12} - \frac{2}{3} \right) \frac{1 - 3 \sin^{2} \theta_{13}}{1 - 2 \sin^{2} \theta_{13}} \right] \approx -0.156 \Rightarrow \delta/\pi = 1.45$

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 12

Reconciling TBM mixing with data

Break *U*:
$$G_{\nu} = Z_{2}^{S}$$
 (instead of $Z_{2}^{S} \times Z_{2}^{U}$)
 $U_{\text{PMNS}} = U_{\text{TBM}} U_{13}(\theta^{\nu}, \delta^{\nu}) = \begin{pmatrix} * & \sqrt{\frac{1}{3}} & * \\ * & \sqrt{\frac{1}{3}} & * \\ * & \sqrt{\frac{1}{3}} & * \end{pmatrix}$ trimaximal mixing 2 (TM2)
Grimus, Lavoura, 0809.0226
 $\sin^{2} \theta_{12} = \frac{1}{3(1 - \sin^{2} \theta_{13})} > \frac{1}{3}$ $\cos \delta = \frac{(1 - 2\sin^{2} \theta_{13}) \cot 2\theta_{23}}{\sin \theta_{13}\sqrt{2 - 3\sin^{2} \theta_{13}}}$
Break *S* and *U*, preserving *SU*: $G_{\nu} = Z_{2}^{SU}$

$$U_{\text{PMNS}} = U_{\text{TBM}} U_{23}(\theta^{\nu}, \delta^{\nu}) = \begin{pmatrix} \sqrt{\frac{2}{3}} & * & * \\ -\sqrt{\frac{1}{6}} & * & * \\ -\sqrt{\frac{1}{6}} & * & * \end{pmatrix} \quad \text{trimaximal mixing 1 (TM1)} \\ \text{Albright, Rodejohann, 0812.0436} \\ \sin^{2} \theta_{12} = \frac{1 - 3\sin^{2} \theta_{13}}{3(1 - \sin^{2} \theta_{13})} < \frac{1}{3} \qquad \cos \delta = -\frac{(1 - 5\sin^{2} \theta_{13})\cot 2\theta_{23}}{2\sqrt{2}\sin \theta_{13}\sqrt{1 - 3\sin^{2} \theta_{13}}}$$

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023

Flavour models with CP

 $G_e = Z_3$ and $G_\nu = Z_2 \times CP$

Feruglio, Hagedorn, Ziegler, 1211.5560

$A_5 \rtimes CP$		$G_e = Z_5$		$G_e = Z_3$	$G_e = Z_2 \times Z_2$	$G_{\nu} = Z_2 \times CP$		
Case	II	III	IV	V	VII-a	VII-b		
$\sin^2 \theta_{13}$	$\frac{3-\varphi}{5}\sin^2\theta$	$\frac{(\cos\theta - \theta)}{4}$	$\frac{(\varphi \sin \theta)^2}{\rho^2}$					
$\sin^2 \theta_{12}$	$\frac{2\cos^2\theta}{3+2\varphi+\cos 2\theta}$	$\frac{4-2\varphi}{5-2\varphi+\cos 2\theta}$	$\frac{4{-}2\varphi}{5{-}2\varphi{+}\cos2\theta}$	$\frac{1}{2+\sin 2\theta}$	$\frac{(\varphi\cos\theta + \sin\theta)^2}{4\varphi^2 - (\cos\theta - \varphi\sin\theta)^2}$			
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$\frac{1}{2} - \frac{\sqrt{3-\varphi}\sin 2\theta}{3\varphi-2+\varphi\cos 2\theta}$	$\frac{1}{2}$	$\frac{1}{2}$	$\left \frac{(\varphi^2 \cos \theta - \sin \theta)^2}{4\varphi^2 - (\cos \theta - \varphi \sin \theta)^2} \right \frac{\varphi^2 (\cos \theta + \varphi \sin \theta)^2}{4\varphi^2 - (\cos \theta - \varphi \sin \theta)^2}$			
$ \sin \delta_{ m CP} $ 1 0 1 0								
$\varphi = (1 + \sqrt{5})/2$ is the golden ratio Li, Ding, 1503.03711								
Arsenii Tit	tov (Universit	ty of Pisa) Neu	utrino Works	hop at IFI	RSE, Quy Nhon, 18	8/07/2023 14		

Compatibility with global data

$$\chi^{2}(\theta) = \left[\frac{\sin^{2}\theta_{12}(\theta) - \sin^{2}\theta_{12}}{\sigma(\sin^{2}\theta_{12})}\right]^{2} + \left[\frac{\sin^{2}\theta_{13}(\theta) - \sin^{2}\theta_{13}}{\sigma(\sin^{2}\theta_{13})}\right]^{2} + \left[\frac{\sin^{2}\theta_{23}(\theta) - \sin^{2}\theta_{23}}{\sigma(\sin^{2}\theta_{23})}\right]^{2}$$

