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• Particle physics & Experimental science  

• Fast ML for Science  

• ML - the basics 

– Training and inference 

• Computing technology & platform 

• Coprocessors for science 

• Efficient ML Codesign 

• Examples: particle physics, fusion 

• Towards automated, accelerated 
discovery
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1 channel ~ 10b 
1 channel, 1 MHz rate ~ 10 Mb/s 

100k channels, 1 MHz rate ~ 1 Tb/s
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Too Much Data 
Too Late

Embed more intelligence



Fast ML for science and the extreme edge
“Scientific discoveries come from groundbreaking ideas and the capability to 

validate those ideas by testing nature at new scales - finer and more precise 

temporal and spatial resolution. This is leading to an explosion of data that 

must be interpreted, and ML is proving a powerful approach. The more 

efficiently we can test our hypotheses, the faster we can achieve discovery. 

To fully unleash the power of ML and accelerate discoveries, it is necessary 

to embed it into our scientific process, into our instruments and detectors.”

5

Applications and Techniques for Fast Machine Learning in Science 

https://doi.org/10.3389/fdata.2022.787421
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The Need For Speed
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Benchmarks bring innovation 

The Fast ML for Science community aims 
to bring seemingly different domains 

together to develop techniques, tools, and 
platforms for challenges that far outpace 

industry. 

The Need For Speed
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• Fast control 
– Immediate response to dynamics of 

the experiment and data readout 

– Event timing, triggering, etc. 

• Slow control 
– Detector stability over minutes, 

days, weeks, months,… 

– Monitoring and controlling 
operational parameters:  electronics 
gains, pedestals, calibrations, etc. 

Fast and slow control
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ML - the basics
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Universal function approximation - fit with customizable objective: 
f(inputs; lots of parameters) = output 

• Expressive: able to find patterns and correlations in high-dimensional data not 
explicitly accounted for 

• Powerful: can unlock large gains in performance 

• Adaptive, flexible, autonomous: able to adapt to new data, conditions automatically; 
handles all different types of data representations

Why AI? 
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All of AI in one slide
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https://iml-wg.github.io/HEPML-LivingReview



• Learning mathematical models from data that:  

– characterize the patterns, regularities, and relationships amongst 
variables in the system  

• Three key components: 

– Model: chosen mathematical model  

– Depends on the task, data modality 

– Learning: estimate statistical model from data  

– Prediction and Inference: using statistical model to make predictions on 
new data points and infer properties of system(s) 

Basic elements of machine learning 
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Machine learning computation
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Machine learning computation
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xm = gm

�

Wm,m�1xm�1 + bm

�

Matrix-vector multiply

Non-linear activation function



Some intuition
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https://playground.tensorflow.org/



21 https://machine-learning.paperspace.com/wiki/machine-learning-models-explained
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Hidden layers

(hypothesis space)

all possible functions

neural networks are universal function approximators, 

but we still must find an optimal approximating function

we do so by adjusting the weights

optimal 

approximating 

function



learning as optimization

Loss

Weight 

Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L

@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

Learning = optimization
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use chain rule to calculate gradients

a neural network defines a function of composed operations

fL(wL, fL�1(wL�1, . . . f1(w1,x) . . . ))

and the loss      is a function of the network outputL

Backpropagation
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Stochastic gradient descent
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local minima and saddle points are largely not an issue

stochastic gradient descent (SGD): 
use stochastic gradient estimate to descend the surface of the loss function

w = w � ↵r̃wL

recent variants use additional terms to maintain“memory” of  

previous gradient information and scale gradients per parameter

in many dimensions, can move in exponentially more directions

See animated gifs: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/


Compute technology & platforms
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• Microprocessor: A single Integrated Circuit which can do data processing and logic 
control  

• Integrated Circuit: A chunk of transistors  

• Transistor: A minimal building block of electronics 

Basics of computing
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Beomki Yeo 
https://indico.cern.ch/event/1405035/contributions/5937283/



• CPU (Central Processing Unit): Made of Cores, 
Caches and Control Units 

– Core: Algorithm Logical Units (ALUs) and 
registers  

• ALU: performs mathematical operations  

• Register: small storage which stores data 
being  

processed  

– Cache: On-chip memory  

– Control Unit: Distribute operations to other units

CPU

28



• Moore’s Law: observation that the number of transistors in processors doubles every 
two years  

• Dennard Scaling 
– Free scaling of the frequency (f) for the same power consumption (P)  

– P=!CV2f 

– Capacitance (C) and operating voltage (V) are linearly reduced with the size of 
transistor  

