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Fast ML for Science
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Fast ML for science and the exireme edge

“Scientific discoveries come from groundbreaking ideas and the capability to
validate those ideas by testing nature at new scales - finer and more precise
temporal and spatial resolution. This is leading to an explosion of data that
must be interpreted, and ML is proving a powerful approach. The more
efficiently we can test our hypotheses, the faster we can achieve discovery.
To fully unleash the power of ML and accelerate discoveries, it is necessary
to embed it into our scientific process, into our instruments and detectors.”

Applications and Techniques for Fast Machine Learning in Science
https://doi.org/10.3389/fdata.2022.787421
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The Need For Speed

Benchmarks bring innovation

The Fast ML for Science community aims
to bring seemingly different domains
together to develop techniques, tools, and
platforms for challenges that far outpace
industry.
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The Need For Speed

Data rate [B/s]
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The Need For Speed

INTERNET OF THINGS

MLCommons launches machine learning benchmark for

devices like smartwatches and voice assistants
by Ben Wodecki 6{16/2021

With experts from Qualcomm, Fermilab, and
Google aiding in its development

MLCommons, the open engineering
consortium behind the MLPerf benchmark test,
has launched a new measurement suite aimed
at ‘tiny devices like smartwatches and voice
assistants.

1

MLPerf Tiny Inference Is designed to compare
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Fast and slow control
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Fast and slow control
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Fast and slow control
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Fast and slow control
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Fast control

— Immediate response to dynamics of
the experiment and data readout

— Event timing, triggering, etc.

Slow control

— Detector stability over minutes,
days, weeks, months,...

— Monitoring and controlling
operational parameters: electronics
gains, pedestals, calibrations, etc.
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ML - the basics



Why Al?

Universal function approximation - fit with customizable objective:
f(inputs; lots of parameters) = output

* Expressive: able to find patterns and correlations in high-dimensional data not
explicitly accounted for

e Powerful: can unlock large gains in performance

* Adaptive, flexible, autonomous: able to adapt to new data, conditions automatically:
handles all different types of data representations

2= Fermilab
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All of Al in one slide

Image
Structure Classification
Discgvery Feature ™ Customer
e Elicitation  Fraud ® Retention
Meaningful Detection ®
compression
—— 7 REDUCTION | P Piegnaics

Visualisation

® Forecasting

Recommended
Systems UNSUPERVISED SUPERVISED ® Predictions
CLUSTERING
Targetted Pi
o MACHINE o, mYocess
Marketing C Optimization

LEARNING °

New Insights

L ]
Customer
Segmentation

Real-Time Decisions @ ® Robot Navigation

Game Al ® ® Skill Aquisition

@
Learning Tasks
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HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Madern machine learning techniques, including deep fearning, is rapidly being acplied, adapted, and deveioped for high energy
physics, The goal of this decument is to provide a nearly comprehensive list of citations for those developing and applying these

to or ical analyses. As a living document, it will be updated as often as possible to
the latest Alist of proper (unchanging) reviews can be found within. Papers are grouped into & small set of
topics te be as useful as possibie, Suggestions are most welcome,
[ swiniit Vs

The purpose of this note is to collect references for modem machine learning as applied to particle physics. A minimal number of
categories is chosen in order te be as useful as possible. Note that papers may be referenced in more than one category. The fact that
a paper is listed in this document does not enderse or validate its content - that is for the community (and for peer-review) to decide.
Furthermore, the classification here is a best attempt and may have flaws - please let us know if {a) we have missed a paper vou think
should be included, (b) a paper has been misclassified, or (c) & citation for a paper is not correct or if the journal information is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next
paoer, If you find this review helptul, please consider citing it using \eitethepmilivingreview} in HEPML bib.