1-parameter models compatible with global data at 3σ

Model	$ heta_{ m bf}$	$ heta_{3\sigma}$	Model	Case [Ref.]	Group	$\sin^2 \theta_{12}$	$\sin^2 heta_{23}$	$\delta_{ m CP}$	$\chi^2_{ m min}$
1.1	17.0°	$(16.3^{\circ}, 17.7^{\circ})$	1.1	VII-b [25]	$A_5 \rtimes \mathrm{CP}$	0.331	0.523	180°	5.37
1.2	169.9°	$(169.4^{\circ}, 170.4^{\circ})$	1.2	III [25]	$A_5\rtimes \mathrm{CP}$	0.283	0.593	180°	5.97
1.0	15.0°	(14.3°, 15.7°)	1.3	IV [24]	$S_4 \rtimes \mathrm{CP}$	0.318	1/2	$\pm 90^{\circ}$	7.28
1.5	165.0°	$(164.3^{\circ}, 165.7^{\circ})$	1.4	II [24]	$S_4 \rtimes \mathrm{CP}$	0.341	0.606	180°	8.91
1.4	169.5°	(169.0°, 170.0°)	1.5	IV [25]	$A_5 \rtimes \operatorname{CP}$	0.283	1/2	$\pm 90^{\circ}$	11.3
	10.1°	$(9.6^{\circ}, 10.6^{\circ})$			Blennow	, Ghosh, (Ohlsson, A	T, 2004	.00017
1.5	169.9°	(169.4°, 170.4°)			[24] Feru	iglio, Hage	edorn, Zie	gler, 121	1.5560

[25] Li, Ding, 1503.03711

Potential of future LBL experiments

Blennow, Ghosh, Ohlsson, AT, 2005.12277

JUNO potential

Blennow, Ghosh, Ohlsson, AT, 2005.12277

- Many symmetry groups, many models, which one is correct (if any)?
- Symmetry breaking typically relies on numerous flavons
- Elaborated potentials to get desirable vacuum alignment
- Higher-dimensional operators can spoil leading-order predictions
- Mainly mixing, and not masses
- What is the origin of discrete flavour symmetries?

Modular invariance

Lattice left invariant by modular transformations

$$\tau \to \gamma \tau \equiv \frac{a\tau + b}{c\tau + d}$$
 $a, b, c, d \in \mathbb{Z}$ $ad - bc = 1$

Proposal to apply modular invariance to flavour physics: Feruglio, 1706.08749

Modular group

$$\overline{\Gamma} = \left\langle S, T \mid S^2 = (ST)^3 = I \right\rangle \cong PSL(2,\mathbb{Z})$$

$$\tau \xrightarrow{S}{\rightarrow} -\frac{1}{\tau} \qquad \tau \xrightarrow{T}{\rightarrow} \tau + 1$$
duality discrete shift symmetry
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$T = rectantly = rectantly$$

$$T = rectantly = rectantly$$

Infinite normal subgroups of $SL(2,\mathbb{Z})$, N = 2, 3, 4, ...

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Principal congruence subgroups of the modular group

$$\overline{\Gamma}(2) \equiv \Gamma(2)/\{I, -I\} \qquad \overline{\Gamma}(N) \equiv \Gamma(N), \quad N > 2$$

 $\Gamma_N \equiv \overline{\Gamma} / \overline{\Gamma}(N)$

Finite modular groups

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 20

Finite modular groups

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = I \rangle, \quad N = 2, 3, 4, 5$$

Images: WIKIPEDIA

For N>5 additional relations f(S,T)=I needed to render Γ_N finite de Adelhart Toorop, Feruglio, Hagedorn, 1112.1340

Modular forms

Holomorphic functions on $\mathscr{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$ transforming under $\overline{\Gamma}(N)$ as follows

Modular forms of weight k and level N form a linear space $\mathcal{M}_k(\overline{\Gamma}(N))$ of finite dimension. We can choose a basis in this space s.t. $F(\tau) \equiv (f_1(\tau), f_2(\tau), ...)^T$ transforms as

Feruglio, 1706.08749

Modular-invariant SUSY theories

 $\mathcal{N} = 1 \text{ rigid SUSY matter action}$ $\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} \, K(\tau, \overline{\tau}, \chi, \overline{\chi}) + \int d^4x \, d^2\theta \, W(\tau, \chi) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{\tau}, \overline{\chi})$ Kähler potential Superpotential Chiral superfields $\begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} \\ \chi_I \to (c\tau + d)^{-k_I} \rho_I(\tilde{\gamma}) \chi_I \end{cases}$ Modular symmetry acts non-linearly

Invariance of the action under these transformations requires

$$\begin{cases} W(\tau,\chi) \to W(\tau,\chi) \\ K(\tau,\overline{\tau},\chi,\overline{\chi}) \to K(\tau,\overline{\tau},\chi,\overline{\chi}) + f_K(\tau,\chi) + \overline{f_K}(\overline{\tau},\overline{\chi}) \end{cases}$$

Ferrara, Lust, Shapere, Theisen, PLB **225** (1989) 363 Ferrara, Lust, Theisen, PLB **233** (1989) 147

Feruglio, 1706.08749

Modular-invariant SUSY theories

$$K(\tau,\overline{\tau},\chi,\overline{\chi}) = -\Lambda_0^2 \log(-i\tau + i\overline{\tau}) + \sum_I \frac{|\chi_I|^2}{(-i\tau + i\overline{\tau})^{k_I}}$$

Minimal example

$$W(\tau,\chi) = \sum_{n} \sum_{\{I_1,\ldots,I_n\}} g_{I_1\ldots,I_n} \left(Y_{I_1\ldots,I_n}(\tau)\chi_{I_1}\ldots\chi_{I_n} \right)_{\mathbf{1}}$$

Modulus-dependent (Yukawa) couplings

$$Y_{I_1 \dots I_n}(\tau) \to (c\tau + d)^{k_Y} \rho_Y(\tilde{\gamma}) Y_{I_1 \dots I_n}(\tau)$$

$$k_Y = k_{I_1} + \ldots + k_{I_n} \ge 0$$

$$\rho_Y \otimes \rho_{I_1} \otimes \ldots \otimes \rho_{I_n} \supset \mathbf{1}$$

Yukawa couplings $Y_{I_1 \dots I_n}(\tau)$ are modular forms!

