Hyper-Kamiokande Status and Prospects with neutrino oscillation measurements

T. Nakaya (Kyoto U.) for the Hyper-Kamiokande Collaboration

2023.7.17 @Neutrino Workshop at IFIRSE

Hyper-Kamiokande

Water Cherenkov detectors in Kamioka

Current Status

Neutrinos Span Multiple Fields!

- **Particle Physics** •
- AstroPhysics •
- Cosmology •
- High energy Astro-• particle physics
- Nuclear physics

Maki-Nakagawa-Sakata Mixing matrix

Neutrino Oscillations

Large θ_{13} opens the window to study CPV

Hyper-Kamiokande Project

- Long baseline experiment and non-accelerator physics in a single project

- World-largest detector for Nucleon-decay and Neutrino experiment
 - 8.4 times larger fiducial mass (190 kiloton) than Super-K instrumented with double-sensitivity PMTs
- World most-intense neutrino beam
 - J-PARC neutrino beam to be upgraded to 1.3 MW
- New and upgraded near detectors to control systematic errors

Based on the highly successful tradition of SuperK and T2K (expertise and collaboration)

Hyper-Kamiokande program

Accelerator Neutrino beam from J-PARC

Tar water

Neutrinos

Hyper-Kamiokande

Total mass 260 kton Fiducial 190 kton

New photo-sensors

Tank filled with pure water 68m (D) x 71m (H)

Physics category

LBL (I.3MW×I0years)

ATM+LBL (10 years)

Proton Decay (20 years)

> Solar (10 years)

Supernova

Target sensitivity

Parameters	Sensitivity	
δprecision	7°-20°	
CPV coverage (3/5σ)	76%/58%	
$sin^2\theta_{23}$ error (for 0.5)	±0.017	
MO determination	>3.80	
Octant determination (3σ)	θ ₂₃ -45° >2°	
τ for e ⁺ π ⁰ (3σ)	 × 0 ³⁵	
τ for ν Κ (3σ)	3×10 ³⁴	
Day/Night (from 0/from KL)	8σ/4σ	
Upturn	>30	
Burst (10kpc)	54k-90k	
Relic	70v's / 10 years	

Long-baseline program with the J-PARC neutrino beam

Experimental setup

- > Major component is QE: E_{ν} determined from (p, θ) of charged lepton

• <u>2.5°</u> off-axis v_{μ} and \bar{v}_{μ} beam peaked at 0.6 GeV (oscillation maximum at 295km) • Measures CP violation in neutrinos by comparing $P(v_{\mu} \rightarrow v_{e})$ and $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$

• A few % statistical uncertainties after 10 years operation with >1000 v_{ρ} and \bar{v}_{e} signals

Neutrino oscillation sensitivity

• Good chance for discovery of CP violation with $> 5\sigma$

- Combination of beam and atmospheric neutrinos enhances the sensitivity for mass ordering
- Reduction of systematic uncertainty has sizable impact

Nucleon decay: clear evidence of GUT

World's best sensitivity for most of possible modes,

Neutrino Astrophysics

- Observation of a few~10MeV neutrinos with time, energy and direction information
 - Unique role in multi-messenger observation
- Solar neutrinos: up-turn at vacuum-MSW transition, Day/Night asymmetry, hep neutrino observation
- Supernova burst neutrinos: explosion mechanism, BH/NS formation, alert with ~1° pointing • Supernova Relic Neutrinos (SRN): stellar collapse, nucleosynthesis and history of the universe

Phys. J. A52, 87 (2016)

Project Status

Hyper-Kamiokande collaboration **NUMBER OF** Univ. of Tokyo and KEK host the project **COLLABORATORS**

- ~560 people from ~20 countries, ~100 institutions
 - 25% Japanese / 75% non-Japanese
- Recently approved as a recognized experiment (RE45) at CERN

First face-to-face meeting after project approval

• 2022-2027: Construction, 2027-: Operation • No change of schedule since the approval of project in 2020