* Reviews
o Modern reviews

» Jet Substructure at the Large Hadron Collider: A Raview of Recent Advances in Theory and Machine Learning [DOI]
» Deep Learning and its Appiication to LHC Physics [DOI]

Machine Learning in High Energy Physics Community White Paper [DC1]

Machine learning at the anergy and intensity frontiers of particle physics

Machine learning and the physical sciences [DOI]

Machine and Deep Learning Applications in Particle Physics [DOI]

Modern Machine Learning and Particle Physics

Machine Learning in the Search for New Fundamental Physics

Artificial Intelligence and Machine Learning in Nuclear Physics

https://iml-wg.github.io/HEPML-LivingReview
2F Fermilab



Basic elements of machine learning

* Learning mathematical models from data that:

— characterize the patterns, regularities, and relationships amongst
variables in the system

* Three key components:
— Model: chosen mathematical model
— Depends on the task, dota modality
— Learning: estimate statistical model from data

— Prediction and Inference: using statistical model fo moke predictions on
new data points and infer properties of system(s)

2= Fermilab
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Machine learning computation

) ) INPUT 1
Simple 2 input example
(Fisher linear discriminant, linear support vector machine,...)

O1 = I1 x Wit +12 x War + by

INPUT 2

2= Fermilab
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Machine learning computation

~
N » .
M Matrix-vector multiply
M hidden layers > O Non-linear activation function

output layer

2= Fermilab
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Some intuition

https://playground.tensorflow.org/

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Test loss 0.506

Which

Training loss 0.507

you want to use?
: + - + -
* 4 neurons 2 neurons
5 -0
Noise
. :A
Batch size: 10
—e
0
REGENERATE N
C\J\l',‘ q - -
data, r and
0 1

weight values
[[] Showtestdata [[] Discretize output

2= Fermilab
20



Feed Radiel Basis Deep Feed Recurrent Neural Long / Short Term Galed Recurrent
Perceptron (P) Forward (FF) Network (RBF} Forward (DFF)

MNetwork (RNN) Memory (LSTM) Unit (GRU)
e o8 8

Aute Variational
Encorder (AE) AE (VAE)

Denoising Markow Hapfield Boltzman Restricted
AE (DAE)

Netwark (HN) Machine (BM) BM (RBM)

Desp Belisve

Deep Corvolutionel
Network (DBN)

Deep Convelutional
Network (DCN)

Inverse Graphics Network (DCIGN)

Generative Adversial Liquid State
Netwark (GAN) Machine (LSM)

SRl

e A%
LR LR

o

Extreme Learning Echo Network

Komonzn
Machine (ELM) Machine (ENM)

Support Vector Machine (SVM) Neural Turing Machine (SVM)

ey -

https://machine-learning.paperspace.com/wiki/machine-learning-models-explained

21
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neural networks are universal function approximators,
but we still must find an optimal approximating function

all possible functions
(hypothesis space)

optimal
approximating
function

we do so by adjusting the weights

2= Fermilab



Learning = optimization

learning as optimization

Weight
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. "how should the weight be updated to decrease the loss?”

, oL
W=wW— =

ow
with multiple weights, we need the gradient of the loss w.r.t. the weights

W=wW —aVyxLl

2= Fermilab
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Backpropagation

a neural network defines a function of composed operations

frwr, froi(wWr—1,... fi(w,%)...))

and the loss L is a function of the network output
— use chain rule to calculate gradients

oL oL oxL) psL)

OW L) 9x(L) 9s(L) gW (L)

Y

depends on the derivative of the —_—
W (L
form of the loss non-linearity oW ™)
= x(E=D71

(WEIT(E-D)

24
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Stochastic gradient descent

See animated gifs: http://ruder.io/optimizing-gradient-descent/

stochastic gradient descent (SGD):

w=1w—aVyl

use stochastic gradient estimate to descend the surface of the loss function

recent variants use additional terms to maintain”“memory” of

previous gradient information and scale gradients per parameter

SGD
Momentum £
NAG
Adagrad
Adadelta

- Rmsprop

/’ ,,ll/ R

4 /;f%,’ i il
, % 2
é?{a,
0 »'
5

:/, U %
ll
ll ,' 4% ll,,/;,q

local minima and saddle points are largely not an issue

SGD
Momentum
NAG

Adagrad
Adadelta
Rmsprop

in many dimensions, can move in exponentially more directions

25
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http://ruder.io/optimizing-gradient-descent/

Compute technology & platforms



. . Beomki Yeo
BUSIC S Of com p u.h n g https://indico.cern.ch/event/1405035/contributions/5937283/

* Microprocessor: A single Integrated Circuit which con do data processing and logic
control

* Integrated Circuit: A chunk of transistors
e Transistor: A minimal building block of electronics

Intel 4004 chipset design (2300 transistors)

2= Fermilab
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CPU

« CPU (Central Processing Unit): Made of Cores,
Caches and Control Units

Core ‘Con Core
— Core: Algorithm Logical Units (ALUs) and e T

registers

. . Core Core -on.

