

<u>а</u>

CHIBA UNIVERSITY

The FASER Experiment

- Large Hadron Collider (LHC): 27 km ring collider, 13.6 TeV proton-proton collisions • Energetic particles produced in the far-forward direction of the collisions
- **FASER**(ForwArd Search ExpeRiment) is a new experiment at the LHC to search for long-lived BSM particles (dark photon, axion-like-particles) and study neutrinos

FASER at T112 Tunnel

FASER Detector

Magnets (0.55 T permanent dipole magnets, 10 cm aperture radius)

(ATLAS SCT spares)

Tracking spectrometer stations

Length: ~7 m

(LHCb ECAL spares)

Electromagnetic

Calorimeter

arXiv:2207.11427

Front Scintillator veto system TO ATLAS IP Scintillator veto system Decay volume **FASERv** emulsion Interface detector Tracker (IFT)

Trigger / timing scintillator station

FASERv Neutrino Detector

- Emulsion-based detector
- $730 \times [tungsten (1.1 mm thickness) + emulsion film]$
- 250 mm \times 300 mm, 1 m long, 1.1 tons (220 X₀)
- Install (exchange) emulsions 3 times a year

Interface Tracker: 3 layer silicon-strip tracker

- Global reconstruction with FASER spectrometer
- Muon charge identification (v_{μ})

• v flavor tagging with topological/kinematical informations

Emulsion film Tungsten plate (1.1 mm)

Veto scintillator (2 layer)

Expected CC interaction events (250 fb⁻¹) (based on PhysRevD.104.113008)

Gen	erators	$FASER\nu$			
light hadrons	heavy hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu}$	$\nu_{\tau} + \bar{\nu}_{\tau}$	
SIBYLL	SIBYLL	1501	7971	24.5	
DPMJET	DPMJET	5761	11813	161	
EPOSLHC	Pythia8 (Hard)	2521	9841	57	
QGSJET	Pythia8 (Soft)	1616	8918	26.8	
Combin	ation (all)	2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5^{+94}_{-43}	
Combination	(w/o DPMJET)	1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$	

3331	10.1	165	1015	1.2
5782^{+1306}_{-998}	$40.5^{+56.6}_{-25.8}$	245^{+149}_{-111}	991^{+132}_{-200}	$11.3^{+7.3}_{-4.0}$
5346^{+558}_{-563}	$21.6^{+12.5}_{-6.9}$	195^{+71}_{-61}	976^{+146}_{-185}	$8.8^{+2.7}_{-1.5}$

- Discrepancy between generators for charm production
- ~10,000 v interactions expected in LHC Run 3 (2022-2025)

FASERv Cross-Section Sensitivity

 (150 fb^{-1})

• Three flavors neutrino cross-section measurements for unexplored energy ranges • Neutrino energy reconstruction with resolution of 30% expected from simulation studies

Film Production

Gel production

Emulsion film coating system

- 200 nm diameter silver halide crystals dispersed in gelatin
- Produced gel and film at Nagoya University
- Total area of 730 films: ~55 m² per replacement

Double sided emulsion coating

Module Assembly

- Sub-module: vacuum-packed 10 films + 10 tungsten plates
- ~14 days to complete 73 packs
- Apply external force (equivalent to 1 bar) to the sub-modules in the FASERv box

Film Development

- Installed new development chains
 - Sharing the facility with other emulsic
- 10-12 days to

2

he renovated CERN darkroom facility Tau, SND@LHC, etc

Readout

Computers

• Transport films to

HTS-

- Readout by Hyper
 - Field of view: 5.1 mm \land 5.1 mm
 - 60-80 minutes per a film

omo TS-

Camer

Objective lens

Illuminator

Stage

30 cm

FASERv Performances

• Dataset: most downstream 10 emulsion films of the 1st FASERv module

- From March to July 2022, integrated luminosity: 0.5 fb⁻¹

 Observed ~0.2 μm position accuracy with dedicated alignment using high momentum muon tracks

• Position deviation between hits and the straight-line fits to the reconstructed tracks

Emulsion Detector Replacement in LHC Run 3

2022

	1			1		I	1	1			
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			1 st m	nodule (~(0.5 fb ⁻¹)		2 nd (~10 fb-	1)	3rd (~30 fb)-1)	

2023			stable collisions								
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
				4 th (~20 fb ⁻¹)		5 th (~20 fb ⁻¹)	6 th (~20 fb ⁻	1)			

- Physics data taking from the 2nd module
- Exchange every 20-30 fb⁻¹ integrated luminosity from 2023

