
“Fast” ML for Science
Nhan Tran, Fermilab & Duc Hoang, MIT
ICISE HW Camp
7 March 2024

With material from Aobo Li,
Beomki Yeo, Javier Duarte

• Particle physics & Experimental science

• Fast ML for Science

• ML - the basics

– Training and inference

• Computing technology & platform

• Coprocessors for science

• Efficient ML Codesign

• Examples: particle physics, fusion

• Towards automated, accelerated
discovery

Table of contents

2

Fast ML for Science

3

4

4

1 channel ~ 10b
1 channel, 1 MHz rate ~ 10 Mb/s

100k channels, 1 MHz rate ~ 1 Tb/s

4

Too Much Data
Too Late1 channel ~ 10b

1 channel, 1 MHz rate ~ 10 Mb/s
100k channels, 1 MHz rate ~ 1 Tb/s

4

Too Much Data
Too Late

Embed more intelligence

Fast ML for science and the extreme edge
“Scientific discoveries come from groundbreaking ideas and the capability to

validate those ideas by testing nature at new scales - finer and more precise

temporal and spatial resolution. This is leading to an explosion of data that

must be interpreted, and ML is proving a powerful approach. The more

efficiently we can test our hypotheses, the faster we can achieve discovery.

To fully unleash the power of ML and accelerate discoveries, it is necessary

to embed it into our scientific process, into our instruments and detectors.”

5

Applications and Techniques for Fast Machine Learning in Science

https://doi.org/10.3389/fdata.2022.787421

6

The Need For Speed

6

Benchmarks bring innovation

The Fast ML for Science community aims
to bring seemingly different domains

together to develop techniques, tools, and
platforms for challenges that far outpace

industry.

The Need For Speed

6

Benchmarks bring innovation

The Fast ML for Science community aims
to bring seemingly different domains

together to develop techniques, tools, and
platforms for challenges that far outpace

industry.

The Need For Speed

7

The Need For Speed

8

The Need For Speed

9

The Need For Speed

10

The Need For Speed

11

The Need For Speed

12

The Need For Speed

12

The Need For Speed

Fast and slow control

13

Fast and slow control

13

Fast and slow control

13

Fast and slow control

13

• Fast control
– Immediate response to dynamics of

the experiment and data readout

– Event timing, triggering, etc.

• Slow control
– Detector stability over minutes,

days, weeks, months,…

– Monitoring and controlling
operational parameters: electronics
gains, pedestals, calibrations, etc.

Fast and slow control

13

ML - the basics

14

Universal function approximation - fit with customizable objective:
f(inputs; lots of parameters) = output

• Expressive: able to find patterns and correlations in high-dimensional data not
explicitly accounted for

• Powerful: can unlock large gains in performance

• Adaptive, flexible, autonomous: able to adapt to new data, conditions automatically;
handles all different types of data representations

Why AI?

15

All of AI in one slide

16

https://iml-wg.github.io/HEPML-LivingReview

• Learning mathematical models from data that:

– characterize the patterns, regularities, and relationships amongst
variables in the system

• Three key components:

– Model: chosen mathematical model

– Depends on the task, data modality

– Learning: estimate statistical model from data

– Prediction and Inference: using statistical model to make predictions on
new data points and infer properties of system(s)

Basic elements of machine learning

17

Machine learning computation

18

Machine learning computation

19

xm = gm

�

Wm,m�1xm�1 + bm

�

Matrix-vector multiply

Non-linear activation function

Some intuition

20

https://playground.tensorflow.org/

21 https://machine-learning.paperspace.com/wiki/machine-learning-models-explained

22

Hidden layers

(hypothesis space)

all possible functions

neural networks are universal function approximators,

but we still must find an optimal approximating function

we do so by adjusting the weights

optimal

approximating

function

learning as optimization

Loss

Weight

Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L

@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

Learning = optimization

23

‘

‘

use chain rule to calculate gradients

a neural network defines a function of composed operations

fL(wL, fL�1(wL�1, . . . f1(w1,x) . . .))

and the loss is a function of the network outputL

Backpropagation

24

L

x
(L)

s
(L)

W
(L)

x
(L�1)