* ALU: performs mathematical operations

_ _ L1 Cache L1Cache [N

* Register: small storage which stores data

being

— Cache: On-chip memory

— Control Unit: Distribute operations to other units CPU

2= Fermilab



Moore’s law, Dennard Scaling, Pollack’s Rule

* Moore’s Law: observation that the number of transistors in processors doubles every
two years

* Dennard Scaling
— Free scaling of the frequency (f) for the same power consumption (P)

— P=aCV2f

— Capacitance (C) and operating voltage (V) are linearly reduced with the size of
transistor

* Pollack’s rule
— Observation of Performance ~ /N (N = the number of transistors)

— Moore’s law allows more number of transistors (N) on the same chip size

2= Fermilab
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Moore’s law, Dennard Scaling, Pollack’s Rule

Below the transistor 107
size of 65 nm (since yr. 108
2005), the current g
leakage (|, ) is not N
02kage (lqzyqgs o
negligible anymore o
P:OCCVQf + Vlleakage 10°

10’

10°

50 Years of Microprocessor Trend Data

Moore’s law

A A

A AR

i *
» eee G0 SHHNED SDINDIND 66

| Transistors
| (thousands)

Single-Thread
Performance 3
(SpecINT x 10%)

H‘ ;.‘-u.l Frequency (MHz)

+ Typical Power

*
«7| (Watts)

Number of

*| Logical Cores

Parallelization

1970 1980 1990 2000

30

Year

2010

2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

2= Fermilab



Flynn’s Taxonomy

31

SISD Instruction pool
=)
a
o |—|PU
-
=
(=]
SIMD Instruction pool

Data pool

—
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PU

-«

PU

PU

MISD

Data pool

MIMD |

Data pool

Instruction pool
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Flynn's Taxonomy

31

Data Streams

one

many

Instruction Streams

one many
SISD MISD
traditional von
Neumann single May be pipelined
CPU computer Computers
SIMD MIMD

Vector processors
fine grained data
Parallel computers

Multi computers
Multiprocessors

L]

M.J

I_|—~|MA |pul|
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https://arxiv.org/pdf/2003.11491

GPUs

 Graphical processing unit * Originally intended for graphics on PC screen
« Many number of cores (~1000) * Major vendors: Nvidia, AMD, Intel

— Much simpler than CPU

— Small caches

® Nvidia consumer GPUs
o g ¥ AMD consumer GPUs
= GPU v i W Nvidia scientific GPUs
& § o o5 v ®  AMD scientific GPUs
Q " 2 o7 A Intel & AMD CPUs
2 10 gor DL B, #
S .
] ve, iz
< C a: RadeonHD7950 1: GTX680
« o " b: RadeonHD8950 2: GTX760
o i c: RadeonR9285 3: GTX970 g
& Vil d: RadeonR9390 4: GTX980T]  @a:
— o = e: RadeonR9FuryX  5:GTX1060  bb: E5-2697-v2
8 ain A g S iy v " f: RadeonRX4604GB  6: GTX1080Ti  CC: ES-2630-v3
5 107 Gl m vl g: RadeonRXVegasé  7: RTX2080Ti 0d: E5-2630.v4
’q_'; I v = % h: RadeonVil N fF: EPYC-7702
L2 Cache = CPU be dd 99 | A: FireProws000 1i: K40 9g: EPYC-7452
2 A 8: FireProw9100 1ii: K80
ﬁ A ff C: FireProw4300 IV: M60
A A e D: RadeonProWX7100 V: P100-16GB
DRAM aa E: RadeonProwWX9100 VI: V100-32GB
10 : . - . . F: RadeonProwXx8200 VIi: RTX6000
2012 2014 2016 2018 2020 ili: T4