Feruglio, 1706.08749

24

Modular A4 symmetry

$$\Gamma_3 = \left\langle S, T \mid S^2 = (ST)^3 = T^3 = I \right\rangle$$

- 12 elements
- 4 irreps: 1, 1', 1", 3
- Space of the lowest non-trivial weight 2 modular forms has dimension 3
- 3 weight 2 modular forms arrange themselves in a triplet:

$$Y_{3}(\tau) \equiv \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix}$$

 \bigvee $Y_i(\tau)$ are given in terms of the Dedekind eta function

$$\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n) , \quad q = e^{2\pi i \tau}$$

Products of $Y_i(\tau)$ generate modular forms of higher weights: 4, 6, 8, ...

Feruglio, 1706.08749

Modular forms of level 3 and weight 2

$$\begin{split} Y_{1}(\tau) &= \frac{i}{2\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} - 27\frac{\eta'(3\tau)}{\eta(3\tau)} \right] = 1 + 12q + 36q^{2} + 12q^{3} + \dots \\ Y_{2}(\tau) &= -\frac{i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right] = -6q^{1/3} \left(1 + 7q + 8q^{2} + \dots\right) \\ Y_{3}(\tau) &= -\frac{i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right] = -18q^{2/3} \left(1 + 2q + 5q^{2} + \dots\right) \end{split}$$

Here $\omega = e^{\frac{2\pi i}{3}}$ and $q = e^{2\pi i \tau}$ ($|q| = e^{-2\pi \operatorname{Im} \tau} < 1$ since $\operatorname{Im} \tau > 0$)

Since modular forms are periodic

$$f(T^N \tau) = f(\tau + N) = (c\tau + d)^k f(\tau) = f(\tau), \qquad T^N = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \overline{\Gamma}(N),$$

they admit *q*-expansions: $f(\tau) = \sum a_n q_N^n$, $q_N = e^{\frac{2\pi i \tau}{N}}$ (N = 3 in this example) Feruglio, 1706.08749 n=0

Feruglio's modular A4 model

 $\Gamma_3 \cong A_4 \quad \text{(level } N = 3\text{)}$

3 independent modular forms $Y_i(\tau)$ of weight k = 2 form a triplet of A_4

$$W_{\nu} \supset \frac{1}{\Lambda} \left(Y(\tau) LL \right)_{1} H_{u} H_{u} \qquad \Rightarrow \qquad M_{\nu}(\tau) = \frac{V_{u}^{2}}{\Lambda} \begin{bmatrix} -Y_{3} & 2Y_{2} & -Y_{1} \\ -Y_{2} & -Y_{1} & 2Y_{3} \end{bmatrix}$$

 M_{ν} depends on 3 real parameters: ${
m Re}(au)$, ${
m Im}(au)$ and the overall scale ${
m v}_u^2/\Lambda$

For $\langle \tau \rangle = 0.0111 + 0.9946 i$ $\sin^2 \theta_{12} = 0.295$ $\sin^2 \theta_{13} = 0.0447$ $\sin^2 \theta_{23} = 0.651$ $\delta/\pi = 1.55$ $\alpha_{21}/\pi = 0.22$ $\alpha_{31}/\pi = 1.80$ $m_1 = 0.0500 \text{ eV}$ $m_2 = 0.0507 \text{ eV}$ $m_3 = 0.0007 \text{ eV}$ (IO) Feruglio, 1706.08749

Modular S4 symmetry

$$\Gamma_4 = \left\langle S, T \mid S^2 = (ST)^3 = T^4 = I \right\rangle$$

24 elements

- 5 irreps: 1, 1', 2, 3, 3'
- Space of the lowest non-trivial weight 2 modular forms has dimension 5
- ▶ 5 weight 2 modular forms arrange themselves in a doublet and a triplet:

$$Y_{2}(\tau) \equiv \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \end{pmatrix} \qquad Y_{3'}(\tau) \equiv \begin{pmatrix} Y_{3}(\tau) \\ Y_{4}(\tau) \\ Y_{5}(\tau) \end{pmatrix}$$

 \bigvee $Y_i(\tau)$ are given in terms of the Dedekind eta function

$$\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n) , \quad q = e^{2\pi i \tau}$$

Products of $Y_i(\tau)$ generate modular forms of higher weights: 4, 6, 8, ...