TARGET

@L

@W(L)
=

@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

depends on the

form of the loss

derivative of the

non-linearity

@

@W(L)
(W(L)|

x
(L�1)) =

1)) = x
(L�1)|

)

)

@s(L)

@W(L)

)

@x(L)

@s(L)

@L

@x(L)

Stochastic gradient descent

25

local minima and saddle points are largely not an issue

stochastic gradient descent (SGD):
use stochastic gradient estimate to descend the surface of the loss function

w = w � ↵r̃wL

recent variants use additional terms to maintain“memory” of

previous gradient information and scale gradients per parameter

in many dimensions, can move in exponentially more directions

See animated gifs: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

Compute technology & platforms

26

• Microprocessor: A single Integrated Circuit which can do data processing and logic
control

• Integrated Circuit: A chunk of transistors

• Transistor: A minimal building block of electronics

Basics of computing

27

Beomki Yeo
https://indico.cern.ch/event/1405035/contributions/5937283/

• CPU (Central Processing Unit): Made of Cores,
Caches and Control Units

– Core: Algorithm Logical Units (ALUs) and
registers

• ALU: performs mathematical operations

• Register: small storage which stores data
being

processed

– Cache: On-chip memory

– Control Unit: Distribute operations to other units

CPU

28

• Moore’s Law: observation that the number of transistors in processors doubles every
two years

• Dennard Scaling
– Free scaling of the frequency (f) for the same power consumption (P)

– P=!CV2f

– Capacitance (C) and operating voltage (V) are linearly reduced with the size of
transistor

• Pollack’s rule

– Observation of Performance ~ √N (N = the number of transistors)

– Moore’s law allows more number of transistors (N) on the same chip size

Moore’s law, Dennard Scaling, Pollack’s Rule

29

Moore’s law, Dennard Scaling, Pollack’s Rule

30

Beomki YeoMay 20th 2024 10

Image credit Slide after

● Recently Industries has improved the
performance with extra transistors in
different ways

● Increasing the register size
○ Vectorization

● Increasing the number of logical cores
○ Parallelization

New paradigm in CPU: Vectorization and Parallelization

Moore’s law

Dennard Scaling

Parallelization

Vectorization

Below the transistor

size of 65 nm (since yr.

2005), the current

leakage (I
leakage

) is not

negligible anymore

P=!CV2f + VIleakage

Flynn’s Taxonomy

31

Flynn’s Taxonomy

31

• Graphical processing unit

• Many number of cores (~1000)

– Much simpler than CPU

– Small caches

GPUs

32

https://arxiv.org/pdf/2003.11491

• Originally intended for graphics on PC screen

• Major vendors: Nvidia, AMD, Intel

• Necessity/Data

• Hardware

• ML Research

• Tools

Rise of ML

33

• Necessity/Data

• Hardware

• ML Research

• Tools

Rise of ML

33

• Necessity/Data

• Hardware

• ML Research

• Tools

Rise of ML

33

• Necessity/Data

• Hardware

• ML Research

• Tools

Rise of ML

33

34

Types of compute

35

• ASIC

– Google TPU block diagram

– Very efficient compute but long
development times and
challenge to make general
purpose

Types of compute

36

• FPGA

– More flexible to changing workloads

– Still not that easy to program

Types of compute

37

• NPUs

– Fast moving space

– Immature software ecosystem

– Interoperability a challenge

Types of compute

38

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Coprocessors

39

Modalities of processing

40

Accelerated compute

41

Coprocessors
Traditional datacenter-scale compute;

throughput-driven; general purpose
architectures

Embedded Systems
Embedded in our experiments; often
(hard) real-time latency constraints,

custom architectures

Fast ML regimes

42

On-detector  
ASIC compression

FPGA filter stack
~μs latency

Worldwide
computing grid

On-prem CPU/GPU  
filter farm

~100 ms latency

~100ns latency
Exabyte-scale  
datasets

Embedded

Custom NN circuits embedded into the

experimental readout

Coprocessors

Optimally leverage advances in industry

for task-based hardware acceleration as-

a-service

Efficient ML codesign (For embedded systems)

43

• Field Programmable Gate Arrays are reprogrammable integrated circuits

• Contain many different building blocks (‘resources’) which are connected together as
you desire

• Originally popular for prototyping ASICs, but now also for high performance computing

Spatial programming and FPGAs

44

Now Intel! Now AMD!