GPU Release date

2& Fermilab
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Rise of ML

* Necessity/Data
e Hardware

e ML Research
e Tools

33
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Ri f ML
I s e 0 48 Years of Microprocessor Trend Data
T

Industry 3.0

Computers,
L automation
e electronics
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Rise of ML

* Necessity/Data
 Hardware

ML Research

e Tools

33

48 Years of Microprocessor Trend Data
T
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Clukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp
Technologysize | Year Technology size | Year
10um 1971 130 nm 2001
6 um 1974 90 nm 2004
3um 1977 65 nm 2006
1.5um 1982 45 nm 2008
1um 1985 32 nm 2010
800 nm 1989 22 nm 2012
600 nm 1994 14 nm 2014
350 nm 1995 10 nm 2017
250 nm 1997 7 nm 2018
180 nm 1999 5nm 2020 (@&
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Rise of ML

Necessity/Data

Hardware
ML Research
Tools

33

7

TensorFlow

O PyTorch

Neural Networks

Perceptron (P)

. it

Long / Short Term Memory (LSTM)
0 0

Feed Forward (FF) Radial Basis Network (RBF)

o

Deep Feed Forward (DFF)

Recurrent Neural Network (RNN)
(] o

Auto Encoder (AE) Varlational AE (VAE) Denolsing AE{DAE) Sparse AE (SAE)

Custom RTL functions
in Vitis HLS

HLS IP or Kernel

<ANVIDIA.

CUDA.

2= Fermilab
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‘Computing Perspective

COMMUNICATIONS

A New Golden Age for
Computer Architecture

Agriculture Technology

Monitoring Noise Pollution

The Computational Sprinting Game
Blockehain from a Distributed

b |

o

2= Fermilab



Types of compute

2= Fermilab
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Types of compute

« ASIC
_ - — DDR3 DRAM Chips
— Google TPU block diagram . oo
Weight FIFO
— Very efficient compute but long : > itrtacs : W"ma,.
development times and &a v
challenge to make general e AESEEAse 0t
purpose 14 Gi8/s gg 14 GiBls (“K:“fnw')
=15
Normalize / Pool
[C] orcripvo
[[] 0sta Butrer
[[] computation
B contrat
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Types of compute
- FPGA

— More flexible to changing workloads
— Still not that easy to program

37

A LLLLELLLLLL.

el e e e L L.

ool el o e o o
B S S s e e g s g

T ETE TR E"
10B (Input/ CLB (Configureable 0 Embedded

DSP Block
Output Block) Logic Block) Memory B DsP Bloc
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Types of compute

* NPUs

— Fast moving space
I [ oo |
Other Contemporary Al Architectures

— |Immature software ecosysfenw IBM NorthPole

— Interoperability a challenge .

ekl EEE
1

[l - .] - .‘l. lH. -
EEE EEE EEE
EEE EEE EER
EEE EEE EEE EEE
IIIII IIHI IHII IIII

%:......-.1.::.-:':3: EEE . EEE EEE . EEE

IIHI IHII lIIl

1T

[-. - v-‘ - v-‘ - .-‘ [-. ..‘ [-. - [.. e ..[
GPU (A100)

Inspired by the brain, NorthPole stores memory near compute, with no centralized or off-chip memory,
mitigating von Neumann bottleneck (unlike contemporary architectures).