LHC Run 3 stable collisions

- >30fb-1 of data recorded so far

consistent with MIP

"Electronic" Neutrino Search

- Collision event with good data quality (35.4 fb⁻¹)
- No signal (<40 pC) Signal (>40 pC) $FASER\nu$ IFT Veto scintillator scintillator station station $x \rightarrow z$ CC interaction vertex ATLAS LOS ungsten target

FASER ν tungsten/emulsion detector

1 m

- Timing and pre-shower consistent with ≥ 1MIP
- Exactly 1 good fiducial (r < 95 mm) track
 - p > 100 GeV and $\theta < 25$ mrad
 - Extrapolating to r < 120 mm in front veto
- Expect 151 ± 41 events from GENIE simulation
 - Uncertainty from DPMJET vs. SIBYLL
 - No experimental errors

ariv:2303.14185 (accepted by PRL)

Background Estimation (1)

Veto inefficiency

Veto scintillator (2 layer)

- Estimated from events with just one veto scintillator firing
- Negligible background expected due to very high veto efficiency

Neutral hadrons

- Expect ~300 neutral hadrons with E>100 GeV
- Most are absorbed in tungsten
- Estimated from 2-step MC simulations
- Estimate 0.11 ± 0.06 events

Background Estimation (2)

- Estimated from sideband
 - Fit to extrapolate to higher momentum
- Calculate scaling factor using MC simulations to extrapolate to signal region
- Estimate 0.08 ± 1.83 events (uncertainty from varying selection)

Results

- Observed 153^{+13}_{-12} events (151 ± 41 events expected)
- Signal significance of 16σ
- First directory observation of collider neutrinos

Category	Events
Signal	153
n ₁₀	4
n ₀₁	6
n ₂	6401469

Neutrino Characteristics

- Only statistical errors are shown
- Most events at high momentum ($E_{\mu} > 200 \text{ GeV}$)
- Good agreement with expectations from simulation

Observation of v_e Candidate with FASERv

Preliminary

Beam view

100 µm

5000 µm

Side view

Vertex with 11 tracks

- 615 µm inside tungsten
- e-like track from vertex
 - Single track for 2X₀
 - Shower max at 7.8X₀
 - $\theta_e = 11 \text{ mrad to beam}$
- Back-to-back topology
 - 175° between e & rest

Forward Physics Facility

Dackground

- Emulsion detector replacement: Once per a year

FPF Physics

	D	etector	Number	r of CC Intera	ctions	
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu}\!\!+\!\bar{ u}_{\mu}$	$\nu_{ au} + \bar{\nu}_{ au}$
$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	$150 { m ~fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m ~fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6
$FASER\nu 2$	20 tons	$\eta\gtrsim 8.5$	3 ab^{-1}	178k / 668k	943k / 1.4M	2.3k / 20k
FLArE	10 tons	$\eta\gtrsim7.5$	3 ab^{-1}	36k / 113k	203k / 268k	1.5k / 4k
AdvSND	$2 ext{ tons}$	$7.2 \lesssim \eta \lesssim 9.2$	$3 \mathrm{~ab^{-1}}$	6.5k / 20k	41k / 53k	190 / 754

- Expected tau neutrino interactions: ~2300 (SIBYLL) / ~20000 (DPMJET)
- Many interesting QCD topics as well as neutrino and BSM physics

Summary

• FASERv studies three flavor neutrinos at the high energy frontier

~10,000v interactions expected in LHC Run 3 (2022-2025, 250 fb⁻¹)

Successfully taking data since the start of LHC Run 3

- FASER recorded 96% of delivered luminosity in 2022
- ~0.2 µm position accuracy observed on the 10 emulsion films -
- Observed 153 v_{μ} CC interactions with FASER (signal significance of 16 σ)
 - First direct observation of collider neutrinos
 - Neutrino characteristics are in good agreement with expectations from simulation
- FASERv observed v_e candidate
 - Emulsion analysis will follow soon
- Starting to discuss a new forward physics facility at HL-LHC (FPF)

Dark Photon Search

New Physics

constrain SM EFT coefficients

SM neutrino oscillations are expected to be negligible at FASERv. However, sterile neutrinos with mass ~40eV can cause oscillations. FASERv could act as a short-baseline neutrino experiment.

Input for astroparticle experiments

Studies of high-energy astrophysical neutrinos with large-scale neutrino telescopes (e.g. IceCube), suffer from backgrounds from atmospheric neutrinos from charm-decay (charm produced in hadronic shower initiated by cosmic rays hitting the atmosphere).

At ultra high-energy light hadrons travel far through the atmosphere, losing energy, and hence produce lower energy neutrinos. Neutrinos produced in charm decay ("prompt neutrinos") are therefore the key background at high energy. This prompt background has a large associated uncertainty which limits the study of astrophysical neutrinos. Measurements of neutrinos from charm at the FPF can provide important information to constrain this background.