• Field Programmable Gate Arrays are reprogrammable integrated circuits

• Logic cells / Look Up Tables perform arbitrary functions on small bitwidth inputs
(2-6)

– These can be used for boolean operations, arithmetic, small memories

• Flip-Flops register data in time with the clock pulse

• DSPs (Digital Signal Processor) are specialized units for multiplication and
arithmetic

– Faster and more efficient than using LUTs for these types of operations

• BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb each in Xilinx)

– Memories using BRAMs more efficient than using LUTs

•

Spatial programming and FPGAs

45

• Field Programmable Gate Arrays are reprogrammable integrated circuits

• High speed transceivers with Tb/s total bandwidth
 PCIe, (Multi) Gigabit Ethernet, Infiniband

• AND: Support highly parallel algorithm implementations

• Low power per Op (relative to CPU/GPU)

• Cons:

– Limited resources on chip

– Difficult to program - concurrency always challenging

Spatial programming and FPGAs

46

• Field Programmable Gate Arrays are reprogrammable integrated circuits

• High speed transceivers with Tb/s total bandwidth
 PCIe, (Multi) Gigabit Ethernet, Infiniband

• AND: Support highly parallel algorithm implementations

• Low power per Op (relative to CPU/GPU)

• Cons:

– Limited resources on chip

– Difficult to program - concurrency always challenging

Spatial programming and FPGAs

46

Spatial programming and FPGAs

47

• Hardware Description Languages

– HDLs are programming languages which describe
electronic circuits

• High Level Synthesis

– Compile from C/C++ to VHDL

– Pre-processor directives and constraints used to
optimize the design

– Drastic decrease in firmware development time!

• Not totally rainbows and sunshine, often projects are mixes of HDL
and HLS but HLS can be used to make kernels or IPs of dedicated
algorithms

How are FPGAs programmed?

48

Efficient codesign

49

50

Moving data expensive, computing cheap

51

Moving data expensive, computing cheap

Efficient machine learning

• Computation parallelization/

vectorization and in-memory compute

(architecture)

• Quantization, reduced precision

• For ML, 32-bit floating point is often overkill

• Integer/fixed-point math at 16,8,7,6,5…1
bits

• Compression, pruning

• maintain the same performance while
removing low weight synapses and neurons

52

53

Developed Quantization-aware pruning
procedure:

• Used BOPS as hardware efficiency metric

• Fine-tuning vs. Lottery ticket pruning

• Effect of Batch Norm and L1 reg

• Explored generalizability of QAP-ed models including

metrics like neural efficiency

• Bayesian Optimization/structured pruning vs.

unstructured pruning

value of each metric.
Model Precision BN or L1 Pruned [%] BOPs Accuracy [%] h✏✏s=0.5

b
i [%] hAUCi [%]

Nominal 32-bit floating-point L1 + BN 0 4,652,832 76.977 0.00171 94.335
Pruning + PTQ 16-bit fixed-point L1 + BN 70 631,791 75.01 0.00210 94.229
QAT 6-bit fixed-point L1 + BN 0 412,960 76.737 0.00208 94.206
QAP 6-bit scaled-integer L1 + BN 80 189,672 76.602 0.00211 94.197

54

Developed Quantization-aware pruning
procedure:

• Used BOPS as hardware efficiency metric

• Fine-tuning vs. Lottery ticket pruning

• Effect of Batch Norm and L1 reg

• Explored generalizability of QAP-ed models including

metrics like neural efficiency

• Bayesian Optimization/structured pruning vs.

unstructured pruning

55

Developed Quantization-aware pruning
procedure:

• Used BOPS as hardware efficiency metric

• Fine-tuning vs. Lottery ticket pruning

• Effect of Batch Norm and L1 reg

• Explored generalizability of QAP-ed models including

metrics like neural efficiency

• Bayesian Optimization/structured pruning vs.

unstructured pruning

ANOTHER
80

% RE
D.:

STRU
CT

UR
ED

 +

UN
STRU

CT
UR

ED
 PR

UN
ING

Efficient algorithm codesign

56

More interesting directions — distillation and inductive bias

Teacher model knows about
Lorentz equivariance

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121

Efficient algorithm codesign

56

More interesting directions — distillation and inductive bias

Teacher model knows about
Lorentz equivariance

Model performance improves with distillation of
expert knowledge, and more robust (see talk)

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121

Efficient hardware - algorithm codesign

57

QKeras (Google)

Brevitas (AMD)

HAWQ (UC Berkeley)

QONNX (Microsoft/AMD)

https://pypi.org/project/hls4ml/
>1k Github stars,
~1k downloads last month

https://pypi.org/project/hls4ml/
https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527

Hardware - algorithm codesign

58

Hardware - algorithm codesign

59

Data representation

→ ML architecture

Physics requirements

Neural architecture search/

Hyperparameter optimization

Hardware - algorithm codesign

59

Data representation

→ ML architecture

What kind of platform?

Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Hardware - algorithm codesign

59

Data representation

→ ML architecture

What kind of platform?

Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Dense Network
23 ➜ 30 ➜ 25 ➜ 20

➜ momentum & classifier

Inference time: 280 ns
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

Hardware - algorithm codesign

60

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Roughly quadratic

See tools like:

QKeras

HAWQ

Brevitas

Hardware - algorithm codesign

61

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

See proposal for QONNX

Hardware - algorithm codesign

62

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

Pruning/sparsity?

Hardware - algorithm codesign

63

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

Pruning/sparsity?

Microarchitecture

Matrix of processing elements

(Systolic Array)
Spatial Dataflow

Hardware - algorithm codesign

64

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

Pruning/sparsity?

Microarchitecture

Parallelization

Hardware - algorithm codesign

65

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

Pruning/sparsity?

Microarchitecture

Parallelization

Synthesize, validate design,

satisfy design rules/timing, integration

Hardware - algorithm codesign

66

What kind of platform?

Data representation

→ ML architecture
Latency?

Pipeline Interval?

How many

resources?

Area/power?

Radiation?

Cryo?

Physics requirements

Neural architecture search/

Hyperparameter optimization

Quantize network

Intermediate (quantized)

representations

Pruning/sparsity?

Microarchitecture

Parallelization

Synthesize, validate design,

satisfy design rules/timing

Multi-objective

design space optimization

Why hls4ml

• open-source

• Community-supported

• User-driven

• Accessible and usable

Efficient codesign

67

https://github.com/fastmachinelearning/hls4ml-tutorial

Why hls4ml

• open-source

• Community-supported

• User-driven

• Accessible and usable

Efficient codesign

67

https://github.com/fastmachinelearning/hls4ml-tutorial

Efficient codesign

68

• Emerging computing architectures

• New microelectronics technologies

• Efficient neural algorithms, e.g. spiking

Efficient codesign - emerging methods

69

• Emerging computing architectures

• New microelectronics technologies

• Efficient neural algorithms, e.g. spiking

Efficient codesign - emerging methods

69

• Emerging computing architectures

• New microelectronics technologies

• Efficient neural algorithms, e.g. spiking

Efficient codesign - emerging methods

69

• Emerging computing architectures

• New microelectronics technologies

• Efficient neural algorithms, e.g. spiking

Efficient codesign - emerging methods

69

Outlook

70

71

Fast ML for Science
Embedding ML into our experiments

with extreme requirements brings
radical new capabilities, accelerates

scientific discovery, and spurs
technological innovation

71

Fast ML for Science
Embedding ML into our experiments

with extreme requirements brings
radical new capabilities, accelerates

scientific discovery, and spurs
technological innovation

Intelligent edge of
tomorrow

We are developing novel ML techniques
and accessible tools co-designed with

cutting edge hardware for science while
collaborating with researchers and

industry

71

Fast ML for Science
Embedding ML into our experiments

with extreme requirements brings
radical new capabilities, accelerates

scientific discovery, and spurs
technological innovation

Intelligent edge of
tomorrow

We are developing novel ML techniques
and accessible tools co-designed with

cutting edge hardware for science while
collaborating with researchers and

industry

Outlook
Powerful intelligent sensing being demonstrated across a wide array of applications;
Continuing to advance ML methods and hardware development to enable ultra-fast

automated experimentation to enable future ground-breaking discoveries!