2= Fermilab
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TPUv
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Coprocessors
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Modalities of processing

40

CPU GPU FPGA
Deterministic,
Latency O (10) us O (100) us 0 (100) ns

1/0 with processor

Ethernet, USB, PCle

PCle, Nvlink

Connectivity to any
data source via
printed circuit board
(PCB)

Some high-level

Low entry level ( rL(;O\:a:nnntgbl]?fvli th syntax available,
Engineering cost (programmable with Prog traditionally VHDL,
CUDA, OpenCL, . ..
c++, python, etc.) etc.) Verilog (specialized
) engineer)
Single precision Optimized for fixed
floating point O (10) TFLOPs 0 (10) TFLOPs prEERe
point performance
performance
Optimized for serial
Serial / parallel . pcrformance: Optimized for Optimized for
increasingly using parallel performance | parallel performance
vector processing
O (10) MB (on the
Memory O (100) GB RAM O (10) GB FPGA itself, not the
PCB)
X Compatible, except
Backward fCo‘l:')p:ub.le,;:c:ipl for specific features Not easily backward
compatibility or vector Instruction only available on compatible

sets

modern GPUs

2= Fermilab
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Accelerated compute

Embedded Systems Coprocessors

Embedded in our experiments; often Traditional datacenter-scale compute;
(hard) real-time latency constraints, throughput-driven; general purpose
custom architectures architectures




Fast ML regimes

FPGA filter stack
~us latency

Embedded
Custom NN circuits embedded into the
experimental readout

On-detector
ASIC compressmn

~100ns latency

Coprocessors
Optimally leverage advances in industry
for task-based hardware acceleration as-
a-service
J

On-prem CPU/GP

filter far
~100 ms latency

2= Fermilab
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Efficient ML codesign

(For embedded systems)



Spatial programming and FPGAs

* Field Programmable Gate Arrays are reprogrammable integrated circuits

* Contain many different building blocks (‘resources’) which are connected together as
you desire

* Originally popular for prototyping ASICs, but now also for high performance computing

Now Intell Now AMD!

2= Fermilab
44



Spatial programming and FPGAs
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Field Programmable Gate Arrays are reprogrammable integrated circuits

Logic cells / Look Up Tables perform arbitrary functions on small bitwidth inputs
(2-6)

— These con be used for boolean operations, arithmetic, small memories

Flip-Flops register data in time with the clock pulse

DSPs (Digital Signal Processor) are specialized units for multiplication and
arithmetic

— Foster and more efficient than using LUTs for these types of operations

BRAMSs are small, fast memories - RAMs, ROMs, FIFOs (18Kb each in Xilinx)
— Memories using BRAMs more efficient than using LUTs

2= Fermilab



Spatial programming and FPGAs
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Field Programmable Gate Arrays are reprogrammable integrated circuits

High speed transceivers with Th/s total bandwidth
PCle, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)

Cons:
— Limited resources on chip
— Difficult o program - concurrency always challenging

2= Fermilab



Spatial programming and FPGAs

46

Field Programmable Gate Arrays are reprogrammable integrated circuits

High speed transceivers with Th/s total bandwidth

PCle, (Multi) Gigabit Ethernet, Infiniband
AND: Support highly parallel algorithm implementations
Low power per Op (relative to CPU/GPU)

Task Interval = 1

A

S

Task Latency = 10

Task Interval = 13

Task Latency = 13

:nging

2= Fermilab
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Spatial programming and FPGAs

L R

Routing Track

2= Fermilab
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How are FPGAs programmed?

* Hardware Description Languages

— HDLs are programming languages which describe el e
electronic circuits
* High Level Synthesis i}
Compi & XILINX. [ e
— Compile from C/C++ to VHDL Vivado HLS |
— Pre-processor directives and constraints used to
optimize the design
— Drastic decrease in firmware development time! T
i Verilog

* Not totally
and HLS but HLS can be used to make kernels or |IPs of dedicated

algorithms

48

rainbows and sunshine, often projects are mixes of HDL

Firmware block

2= Fermilab
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Phljsics

Particle physics,
XFEL synchrotron

Physics-inspired
distributed Al

e f

L e cr)
TIPUE, JUIL, WITRIESS [Du)

)0 O
o

"
N
b

o

e{e

o
o~

Efficient co-design

A
00

AI A0S0

2 O

Data compression, reconfiqurable
and adaptive, continuous learning

O

2= Fermilab
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Moving data expensive, computing cheap

Relative Energy Cost

Operation: Energy (pJ)