• Pollack’s rule  

– Observation of Performance ~ √N (N = the number of transistors)  

– Moore’s law allows more number of transistors (N) on the same chip size 

Moore’s law, Dennard Scaling, Pollack’s Rule
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Moore’s law, Dennard Scaling, Pollack’s Rule
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Beomki YeoMay 20th 2024 10

Image credit Slide after

● Recently Industries has improved the 
performance with extra transistors in 
different ways

● Increasing the register size
○ Vectorization 

● Increasing the number of logical cores 
○ Parallelization 

New paradigm in CPU: Vectorization and Parallelization

Moore’s law

Dennard Scaling

Parallelization

Vectorization

Below the transistor 

size of 65 nm (since yr. 

2005), the current 

leakage (I
leakage

) is not 

negligible anymore 

P=!CV2f + VIleakage 



Flynn’s Taxonomy 
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Flynn’s Taxonomy 
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• Graphical processing unit 

• Many number of cores (~1000)  

– Much simpler than CPU 

– Small caches

GPUs
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https://arxiv.org/pdf/2003.11491

• Originally intended for graphics on PC screen 

• Major vendors: Nvidia, AMD, Intel



• Necessity/Data  

• Hardware 

• ML Research 

• Tools

Rise of ML
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Types of compute
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• ASIC 

– Google TPU block diagram 

– Very efficient compute but long 
development times and 
challenge to make general 
purpose 

Types of compute

36



• FPGA 

– More flexible to changing workloads 

– Still not that easy to program

Types of compute
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• NPUs 

– Fast moving space 

– Immature software ecosystem 

– Interoperability a challenge

Types of compute
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Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Coprocessors

39



Modalities of processing
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Accelerated compute
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Coprocessors 
Traditional datacenter-scale compute; 

throughput-driven; general purpose 
architectures

Embedded Systems   
Embedded in our experiments; often 
(hard) real-time latency constraints, 

custom architectures 



Fast ML regimes
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On-detector  
ASIC compression

FPGA filter stack
~μs latency

Worldwide 
computing grid

On-prem CPU/GPU  
filter farm

~100 ms latency

~100ns latency
Exabyte-scale  
datasets

Embedded 

Custom NN circuits embedded into the 

experimental readout 

Coprocessors 

Optimally leverage advances in industry 

for task-based hardware acceleration as-

a-service



Efficient ML codesign (For embedded systems)
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• Field Programmable Gate Arrays are reprogrammable integrated circuits

• Contain many different building blocks (‘resources’) which are connected together as 
you desire

• Originally popular for prototyping ASICs, but now also for high performance computing

Spatial programming and FPGAs

44

Now Intel! Now AMD!



• Field Programmable Gate Arrays are reprogrammable integrated circuits 

• Logic cells / Look Up Tables perform arbitrary functions on small bitwidth inputs 
(2-6)

– These can be used for boolean operations, arithmetic, small memories

• Flip-Flops register data in time with the clock pulse 

• DSPs (Digital Signal Processor) are specialized units for multiplication and 
arithmetic

– Faster and more efficient than using LUTs for these types of operations 

• BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb each in Xilinx) 

– Memories using BRAMs more efficient than using LUTs

•

Spatial programming and FPGAs
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• Field Programmable Gate Arrays are reprogrammable integrated circuits 

• High speed transceivers with Tb/s total bandwidth 
 PCIe, (Multi) Gigabit Ethernet, Infiniband

• AND: Support highly parallel algorithm implementations

• Low power per Op (relative to CPU/GPU) 

• Cons: 

– Limited resources on chip 

– Difficult to program - concurrency always challenging

Spatial programming and FPGAs
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Spatial programming and FPGAs
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• Hardware Description Languages

– HDLs are programming languages which describe 
electronic circuits

• High Level Synthesis

– Compile from C/C++ to VHDL

– Pre-processor directives and constraints used to 
optimize the design

– Drastic decrease in firmware development time! 

• Not totally rainbows and sunshine, often projects are mixes of HDL 
and HLS but HLS can be used to make kernels or IPs of dedicated 
algorithms

How are FPGAs programmed?

