#SOMOSUA

Non-Standard Physics at NOvA and T2K

Mario A. Acero Ortega for the NOvA Collaboration

19th Rencontres du Vietnam **NEUTRINO WORKSHOP AT IFIRSE 2023** International Centre for Interdisciplinary Science Education (ICISE) Quy Nhon (Central Vietnam), July 2023

CO-SC7289-1

Nu Workshop – IFIRSE

#SOMOSUA

Outline

- NOvA and T2K Experiments
- Non-Standard Neutrino Physics
- Phenomenology and Results
 - Sterile Neutrinos
 - Non-Standard Interactions
 - Heavy neutrinos
 - ... and more.
- Conclusions

THE EXPERIMENTS

Nu Workshop – IFIRSE

A 2-slides review

- Long-baseline (810 km) neutrino • oscillation experiment
- Muon Neutrinos from the NuMI Beam at Fermilab
- Two (functionally equivalent) detectors: •
- **Far Detector**: 14 kton; on the surface
- **Near Detector**: 0.3 kton; underground Ο
- Off-axis (14.6 mrad) position (beam peaks at ~2 GeV)

14.6 mrad ~ 0.84°

Nu Workshop – IFIRSE

NOvA The Experiment in the US

#SOMOSUA

~270 members, 49 Institutes, 8 countries

- Long-baseline (295 km) neutrino • oscillation experiment
- Muon Neutrinos from the J-PARC acceleration complex
- Two detectors:
- Far Detector: Super-Kamiokande
- **Near Detector(s)**: ND280; INGRID (on-axis)
- Off-axis (2.5°) position (beam peaks at ~0.6 GeV)

2.5° ~ 43.6 mrad

Nu Workshop – IFIRSE

#SOMOSUA

~530 members, 76 Institutes, 14 countries

M.A. Acero Ortega

Physics Goals

- Muon (anti)neutrino disappearance and Electron (anti)neutrino appearance
 - Measurement of the oscillation • parameters ($\Delta m_{32}^2, \theta_{23}, \delta_{CP}$)
 - Mass Ordering •
 - Neutrino interactions (cross sections)
 - Sterile and supernova neutrinos •
 - 'Exotic' physics

NOvA and T2K

The Experiments

#SOMOSUA

www.uniatlantico.edu.co

STANDARD NEUTRINO OSCILLATIONS

Nu Workshop – IFIRSE

A quick review

Neutrino Oscillations

The 3-neutrino model

The 3-neutrino mixing

#SOMOSUA

$$(\begin{matrix}
u_1 \\
u_2 \\
u_3 \end{matrix}
brace$$
 ing matrix

$$\left(egin{array}{c} \cos heta_{12} & \sin heta_{12} & 0 \ -\sin heta_{12} & \cos heta_{12} & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$\theta_{13} e^{-i\delta_{CP}}$$

 0
 $\cos \theta_{13}$

Atmospheric/Accelerators Solar Reactor

Neutrino Oscillations

The neutrino evolution (in vacuum):

$$\mathcal{H}_0 |\nu_k\rangle = E_k |\nu_k\rangle, \quad |\nu_\alpha\rangle =$$

But neutrinos interact with matter

$$\mathcal{H}=\mathcal{H}_0+\mathcal{H}_I,$$

Effective potential

$$V_{\alpha} = V_{CC}\delta_{\alpha e} + V_{NC}$$

The 3-neutrino mixing

#SOMOSUA

 $\sum U_{\alpha k}^* |\nu_k\rangle, \quad E_k = \sqrt{\mathbf{p}^2 + m_k^2}$

 $\mathcal{H}_{I} \left| \nu_{\alpha} \right\rangle = V_{\alpha} \left| \nu_{\alpha} \right\rangle$ $=\sqrt{2}G_F\left(N_e\delta_{\alpha e}-\frac{1}{2}N_n\right)$

The 3-neutrino oscillations in matter

Evolution in matter is governed by an effective Hamiltonian

Leading to the well-known Mikheev-Smirnov-Wolfenstein (MSW) effect

Nu Workshop – IFIRSE

#SOMOSUA

 $\mathcal{H}_F = \frac{1}{2E} \left(U \mathbb{M}^2 U^{\dagger} + \mathbb{A} \right)$

 $\mathbb{M}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} \qquad \mathbb{A} = \begin{pmatrix} A_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

NON-STANDARD NEUTRINO OSCILLATIONS

Additional neutrinos – Additional interactions

Sterile Neutrinos

Phenomenology and Results

Nu Workshop – IFIRSE

The motivations and implications

The possible existence of a 4th sterile neutrino as an explanation to the event excess observed by LSND and MiniBooNE...