8b Add 0.03 I
16b Add 005 |l ]
32b Add o1 | I
16b FP Add Y I
32b FP Add 0.0 | I
8b Mult 02 |l ]
32b Mult . I
16b FP Mult 11 [ I
32b FP Mult 37 [ ]
32b SRAM Read (8KB) R e ——— |
32b DRAM Read s40 | |

Adapted from Horowitz

e

10 100 1000 10000

50



Moving data expensive, computing cheap

51

A
Smaller,
faster access,
more expensive

CPU
Registers

~1-2 cycles
L1 Cache

~8-32 cycles
L2 Cache

~300 cycles
Memory

~50,000 cycles

Hard Disk
~50ms / ~800 mWatts

Network

Larger,
Slower,
Cheaper

v

Less Energy
Efficiency

& Fermilab
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Efficient machine learning

--=  Quadratic fit '

4000 ® PEarea

- Computation parallelization/
vectorization and in-memory compute
(architecture)

3000

Area

2000 »

1000 o

* Quantization, reduced precision = % O T u ©
Bitwidth
* For ML, 32-bit floating point is often overkill

* Integer/fixed-point math at 16,8,7,6,5...1
bits

after pruning

pruning _ _ _
synapses

- Compression, pruning

* maintain the same performance while
removing low weight synapses and neurons

pruning
neurons

-—>

52



Ps and Qs: Quantization-Aware Pruning for

& Fermilab

Eff. . L L N I N k Model Precision BNor L; Pruned [%] BOPs Accuracy [%] <E}5)s:0_5> [%] (AUC) [%]
ICIent ow atency eura etwo r Nominal 32-bit floating-point  L; + BN 0 4,652,832 76.977 0.00171 94.335
Pruning + PTQ  16-bit fixed-point Li +BN 70 631,791 75.01 0.00210 94.229
Inference QAT 6-bit fixed-point L1 + BN 0 412,960 76.737 000208 94206
QAP 6-bit scaled-integer L + BN 80 189,672 76.602 0.00211 94.197

Benjamin Hawks !, Javier Duarte 2, Nicholas J. Fraser 3, Alessandro

Pappalardo 3, Nhan Tran !4, Yaman Umuroglu 3

! Fermi National Accelerator Laboratory, Batavia, IL, United States ?University of
California San Diego, La Jolla, CA, United States, * Xilinx Research, Dublin, Ireland,
“Northwestern University, Evanston, IL, United States

Developed Quantization-aware pruning
procedure:

53

Used BOPS as hardware efficiency metric
Fine-tuning vs. Lottery ticket pruning
Effect of Batch Norm and L1 reg

Explored generalizability of QAP-ed models including
metrics like neural efficiency

Bayesian Optimization/structured pruning vs.
unstructured pruning



Ps and Qs: Quantization-Aware Pruning for
Efficient Low Latency Neural Network
Inference

Benjamin Hawks !, Javier Duarte 2, Nicholas J. Fraser 3, Alessandro
Pappalardo 3, Nhan Tran !4, Yaman Umuroglu 3

! Fermi National Accelerator Laboratory, Batavia, IL, United States % University of
California San Diego, La Jolla, CA, United States, * Xilinx Research, Dublin, Ireland,
“Northwestern University, Evanston, IL, United States

Developed Quantization-aware pruning
procedure:

54

Used BOPS as hardware efficiency metric
Fine-tuning vs. Lottery ticket pruning
Effect of Batch Norm and L1 reg

Explored generalizability of QAP-ed models including
metrics like neural efficiency

Bayesian Optimization/structured pruning vs.
unstructured pruning

& Fermilab

Percent pruned (approx.)