Penedo, Petcov, 1806.11040

Seesaw type I models with no flavons

	E_1^c	E_2^c	E_3^c	N^c	L	H_d	H_u
$SU(2)_L imes U(1)_Y$	(1, +1)	(1, +1)	(1, +1)	(1, 0)	(2, -1/2)	(2, -1/2)	(2, +1/2)
$\Gamma_4 \cong S_4$	1 or 1'	1 or 1'	1 or 1'	3 or 3'	3 or 3 ′	1	1
k_I	k_1	k_2	k_3	k_N	k_L	0	0
2							

$$W = \sum_{i=1}^{3} \alpha_{i} \left(E_{i}^{c} L F_{E_{i}}(\tau) \right)_{1} H_{d} + g \left(N^{c} L F_{N}(\tau) \right)_{1} H_{u} + \Lambda \left(N^{c} N^{c} F_{M}(\tau) \right)_{1}$$

Modular invariance imposes the following constraints on the weights:

$$\begin{cases} k_{\alpha_i} = k_i + k_L \\ k_g = k_N + k_L \\ k_\Lambda = 2 k_N \end{cases} \Leftrightarrow \begin{cases} k_i = k_{\alpha_i} - k_g + k_\Lambda/2 \\ k_L = k_g - k_\Lambda/2 \\ k_N = k_\Lambda/2 \end{cases}$$
$$W = \lambda_{ij}(\tau) E_i^c L_j H_d + \mathcal{Y}_{ij}(\tau) N_i^c L_j H_u + \frac{1}{2} M_{ij}(\tau) N_i^c N_j^c \end{cases}$$

After integrating out heavy neutrinos and after EWSB

$$M_e = \mathbf{v}_d \,\lambda^{\dagger} \qquad M_\nu = - \,\mathbf{v}_u^2 \,\mathcal{Y}^T M^{-1} \mathcal{Y}$$

Novichkov, Penedo, Petcov, AT, 1811.04933

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 29

$$\begin{aligned} \text{Charged leptons:} & (k_{\alpha_1}, \, k_{\alpha_2}, \, k_{\alpha_3}) = (2 \,, \, 4 \,, \, 4) & \text{Neutrinos:} \, (k_{\Lambda} \,, \, k_g) = (0 \,, \, 2) \\ & W = \alpha \left(E_1^c L \, Y_{3'}^{(2)} \right)_1 H_d + \beta \left(E_2^c L \, Y_{3}^{(4)} \right)_1 H_d + \gamma \left(E_3^c L \, Y_{3'}^{(4)} \right)_1 H_d \\ & + g \left(N^c L \, Y_{2}^{(2)} \right)_1 H_u + g' \left(N^c L \, Y_{3'}^{(2)} \right)_1 H_u + \Lambda \left(N^c N^c \right)_1 \end{aligned}$$

Solutions A and A	A *
-------------------	------------

Input parameters		Observables		Predictions		2.0		\mathcal{D}			
$\operatorname{Re} \tau$	± 0.1045	m_e/m_μ	0.0048	$m_1 [eV]$	0.017						
${ m Im} au$	1.0100	$m_\mu/m_ au$	0.0565	$m_2 [\mathrm{eV}]$	0.019	1.5		D*•	D C*●		1
eta/lpha	9.465	r	0.0299	$m_3 [eV]$	0.053		Е	† ((• E*	
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	±1.31	ь я 10		A*,B	A,B*		
$\operatorname{Re}\left(g'/g\right)$	0.2330	$\sin^2 \theta_{13}$	0.0213	α_{21}/π	± 0.30	$\frac{1}{\sqrt{3}}$					
$\operatorname{Im}\left(g'/g\right)$	± 0.4924	$\sin^2 \theta_{23}$	0.551	α_{31}/π	± 0.87	2					
$v_d \alpha \; [\text{MeV}]$	53.19	$\delta m^2 \ [10^{-5} \ \mathrm{eV}^2]$	7.34	$ m_{ee} $ [eV]	0.017	0.5					-
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0093	$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.455	$\sum_{i} m_i [eV]$	0.090						
$N\sigma$ 0.02 Ordering					NO	0.01					
8 (5)	8 (5) parameters vs 12 (9) observables							0.5 0 Re	0 0 0 e τ	.5 1	Ī.0

Novichkov, Penedo, Petcov, AT, 1811.04933

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 30

2.0------

Modular invariance and CP

Modulus 🔊

$$\tau \xrightarrow{CP} - \tau^*$$

Matter supermultiplets

$$\chi(x) \xrightarrow{CP} X \overline{\chi}(x_P), \quad x_P = (t, -\mathbf{x})$$

In the symmetric basis where $\rho(S)^T = \rho(S)$ and $\rho(T)^T = \rho(T)$, $X = \mathbb{I}$ (canonical CP basis)

- Modular form multiplets $Y(\tau) \xrightarrow{CP} Y(-\tau^*) = X Y^*(\tau) = Y^*(\tau)$ (in the symmetric basis)
- Lagrangian couplings

$$g_i^* = g_i$$

Novichkov, Penedo, Petcov, AT, 1905.11970

Arsenii Titov (University of Pisa)

CP-conserving values of the modulus

 τ and $\gamma\tau$ are physically equivalent, hence CP is preserved for

 $\tau \xrightarrow{CP} - \tau^* = \gamma \tau$

CP is violated in the fundamental domain, except for:

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 32

Charged leptons:
$$(k_{\alpha_1}, k_{\alpha_2}, k_{\alpha_3}) = (2, 4, 4)$$
 Neutrinos: $(k_{\Lambda}, k_g) = (0, 2)$
 $W = \alpha \left(E_1^c L Y_{3'}^{(2)} \right)_1 H_d + \beta \left(E_2^c L Y_3^{(4)} \right)_1 H_d + \gamma \left(E_3^c L Y_{3'}^{(4)} \right)_1 H_d$
No CP $+ g \left(N^c L Y_2^{(2)} \right)_1 H_u + g \left(N^c L Y_{3'}^{(2)} \right)_1 H_u + \Lambda \left(N^c N^c \right)_1$

Solutions A and A*

Input parameters		Observables Pr		Predict	Predictions			\mathcal{D}			
$\operatorname{Re} au$	± 0.1045	m_e/m_μ	0.0048	$m_1 [eV]$	0.017						
$\operatorname{Im} \tau$	1.0100	$m_\mu/m_ au$	0.0565	$m_2 [\mathrm{eV}]$	0.019	1.5-		D*•	• D		1
$\beta/lpha$	9.465	r	0.0299	$m_3 [\mathrm{eV}]$	0.053		Ε			E*	
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	± 1.31	ь я 1.0-		A*,B	A,B*		
$\operatorname{Re}\left(g'/g\right)$	0.2330	$\sin^2 \theta_{13}$	0.0213	α_{21}/π	± 0.30	$\frac{1}{\sqrt{3}}$					
$\operatorname{Im}\left(g'/g\right)$	± 0.4924	$\sin^2\theta_{23}$	0.551	α_{31}/π	± 0.87	2					
$v_d \alpha \; [\text{MeV}]$	53.19	$\delta m^2 \ [10^{-5} \ {\rm eV}^2]$	7.34	$ m_{ee} $ [eV]	0.017	0.5					-
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0093	$ \Delta m^2 [10^{-3} \text{ eV}^2]$	2.455	$\sum_{i} m_i [eV]$	0.090						
		$N\sigma$	0.02	Ordering	NO	0.0					
8 (5)	8 (5) parameters vs 12 (9) observables).5 0. Re	0 0	.5 1	.0

Novichkov, Penedo, Petcov, AT, 1811.04933

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 33

2.0

Charged leptons:
$$(k_{\alpha_1}, k_{\alpha_2}, k_{\alpha_3}) = (2, 4, 4)$$
 Neutrinos: $(k_{\Lambda}, k_g) = (0, 2)$
 $W = \alpha \left(E_1^c L Y_{3'}^{(2)} \right)_1 H_d + \beta \left(E_2^c L Y_3^{(4)} \right)_1 H_d + \gamma \left(E_3^c L Y_{3'}^{(4)} \right)_1 H_d$
With CP $+ g \left(N^c L Y_2^{(2)} \right)_1 H_u + g \left(N^c L Y_{3'}^{(2)} \right)_1 H_u + \Lambda \left(N^c N^c \right)_1$

Solutions A and A*

			$= \sin^2 \delta$			
Input parameters		Observables		Predicti	ions	2.0 1.0
$\operatorname{Re} \tau$	± 0.0992	m_e/m_μ	0.0048	$m_1 [eV]$	0.012	1.0
$\mathrm{Im} au$	1.0160	$m_{\mu}/m_{ au}$	0.0576	$m_2 [\mathrm{eV}]$	0.015	- 0.8
eta/lpha	9.348	r	0.0298	$m_3 [\mathrm{eV}]$	0.051	
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	±1.64	
g'/g	-0.0209	$\sin^2 \theta_{13}$	0.0214	α_{21}/π	± 0.35	
$v_d \alpha \; [\text{MeV}]$	53.61	$\sin^2 \theta_{23}$	0.486	α_{31}/π	± 1.25	5 0.4
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0135	$\delta m^2 \ [10^{-5} \ \mathrm{eV}^2]$	7.33	$ m_{ee} $ [eV]	0.012	
	·	$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.457	$\sum_{i} m_i [eV]$	0.078	
		$N\sigma$	1.01	Ordering	NO	
7 (1)	naramo	tore ve $12(0)$	obsor	vables		$-$ 0.5 0.5 0.5 $\mathrm{Re}\tau$

7 (4) parameters vs 12 (9) observables

Novichkov, Penedo, Petcov, AT, 1905.11970

Arsenii Titov (University of Pisa)

Vacuum selection

In the considered bottom-up approach the VEV of τ is a free parameter

Top-down conjecture

All extrema of the potential lie on the boundary of the fundamental domain and on the imaginary axis

M. Cvetic et al., NPB **361** (1991) 194

Recent studies find new, CP-violating minima Novichkov, Penedo, Petcov, 2201.02020 Leedom, Righi, Westphal, 2212.03876

Residual symmetries

$$\tau = i: \quad i \xrightarrow{S} - \frac{1}{i} = i \quad \Rightarrow \quad Z_2^S = \{I, S\}$$

$$\tau = \omega \equiv e^{\frac{2\pi i}{3}}: \quad \omega \xrightarrow{ST} - \frac{1}{\omega + 1} = \omega \quad \Rightarrow \quad Z_3^{ST} = \{I, ST, (ST)^2\}$$