Physics

Detector Environment

FLUKA simulations

Muon flux simulations/measurements
 MC prediction is in good agreement with data
 The expected muon flux is low enough to use the emulsion detector in the tunnel

Muon Measurements

In order to measure the muon rate away from the LOS in Run 3, we recently installed 20 small emulsion detectors within 2m of FASER. These were installed on 23/7 and removed on 2/9, having been exposed to ~10/fb of data. They will provide a useful validation of the FLUKA estimate further from the LOS.

Sweeper Magnet: Ongoing Studies

- Preliminary design of sweeper magnet by TE-MSC
 - Based on permanent magnet to avoid power converter in radiation area
 - Consider 7m long (20x20cm² in transverse plane) magnet, 7Tm bending power \bullet
- To install such a magnet would require some modifications to cryogenic lines in relevant area
 - Possibility of modifications to be investigated with LHC cryo \bullet
 - Integration/installation aspects to be studied \bullet
- FLUKA and BDSIM studies ongoing to assess effectiveness of such a magnet in reducing the muon background in the FPF

External ring (construction steel)

Neutrinos: Geometric Background

- Measure geometric background by counting # events in SB and scale to SR
- SB defined to enhance muons missing FASERv veto that still give a track in the spectrometer
 - Single IFT segment in 90 < r < 95 mm anulus
 - Loosened momentum requirement
 - No FASERv veto radius requirement
 - Negligible neutrino background
- Fit mom. to extrapolate to p > 100 GeV
- Scale to rate of events with r_{VetoNu} < 120 mm
 - 0 events so use 5.9 events as 3σ upper limit
- Scale from anulus to full acceptance
 - Using large angle muon simulation
- Expect 0.08 ± 1.83 events

FASERv

34

Neutrinos: Neutral Hadron Background

- Simulated $10^9 \mu^+$ and μ^- events
 - Start from FLUKA Spectra
 - G4 propagation through last 8 m of rock
 - Number of hadrons with p > 100 GeV reaching FASER \approx 300.

Scale neutral hadrons produce by muons reaching FASER by fraction passing selection

• Predicts $N = 0.11 \pm 0.06$ events

• Estimate fraction of these passing event selection

- Simulate kaons (Ks/Kl) and neutrons with p > 100 GeV following expected spectra
- Most are absorbed in tungsten with no high-momentum track \Box only small fraction pass

Neutrinos: fit

- Fit to events with 0, 1 or 2 front veto hits
 - Splitting those were 1 hit is in 1st/2nd layer
- Construct likelihood as product of Poissions
 - With additional 3 Gaussian constraints for Neutral hadron background, Geometric background and the extrapolation factor

$$\mathcal{L} = \prod_i^4 \mathcal{P}(n_i |
u_i) \cdot \prod_j^3 \mathcal{G}_j$$

- Determine number of in each category
 - Along with inefficiencies of 2 forward vetos, which are found to be close to expected vals.

Inefficiencies: 6 / 9 x 10⁻⁸ 1 - p1 = 99.999994(3)% 1 - p2 = 99.999991(4)%

- n_0 : A neutrino enriched category from events that pass all event selection steps.
- n_{10} : Events for which the first layer of the FASER ν scintillator produces a charge of >40 pC in the PMT, but no signal with sufficient charge is seen in the second layer.
- n_{01} : Analogous events for which more than 40 pC in the PMT was observed in the second layer, but not in the first layer.
- n_2 : Events for which both layers observe more than $40 \,\mathrm{pC}$ of charge.

Category	Events	Expectation
n_0	153	$ u_{\nu} + \nu_b \cdot p_1 \cdot p_2 + \nu_{\text{had}} + \nu_{\text{geo}} \cdot \eta_{\text{geo}} $
n_{10}	4	$ u_b \cdot (1-p_1) \cdot p_2$
n_{01}	6	$ u_b \cdot p_1 \cdot (1-p_2)$
n_2	64014695	$\nu_b \cdot (1-p_1) \cdot (1-p_2)$

Neutrino experiments at the LHC

14TeV p-p collisions

Mid-high energy neutrinos off-axis (7.2 < η < 8.4) 800 kg tungsten target SND@LHC was approved in Mar 2021,

TP <u>arXiv:2002.08722</u>

2023/3/15

Weakly interacting light particles (A', ALP) 1100 kg tungsten target FASER*v* paper <u>10.1140/epjc/s10052-020-7631-5</u> FASER*v* was approved in Dec 2019, TP arXiv:2001.03073