4 98.8% ® 90.0% A 70.0% » 50.0% * 30.0% *  10.0%
x 96.6% ¥ 80.0% < 60.0% ® 40.0% * 20.0% e 00%
).0800 YYYYYYYY T ey
Q E
o ! ]
a . y
o 0.775;— =
<< !
[ 18 ]
0.750F N
[ = !
0.725F ]
[ ]
0.700 - -
-
0675 32bLT
[
3 g
0.650F 1 4 12bLT J
» vy
1
0.625} N
¥
0.600 o
10
BOPs



£& Fermilab
Ps and Qs: Quantization-Aware Pruning for
Efficient Low Latency Neural Network

&
Inference O x (G
Benjamin Hawks !, Javier Duarte 2, Nicholas J. Fraser 3, Alessandro \3\(& < ngog (&%$\
Pappalardo 3, Nhan Tran !4, Yaman Umuroglu 3 P‘$O&’\Q‘\)(/ (%}4] o PRI TR T
! Fermi National Accelerator Laboratory, Batavia, IL, United States % University of 5 0@4\5; ! :
California San Diego, La Jolla, CA, United States, > Xilinx Research, Dublin, Ireland, s«% 3 0.775 - o
“Northwestern University, Evanston, IL, United States \ﬁ B el 38 - * r/,o-o..“ )
0.750F / ]
. . . [ f ;
Developed Quantization-aware pruning [ f :
: 0.725F [ 32bBO =
procedure. ! | % BestBO32b (62,28, 18) |
* Used BOPS as hardware efficiency metric 0700k |  BbBO 3
, : : : T | % BestBOBb(63.59,45) 7
* Fine-tuning vs. Lottery ticket pruning 3 | F 32vFT ]
- Effect of Batch Norm and L1 reg Wb f - 6bFT 1
* Explored generalizability of QAP-ed models including PO 2 / 3
metrics like neural efficiency ] / 5
+ Bayesian Optimization/structured pruning vs. 0.625} ’ .
unstructured pruning : } 3
0.600 ittty “ —d
10 10 10
BOPs

55



Efficient algorithm codesign

Student Model

3

56

More interesting directions — distillation and inductive bias

Teacher model knows about
Teacher Model Lorentz equivariance

(targe neural network)

v

Lig;p,y) = A =DHY,q) + ADk, (P]19)

q: student’s prediction, p: teacher’s
prediction, y: ground truth, p:
temperature soften distribution.

2= Fermilab


https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121

Efficient algorithm codesign

More interesting directions — distillation and inductive bias

Teacher model knows about

Teacher Model
(targe neural network)

Lorentz equivariance

Student Model

of®
el
oy

__=

Lig;p,y) = 1 —=DHY,q) + ADk, (P]19)

q: student’s prediction, p: teacher’s
prediction, y: ground truth, p:
temperature soften distribution.

56

Model performance improves with distillation of

expert knowledge, and more robust (see talk)

104

10°

102

Background rejection 1/€p

10’

100

1]

|

———— —
—— MLP from scratch
MLP KD T=1
MLP KD T=3

— MLP KD T=5

0.0

0.2

0.4

| |
06 08 1.0
Signal efficiency €5

2= Fermilab


https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121
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Efficient hardware - algorithm codesign

Keras 1

o pyTorct his 4 ml L]
€ ONNX

Hardware

VIvADO* Menior:

QKeras (Google)
Brevitas (AMD)
HAWQ (UC Berkeley) ‘
QONNX (Microsoft/AMD)
-


https://pypi.org/project/hls4ml/
https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527

Hardware - algorithm codesign
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Hardware - algorithm codesign

Physics requirements

Data representation
— ML architecture

Neural architecture search/
Hyperparameter optimization
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Hardware - algorithm codesign

Physics requirements

Data representation
— ML architecture

Neural architecture search/
Hyperparameter optimization

What kind of platform?

Latency?
Pipeline Interval?

How many Area/power?
resources? Radiation?
Cryo?
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Hardware - algorithm codesign

Physics requirements What kind of platform?

Data representation

A Latency?
— ML architecture 5

Pipeline Interval?

Neural architecture search/
Hyperparameter optimization How many Area/power?

resources? Radiation?
Cryo?

Inference time: 280 ns
Throughput: 104 Gb/s

& classifier




Hardware - algorithm codesign

Physics requirements What kind of platform?

Data representation

. Latency?
— ML architecture Pipeline Interval?