 $\tau = i\infty : \quad i\infty \xrightarrow{T} i\infty + 1 = i\infty \quad \Rightarrow \quad Z_N^T = \{I, T, T^2, \dots, T^N\}$

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 35

Selection of models

- Γ₃
- Γ_3 with CP
- Γ
- Γ_4 with CP
- T
- Γ'_4 with CP
- Γ'_5 with CP
- Γ
- Γ_6' with CP
- Γ₇

 $L \sim \mathbf{3}$ of finite modular group $\Gamma_N^{(\prime)}$ 9 observables (m_i , θ_{ij} , δ , α_{ij}) depend on τ and 2 or 3 additional Lagrangian parameters

Feruglio, 2211.00659

Selection of models with CP

- Γ_3 with CP
- Γ_4 with CP
- Γ'_4 with CP
- Γ'_5 with CP
- Γ_6' with CP

--- $|\tau - i| = 0.25$ For 2/3 of points $|\tau - i| < 0.25$

 $L \sim \mathbf{3}$ of finite modular group $\Gamma_N^{(\prime)}$ 9 observables (m_i , θ_{ij} , δ , α_{ij}) depend on τ and 2 or 3 additional Lagrangian parameters

Feruglio, 2211.00659

Arsenii Titov (University of Pisa)

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 37

Modular vs conventional discrete

Advantages

- ✓ Numerous scalar fields (flavons) → (single) modulus
- \checkmark Complicated scalar potential \rightarrow moduli space
- ✓ Yukawa couplings → modular forms (known functions of τ)

 $\checkmark A_4, S_4, A_5$ arise as quotient groups of the modular group

✓ Both mixing parameters and masses are predicted/constrained

Challenges

- ▶ What determines the level, weights and representations, (N, k_I, ρ_I) tuple?
- Kinetic terms are not constrained in the bottom-up approach
- Dynamical selection of the vacuum $\langle \tau \rangle$
- Extension to the quark sector
- Is SUSY necessary?

Aside remark: the strong CP problem

Published for SISSA by DSPRINGER

RECEIVED: June 13, 2023 ACCEPTED: June 16, 2023 PUBLISHED: July 4, 2023

HEP07

(2023)02

_1

Modular invariance and the QCD angle

Ferruccio Feruglio,^{*a*} Alessandro Strumia^{*b*} and Arsenii Titov^{*b*}

^aINFN, Sezione di Padova, Via Francesco Marzolo 8, Padova, Italy
^bDipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, Pisa, Italy
E-mail: ferruccio.feruglio@pd.infn.it, alessandro.strumia@unipi.it, arsenii.titov@df.unipi.it

ABSTRACT: String compactifications on an orbi-folded torus with complex structure give rise to chiral fermions, spontaneously broken CP, modular invariance. We show that this allows simple effective theories of flavour and CP where: i) the QCD angle vanishes; ii) the CKM phase is large; iii) quark and lepton masses and mixings can be reproduced up to order one coefficients. We implement such general paradigm in supersymmetry or supergravity, with modular forms or functions, with or without heavy colored states.

KEYWORDS: CP Violation, Discrete Symmetries, Supersymmetry, Theories of Flavour

ARXIV EPRINT: 2305.08908

- We are still far from the Theory of Flavour
- Symmetries remain the best tool to approach the flavour puzzle
- Many viable models based on non-Abelian discrete symmetries broken to residual symmetries of the charged lepton and neutrino mass matrices
- The number of viable models will be reduced by future, more precise measurements of the neutrino mixing parameters, including $\delta_{\rm CP}$ (DUNE, T2HK, ESSnuSB, JUNO are crucial in this respect)
- Modular invariance is elegant, and it has a number of advantages over conventional discrete flavour symmetries
- More effort is needed towards deciphering the nature of flavour

Discrete symmetry and CP

Generalised CP (GCP) transformation

$$\varphi(x) \xrightarrow{CP} X \varphi^*(x_P) \qquad x = (t, \mathbf{x}) \qquad x_P = (t, -\mathbf{x})$$
unitary matrix

Consistency condition (X is constrained by G_f)

$$X\rho^*(g)X^{-1} = \rho(g') \qquad g, g' \in G_f$$

Feruglio, Hagedorn, Ziegler, 1211.5560 Holthausen, Lindner, Schmidt, 1211.6953

If $G_e > Z_2$ and $G_{\nu} = Z_2 \times CP$, the mixing matrix is defined up to a real rotation

 $U_{\text{PMNS}} = U_{\text{fixed}} R_{ij}(\theta)$ $R_{ij}(\theta) = U_{ij}(\theta, 0)$ θ is a free real angle

- 1 free parameter => higher predictive power
- Predictions for the Majorana phases

Future neutrino oscillation experiments

Experiment	Mass	Baseline	Power POT	Running time
JUNO	20 kt	53 km	36 GW _{th}	6 years
DUNE	40 kt	1300 km	1.2 MW 1.1×10 ²¹ POT/y	7 years
T2HK	187 kt (×2)	295 km	1.3 MW 2.7×10 ²¹ POT/y	10 years
ESSnuSB	1 Mt	540 km	5 MW 2.7×10 ²³ POT/y	10 years

Designs used in Blennow, Ghosh, Ohlsson, AT, 2005.12277

Systematic exploration of low weights k_{α_i} , k_g , k_N Higher weights => more free parameters in the superpotential