Sterile neutrinos

Possible implications

12

Modification of the neutrino mass states mixing

Anomalous v_e appearance

_
\leq
Ξ.
Π
Ô
0
\mathbf{O}
0
••
U
\mathbf{T}
Ē
N
\frown
Ν
1
00
Ú
لستسا

Additional (sterile) neutrinos

The effects of on the neutrino evolution

... Also leads to a modification of the Hamiltonian.

The PMNS mixing matrix becomes 4x4.

[S. Shael et al., Phys. Rept 427 (2006)]

Fourth neutrino does not couple to SM forces, but modifies the oscillations

#SOMOSUA

Additional (sterile) neutrinos

The effects of on the neutrino oscillation

Fourth neutrino does not couple to SM forces, but modifies the oscillations

- 3+1 neutrino oscillations studied trough neutral current disappearance
- NC are flavor independent clean measurement of **active** \rightarrow **sterile** disappearance

Nu Workshop – IFIRSE

Additional (sterile) neutrinos

The effects of on the neutrino oscillation

Fourth neutrino does not couple to SM forces, but modifies the oscillations

- 3+1 neutrino oscillations studied trough charged **current** v_{μ} disappearance

Sterile neutrino Spectra

Nu Workshop – IFIRSE

The results

NOVA

Preliminary

NOVA

Preliminary

Consistent with no sterile neutrino oscillations (within the 3F uncertainty)

 Δm_{41}^2

high Δm_{41}^2 regime

Nu Workshop – IFIRSE

Sterile neutrino parameters $\sin^2\theta_{34}$

 Δm_{A1}^2

Sterile neutrino parameters

The results

www.uniatlantico.edu.co

NON-STANDARD NEUTRINO OSCILLATIONS

Additional neutrinos – Additional interactions

Phenomenology and Results

Nu Workshop – IFIRSE

Heavy Neutrinos

Heavy neutrinos The motivations and implications

As an extension of the SM to include neutrino masses: inclusion of $n \ge 2$ right-handed neutrino fields

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & m_R \end{pmatrix} \begin{pmatrix} \bar{\nu}_L^c \\ \bar{\nu}_R \end{pmatrix} + \text{h.c.}$$

$$\text{nxn Majorana matrix}$$

Possible implications

- *n* heavy Majorana mass eigenstates, *N*
- Modification of the mixing pattern

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i} + \sum_{I=1}^{n} \Theta_{\alpha I} N_{i} \qquad (\alpha = e, \mu, \tau)$$
Active-heavy mixing matrix

Constraints on $U_{lpha}^2\equiv \sum \left|\Theta_{lpha I}\right|^2$ by searching for heavy neutrino decays

Heavy neutrinos

Search for heavy neutrinos (decaying in the ND280)

No excess of events was observed

Upper limits on the mixing elements $U_e^2,\,U_\mu^2,\,U_ au^2$

TZ

Nu Workshop – IFIRSE

The results

- $N \to l^{\pm}_{\alpha} \pi^{\mp}$ $N \to l^{+}_{\alpha} l^{-}_{\beta} \nu(\bar{\nu})$

NON-STANDARD NEUTRINO OSCILLATIONS

Additional neutrinos – Additional interactions

Nu Workshop – IFIRSE

Non-Standard Interactions

Phenomenology and Results

Non-Standard Interactions

The motivations and implications

The possible existence of NSI implies a modification of neutrino propagation...

Possible implications [S.S Chatterjee, A. Palazzo, PRL 126 (2021)]

- Low-energy manifestation of high-energy physics • (new heavy states)
- Light mediators
- Modify the dynamics of neutrinos in matter
- Sizable impact on current data

Interfere with the determination of the standard parameters

23

Friedland, I.M. Shoemaker arXiv:12 5 (2012)]

... Then leading to a modification of the Hamiltonian

$$\mathcal{H} = \frac{1}{2E} \left(U \mathbb{M}^2 U^{\dagger} + \mathbb{A} \right) + V_{CC} \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

with
$$arepsilon_{lphaeta}=\left|arepsilon_{lphaeta}
ight|e^{i\delta_{lphaeta}}$$
.

Diagonal terms $\mathcal{E}_{\alpha\alpha}$, could be interpreted as the NSI effective mass squared differences (possible new resonances even if neutrinos were massless)

Off-diagonal terms $\, {\cal E}_{lphaeta}$, could play a role like the mixing angles. Complex phases $\delta_{lphaeta}$, could be a source of CP violation.