	JFY2	020	JFY2021	JFY2022	JFY2023
Preparation Openation Openation Openation					
	Preparation	Tunnel const.	e	Cavern excavation	
					PMT productio
	6 hor		PM		
	_				
			F	Power-upgrade	of J-PARC and
			Near D	etector Facility,	R&D, producti

Timeline

Cavern excavation status

- Access tunnel (~2 km) completed in Feb. 2022
- Excavation of the main cavern started in fall 2022 and is proceeding as scheduled

20

,40 m (D)

Top of the Detector Cavern (March 14, 2023)

Detector configuration

- $67 \text{ m}\Phi \ge 66 \text{ m}$ Inner Detector (fiducial 190 kt) - 20,000 HPK HiQE (x2 SK) 20-inch PMTs will be installed
 - mPMT modules will be integrated as hybrid configuration.
- 1m(wall) or 2m(top/bottom) thick Outer Detector \bullet - 3" PMTs + WLS boards
- Under-water electronics module
 - Mitigate disadvantage of long cables

Hyper-KPMT Performance Hamamatsu R12860

×2 better photodetection efficiency (QE×CE)

Box&Line dynode & Line PMT Box ////

(Performance in SK tank, 1.7e7 gain)

×2 better charge resolution

Electronics system

- Developed to maximize the performance of improved PMTs
- Frontend electronics placed underwater
 - Digitizing signals near PMTs
 - Maximize the performance of the detector
- Challenges
 - Everything in water-tight vessels
 - Water-tight connectors and cables
 - Very high reliability required
 - Synchronization of distributed components
- Large international collaboration project by itself
 - Development, production, assembly, testing, calibration, installation, ..
 - Planning assembly/testing at CERN

Detector component (some production starting)

PMTs

PMT cover

Multi-PMT module: Outer detector: PMT+WLS plate

ID mockup

Underwater electronics:

 $20 \times 50 \text{ cm ID PMTs} + 12 \times \text{OD PMTs}$

Feedthroughs for ID and OD

OD signal + HV splitter

MR-RF cavities

Main Ring Circumference 1.567.5 m $3 \text{ GeV} \rightarrow 30 \text{ GeV}$ K.E.: **97.1% → 99.95**% **v/c:**

320kA horn operation

Neutrino Exp. Facility

Achieved 515 kW in JFY2020 Aiming 1.3 MW by JFY2028

J-PARC Upgrade

Sand Harry Harry Constant

New main magnet PS for high rep. rate

Critical components to precisely understand J-PARC beam and neutrino interactions.

On-axis Detector (INGRID)

Off-axis Magnetized Tracker

(ND280 \rightarrow Upgrade for T2K \rightarrow Upgrade for HK)

- On-axis detector: Measure beam direction and event rate
- Off-axis magnetized tracker: Measure primary (anti)neutrino interaction rates, spectrum and properties. Charge separation to measure wrong-sign background Upgrade by T2K experiment and Intensive discussion for further upgrade in HK-era is on-going.
- Intermediate WC detector: H₂O target with off-axis angle spanning orientation. Detector site investigation and conceptual facility design is on-going. \rightarrow

Connection to FNAL and CERN: Beam test of detectors, Hadron production measurements for J-PARC neutrino beam

Neutrino detectors at J-PARC

Off-axis spanning Intermediate water Cherenkov detector

Hyper-Kamiokande with J-PARC

- Important physics targets
 - Neutrino CP violation: Discovery with 5 σ for ~60% parameter regions
 - Nucleon Decay Search for testing GUT: $\tau > 1035$ years for $p \rightarrow e^+\pi^0$
 - Neutrino Astrophysics: Supernova neutrinos
- Big Water Cherenkov detector with 190 kton fiducial mass
 - Facility and Detector construction are on-going for the operation starting in 2027
- J-PARC neutrino beam being upgraded toward 1.3 MW power

Your support is essential!