Majorana mass term for N^c

 $3 \otimes 3 = 3' \otimes 3' = 1 \oplus 2 \oplus 3 \oplus 3'$

$$k_{\Lambda} = 0 \implies F_{M} = \text{const}: \quad (N^{c} N^{c})_{1} = N_{1}^{c} N_{1}^{c} + N_{2}^{c} N_{3}^{c} + N_{3}^{c} N_{2}^{c} \qquad M = 2 \Lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$k_{\Lambda} = 2 \implies F_{M} = Y_{2}, Y_{3'}: \Lambda \left(N^{c} N^{c} Y_{2} \right)_{1} + \Lambda' \left(N^{c} N^{c} Y_{3'} \right)_{1} \qquad M = 2 \Lambda \begin{pmatrix} 0 & Y_{1} & Y_{2} \\ Y_{1} & Y_{2} & 0 \\ Y_{2} & 0 & Y_{1} \end{pmatrix}$$

$$\begin{aligned} k_{\Lambda} &= 4 \; \Rightarrow \; F_{M} = Y_{1}^{(4)} \,, \; Y_{2}^{(4)} \,, \; Y_{3}^{(4)} \,, \; Y_{3'}^{(4)} : \\ & \Lambda \left(N^{c} \, N^{c} \, Y_{1}^{(4)} \right)_{1} + \Lambda' \left(N^{c} \, N^{c} \, Y_{2}^{(4)} \right)_{1} + \Lambda'' \left(N^{c} \, N^{c} \, Y_{3}^{(4)} \right)_{1} + \Lambda''' \left(N^{c} \, N^{c} \, Y_{3'}^{(4)} \right)_{1} \end{aligned}$$

Charged-lepton Yukawa matrix

$$\begin{pmatrix} k_{\alpha_1}, k_{\alpha_2}, k_{\alpha_3} \end{pmatrix} = (2, 4, 4) \implies \begin{pmatrix} F_{E_1}, F_{E_2}, F_{E_3} \end{pmatrix} = \begin{pmatrix} Y_{3'}, Y_{3}^{(4)}, Y_{3'}^{(4)} \end{pmatrix} : \lambda = \begin{pmatrix} \alpha Y_3 & \alpha Y_5 & \alpha Y_4 \\ \beta (Y_1 Y_4 - Y_2 Y_5) & \beta (Y_1 Y_3 - Y_2 Y_4) & \beta (Y_1 Y_5 - Y_2 Y_3) \\ \gamma (Y_1 Y_4 + Y_2 Y_5) & \gamma (Y_1 Y_3 + Y_2 Y_4) & \gamma (Y_1 Y_5 + Y_2 Y_3) \end{pmatrix}$$

Number of free real parameters in M_e and M_{ν} (Re(τ) and Im(τ) + coupling constants in the superpotential)

We aim to describe/predict 12 observables: m_e, m_μ, m_τ m_1, m_2, m_3 or m_3, m_1, m_2 $\sin^2 \theta_{12}, \ \sin^2 \theta_{13}, \ \sin^2 \theta_{23}$ $\delta, \alpha_{21}, \alpha_{31}$

Correlations between observables

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 46

Extended modular group

 $CP \rightarrow \gamma \rightarrow CP^{-1}$ on the modulus

$$\tau \xrightarrow{CP} - \tau^* \xrightarrow{\gamma} - \frac{a\tau^* + b}{c\tau^* + d} \xrightarrow{CP^{-1}} \frac{a\tau - b}{-c\tau + d}$$

Outer automorphism of $\overline{\Gamma}$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow u(\gamma) \equiv CP \gamma CP^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$
$$u(S) = S \qquad u(T) = T^{-1}$$

Extended modular group

$$\overline{\Gamma}^* = \left\langle \tau \xrightarrow{S} - 1/\tau, \quad \tau \xrightarrow{T} \tau + 1, \quad \tau \xrightarrow{CP} - \tau^* \right\rangle \simeq \overline{\Gamma} \rtimes Z_2^{CP}$$

$$\overline{\Gamma}^* \simeq PGL(2,\mathbb{Z}) \text{ with } CP = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad \text{if } ad - bc = 1 \quad \text{and} \quad \tau \to \frac{a\tau^* + b}{c\tau^* + d} \quad \text{if } ad - bc = -1$$

Implication of CP for couplings

$$W \supset \sum_{s} g_{s} \left(Y_{s}(\tau) \chi_{1} \dots \chi_{n} \right)_{\mathbf{1},s} \qquad \overline{W} \supset \sum_{s} g_{s}^{*} \overline{\left(Y_{s}(\tau) \chi_{1} \dots \chi_{n} \right)_{\mathbf{1},s}}$$

In a symmetric basis (X = I)

$$g_{s}\left(Y_{s}(\tau)\chi_{1}...\chi_{n}\right)_{1,s} \xrightarrow{CP} g_{s}\left(Y_{s}^{*}(\tau)\overline{\chi}_{1}...\overline{\chi}_{n}\right)_{1,s} = g_{s}\overline{\left(Y_{s}(\tau)\chi_{1}...\chi_{n}\right)_{1,s}}$$
reality of Clebsch-
Gordan coefficients
(holds for $N \leq 5$)