48



Efficient codesign
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Moving data expensive, computing cheap
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Moving data expensive, computing cheap



Efficient machine learning

• Computation parallelization/

vectorization and in-memory compute 

(architecture)

• Quantization, reduced precision

• For ML, 32-bit floating point is often overkill

• Integer/fixed-point math at 16,8,7,6,5…1 
bits

• Compression, pruning 

• maintain the same performance while 
removing low weight synapses and neurons

52
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Developed Quantization-aware pruning 
procedure:

• Used BOPS as hardware efficiency metric

• Fine-tuning vs. Lottery ticket pruning

• Effect of Batch Norm and L1 reg

• Explored generalizability of QAP-ed models including 

metrics like neural efficiency

• Bayesian Optimization/structured pruning vs. 

unstructured pruning

value of each metric.
Model Precision BN or L1 Pruned [%] BOPs Accuracy [%] h✏✏s=0.5

b
i [%] hAUCi [%]

Nominal 32-bit floating-point L1 + BN 0 4,652,832 76.977 0.00171 94.335
Pruning + PTQ 16-bit fixed-point L1 + BN 70 631,791 75.01 0.00210 94.229
QAT 6-bit fixed-point L1 + BN 0 412,960 76.737 0.00208 94.206
QAP 6-bit scaled-integer L1 + BN 80 189,672 76.602 0.00211 94.197
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Developed Quantization-aware pruning 
procedure:

• Used BOPS as hardware efficiency metric

• Fine-tuning vs. Lottery ticket pruning

• Effect of Batch Norm and L1 reg

• Explored generalizability of QAP-ed models including 

metrics like neural efficiency

• Bayesian Optimization/structured pruning vs. 

unstructured pruning
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Efficient algorithm codesign
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More interesting directions — distillation and inductive bias 

Teacher model knows about  
Lorentz equivariance

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121
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More interesting directions — distillation and inductive bias 

Teacher model knows about  
Lorentz equivariance

Model performance improves with distillation of 
expert knowledge, and more robust (see talk) 

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121


Efficient hardware - algorithm codesign
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QKeras (Google) 

Brevitas (AMD) 

HAWQ (UC Berkeley) 

QONNX (Microsoft/AMD)

https://pypi.org/project/hls4ml/
>1k Github stars, 
~1k downloads last month

https://pypi.org/project/hls4ml/
https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527


Hardware - algorithm codesign
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Hardware - algorithm codesign
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Data representation 

→ ML architecture

Physics requirements

Neural architecture search/ 

Hyperparameter optimization
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Data representation 

→ ML architecture

What kind of platform?

Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization
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Data representation 

→ ML architecture

What kind of platform?

Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA



Hardware - algorithm codesign
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What kind of platform?

Data representation 

→ ML architecture
Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Quantize network

Roughly quadratic

See tools like: 

QKeras 

HAWQ 

Brevitas



Hardware - algorithm codesign
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What kind of platform?

Data representation 

→ ML architecture
Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Quantize network

Intermediate (quantized)  

representations

See proposal for QONNX
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What kind of platform?

Data representation 

→ ML architecture
Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Quantize network

Intermediate (quantized)  

representations

Pruning/sparsity?

Microarchitecture

Matrix of processing elements  

(Systolic Array)
Spatial Dataflow
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What kind of platform?

Data representation 

→ ML architecture
Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Quantize network

Intermediate (quantized)  

representations

Pruning/sparsity?

Microarchitecture

Parallelization

Synthesize, validate design,  

satisfy design rules/timing, integration
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What kind of platform?

Data representation 

→ ML architecture
Latency?  

Pipeline Interval?

How many  

resources?

Area/power? 

Radiation? 

Cryo?

Physics requirements

Neural architecture search/ 

Hyperparameter optimization

Quantize network

Intermediate (quantized)  

representations

Pruning/sparsity?

Microarchitecture

Parallelization

Synthesize, validate design,  

satisfy design rules/timing

Multi-objective 

design space optimization



Why hls4ml 

• open-source 

• Community-supported 

• User-driven 

• Accessible and usable

Efficient codesign

67

https://github.com/fastmachinelearning/hls4ml-tutorial
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https://github.com/fastmachinelearning/hls4ml-tutorial



Efficient codesign
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• Emerging computing architectures 

• New microelectronics technologies  

• Efficient neural algorithms, e.g. spiking

Efficient codesign - emerging methods
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scientific discovery, and spurs 
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Fast ML for Science 
Embedding ML into our experiments 

with extreme requirements brings 
radical new capabilities, accelerates 

scientific discovery, and spurs 
technological innovation

Intelligent edge of 
tomorrow 

We are developing novel ML techniques 
and accessible tools co-designed with 

cutting edge hardware for science while 
collaborating with researchers and 

industry

Outlook 
Powerful intelligent sensing being demonstrated across a wide array of applications;  
Continuing to advance ML methods and hardware development to enable ultra-fast 

automated experimentation to enable future ground-breaking discoveries!