Non-Standard Interactions

The effects of on the neutrino evolution

#SOMOSUA

Non-Standard Interactions

The effects of on oscillation probability

NSI – $e\mu$ and $e\tau$ Spectra

The results

NSI not needed to explain NOvA spectra.

Muon (anti)neutrinos

No evidence of NSI (results are consistent with 3F within uncertainties)

VIGILADA MINEDUCACIÓN

NSI – $e\mu$ and $e\tau$ Constraints

Nu Workshop – IFIRSE

The results

NOvA Preliminary 2.5 13.6×10²⁰ POT-equiv. v-beam **NOvA 90% CL** 12.5×10^{20} POT \overline{v} -beam NO IO • Best fit NO Best fit IO 1.5 $|\mathcal{E}_{e\tau}|$ 0.5 0, $\frac{3\pi}{2}$ $\frac{\pi}{2}$ $δ_{CP} + δ_{eτ}$ $|arepsilon_{e au}|\sim$

27

Universidad del Atlántico VIGILADA MINEDUCACIÓN

$e\tau$ Result: Vs. MINOS

Nu Workshop – IFIRSE

The results

Other than neutrino oscillations

Nu Workshop – IFIRSE

More Physics Results

Search for Lorentz and CPT violations [PRD95 111101(R) (2017)]

Upper bound on the neutrino mass [PRD93 012006 (2016)]

And several cross-section measurements

Even more!

The results

Coincidences with LIGO/Vigo detections [PRD104 063024 (2021), PRD101 112006 (2020)]

Search for slow magnetic monopoles [PRD103 012007 (2021)]

Supernova neutrinos [JCAP10 014 (2020)]

Seasonal variation of multi-muon events [PRD104 012014 (2021), PRD99 122004 (2019)]

Nu Workshop – IFIRSE

Conclusions

- Rich physics research at and great results from both, **NOvA** and **T2K**, beyond standard neutrino oscillations.
- No signal of sterile neutrinos observed by T2K or NOVA.
- NOvA spectra do not need NSI.
- No signals from heavy neutrinos observed by T2K.
- Amazing potential for exploring BSM physics, too.

NOvA Collaboration – June 2023 – QMUL, London (UK)

Nu Workshop – IFIRSE

THANKS!

VIGILADA MINEDUCACIÓN

Additional information

Nu Workshop – IFIRSE

Backup Slides

NOvA Neutrinos from NuMI beam

#SOMOSUA

Nu Workshop – IFIRSE

NOvA The Detectors

#SOMOSUA

Events selection

Some details

Classification

- We use Deep learning techniques for event selection: **Convolutional Neural** Network (CNN)
- Apply some cuts (conditions)
 - Contained
 - Track reconstruction
 - Cosmic rejection

#SOMOSUA

Particle 2
Particle 3

Particle 2				
			Particle 1	

Some important constraints

Backup

Other results matter

- We are insensitive to some oscillation paramenters -Use information from other sources: PDG, NuFIT
- Combination of different experiments. But...

For the NSI Analysis

#SOMOSUA

[NuFIT5.1, <u>www.nu-fit.org</u> (2012)]

www.uniatlantico.edu.co

Some important constraints

Backup

Other results matter

- We are insensitive to some oscillation paramenters -Use information from other sources: PDG, NuFIT
- Combination of different experiments. But...
- NSI could affect some of the measurements Solar + KamLAND prefer NSI at 1.9σ

For the NSI Analysis

#SOMOSUA

 $\sin^2 \vartheta_{12}$

 $\sin^2 \vartheta_{12}$

[A. Palazzo, PRD83 (2011)]

SO with the eµ and e τ models

The results

$v_{\rm e}$ disappearance affected by NSI

Nu Workshop – IFIRSE

NOvA Preliminary

Backup

Nu Workshop – IFIRSE

The results

#SOMOSUA

Backup

Dual Degeneracy

The results

#SOMOSUA

Antineutrinos

www.uniatlantico.edu.co

Degeneracy vs. Phase

IceCube Lab

Resutts from IceCube

Thight Constaints

Backup

- •
- One NSI parameter at a time and $\delta_{CP} = 0$.

#SOMOSUA

Thigh constraints on NSI using atmospheric neutrinos

Thighter Constaints on $\mu\tau$

Backup

- Modelling NSI as $\varepsilon_{\mu\tau} = Re(\varepsilon_{\mu\tau}) + i Im(\varepsilon_{\mu\tau})$

44

Resutts from IceCube

#SOMOSUA

Using 8 years of TeV-scale atmospheric muon-neutrino data

T2K - NOvA + NSIComunity interest

Backup

Combination of NOvA and T2K