 $g_s = g_s^*$

Couplings must be real

Sources of corrections

SUSY breaking

Can be made negligible via separation of SUSY-breaking scale and messenger scale

Renormalisation group running

Small for $\tan\beta \lesssim 10~(25)$ dependent on the model

Criado, Feruglio, 1807.01125

Kähler potential

This is a problem in the bottom-up approach, since many terms allowed by modular invariance can be present in K

Feruglio, 1706.08749 Chen, Ramos-Sánchez, Ratz 1909.06910, + et al. 2108.02240 Feruglio, Gherardi, Romanino, **AT**, 2101.08718 Eclectic flavour symmetries: Nilles, Ramos-Sánchez, Vaudrevange, 2001.01736, 2004.05200

Dimension of linear space of modular forms

N	g	$d_{2k}(\Gamma(N))$	μ_N	Γ_N
2	0	k+1	6	S_3
3	0	2k + 1	12	A_4
4	0	4k + 1	24	S_4
5	0	10k + 1	60	A_5
6	1	12k	72	
7	3	28k - 2	168	

k(this presentation) $\equiv 2k$ (this table)

Feruglio, 1706.08749

Modular forms of level 2 and weight 2

Level
$$N = 2$$
 $(\Gamma_2 \simeq S_3 : S^2 = (ST)^3 = T^2 = I)$

N\k	0	2	4	6
2	1	2	3	4

 $\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} \left(1 - q^n\right), \quad q = e^{2\pi i \tau}, \text{ is the Dedekind eta function}$ $\eta(\tau+1) = e^{i\pi/12} \eta(\tau) \qquad \eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)$

Kobayashi, Tanaka, Tatsuishi, 1803.10391

Modular forms of level 2 and weight 2

Level
$$N = 2$$
 $(\Gamma_2 \simeq S_3 : S^2 = (ST)^3 = T^2 = I)$

$$Y(a_1, a_2, a_3 | \tau) \equiv \sum_{i=1}^3 a_i \frac{d}{d\tau} \log \eta_i(\tau), \qquad \sum_{i=1}^3 a_i = 0$$

$$\sum_{i=1}^{5} a_i = 0$$

$$Y_{2}(-1/\tau) = \tau^{2} \rho(S) Y_{2}(\tau) \qquad Y_{2}(\tau+1) = \rho(T) Y_{2}(\tau)$$

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$Y_{2}(\tau) = \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \end{pmatrix} = c \begin{pmatrix} Y(1,1,-2 \mid \tau) \\ Y(\sqrt{3},-\sqrt{3},0 \mid \tau) \end{pmatrix}$$

S_3 doublet of weight 2 modular forms

Kobayashi, Tanaka, Tatsuishi, 1803.10391

Neutrino Workshop at IFIRSE, Quy Nhon, 18/07/2023 Arsenii Titov (University of Pisa) 52

Modular forms of level 3 and weight 2

Level
$$N = 3$$
 $(\Gamma_3 \simeq A_4 : S^2 = (ST)^3 = T^3 = I)$

N\k	0	2	4	6
3	1	3	5	7

S

$$\eta\left(\frac{\tau}{3}\right), \eta\left(\frac{\tau+1}{3}\right), \eta\left(\frac{\tau+2}{3}\right), \eta(3\tau)$$

T

$$Y_{3}(\tau) = \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix} = c \begin{pmatrix} Y(1,1,1,-3 \mid \tau) \\ -2 Y(1,\omega^{2},\omega,0 \mid \tau) \\ -2 Y(1,\omega,\omega^{2},0 \mid \tau) \end{pmatrix} \qquad \omega = e^{2\pi i/3}$$

A_4 triplet of weight 2 modular forms

Feruglio, 1706.08749

Modular forms of level 4 and weight 2

Level
$$N = 4$$
 ($\Gamma_4 \simeq S_4$: $S^2 = (ST)^3 = T^4 = I$)

N∖k	0	2	4	6
4	1	5	9	13

$$S = \eta\left(\tau + \frac{1}{2}\right), \quad \eta(4\tau), \quad \eta\left(\frac{\tau}{4}\right), \quad \eta\left(\frac{\tau+1}{4}\right), \quad \eta\left(\frac{\tau+2}{4}\right), \quad \eta\left(\frac{\tau+3}{4}\right)$$
$$Y_{2}(\tau) = \begin{pmatrix}Y_{1}(\tau)\\Y_{2}(\tau)\end{pmatrix} = c\begin{pmatrix}Y_{1}(1,\omega,\omega^{2},\omega,\omega^{2}|\tau)\\Y_{1}(1,\omega^{2},\omega,\omega^{2},\omega|\tau)\end{pmatrix}$$
$$Y_{3}(\tau) = \begin{pmatrix}Y_{3}(\tau)\\Y_{4}(\tau)\\Y_{5}(\tau)\end{pmatrix} = c\begin{pmatrix}Y_{1}(1,-1,-1,-1,1,1|\tau)\\Y_{1}(1,-1,-\omega^{2},-\omega,\omega^{2},\omega|\tau)\\Y_{1}(1,-1,-\omega,-\omega^{2},\omega,\omega^{2}|\tau)\end{pmatrix}$$

 S_4 doublet and triplet (3') of weight 2 modular forms

Penedo, Petcov, 1806.11040