Neural architecture search/

Hyperparameter optimization How many Area/power?

resources? Radiation?
. Cryo?
Quantize network y

Relative Energy Cost B See tools like:

Operation: Energy (pJ) | QKeras

8b Add 0.03

16b Add 0.05 HAWQ

32b Add 0.1 | Brevitas

16b FP Add 0.4 |

32b FP Add 0.9 |

8b Mult 0.2 |

32b Mult 3.1 fuadratic

16b FP Mult 1.1 |

32b FP Mult 37 |

32b SRAM Read (8KB) 5 |

32b DRAM Read 640 I

Adapted from Horowitz 1 10 100 1000 10000

60
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Hardware - algorithm codesign

Physics requirements

Data representation
— ML architecture

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Quant
1=0.015625

0 (32x32)
1=0.03125
2=0
-8

See proposal for QONNX

What kind of platform?

Latency?
Pipeline Interval?

How many Area/power?
resources? Radiation?
Cryo?
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Hardware - algorithm codesign

Physics requirements

Data representation
— ML architecture

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Pruning/sparsity?

What kind of platform?

Latency?
Pipeline Interval?

How many Area/power?
resources? Radiation?
Cryo?

cfore pruning

pruning
synapses

pruning
neurons

-

after pruning
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Hardware - algorithm codesign

Physics requirements

Data representation

What kind of platform?

A Latency?
— ML architecture Ay y
Pipeline Interval?
Microarchitecture
Neural architecture search/
Hyperparameter optimization
DRAM
Quantize network | :
DPU (MPE) | DVIA | DPU (Spatial)
. = Dedlcated Weight Buffers
Intermediate (qu | Weight Buffer | : . s [:]
representat [:] C] [:] - = i:l
= Compute Array = ‘ ‘
Matrix or Tensor Processing
Pr

Activation Functions/Pooling... |

— Dédiciated‘,éomi)g_te"'_Arcﬁ'i'tectdre i

Matrix of processing elements

(Systolic Array)

Activation Bufféring P

Spatial Dataflow




Hardware - algorithm codesign

Physics requirements What kind of platform?

Data representation

A Latency?
— ML architecture 5

Pipeline Interval?
Microarchitecture
Neural architecture search/

Hyperparameter optimization How many Area/power?
Parallelization resources? Radiation?
. Cryo?
Quantize network Y
reuse =4

I
mult use 1 multiplier 4 times

Intermediate (quantized)
representations

mult] reyuse = 2
use 2 multipliers 2 times each

Pruning/sparsity? mult

mult

mult] reyse = 1
use 4 multipliers 1 time each

mult

mult

vV ii %
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Hardware - algorithm codesign

Physics requirements What kind of platform?

Data representation

A Latency?
— ML architecture 5

Pipeline Interval?
Microarchitecture

Neural architecture search/
Hyperparameter optimization How many Area/power?
resources? Radiation?
Cryo?

Parallelization
Quantize network

Intermediate (quantized)

. Synthesize, validate design,
representations

satisfy design rules/timing, integration

Pruning/sparsity?

BNL711 FELIX Firmware Floorplanning
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Hardware - algorithm codesign

Physics requirements What kind of platform?

Data representation

A Latency?
— ML architecture 5

Pipeline Interval?
Microarchitecture

Neural architecture search/
Hyperparameter optimization How many Area/powe
Parallelization

?
Quantize network Cryo?

Intermediate (quantized)

. Synthesize, validate design,
representations

satisfy design rules/timing

Pruning/sparsity?

Multi-objective

r?

resources? Radiation?

A

design space optimization

f2(A) < £2(B) n

v



Efficient codesign

Why hlsbml

* open-source

¢ Community-supported
* User-driven

e Accessible and usable

https://github.com/fastmachinelearning/hls4ml-tutorial

67

Check performance

Check the accuracy and make a ROC curve

import plotting
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score

y_keras = model.predict(X_test)
print(“Accuracy: {}".format(accuracy_score(np.argmax(y_test, axis=1), np.argmax(y_keras, axis=1))))

plt.figure(figsize=(9, 9))
_ = plotting.makeRoc(y_test, y_keras, le.classes_)

Convert the model to FPGA firmware with his4ml

Now we will go through the steps to convert the model we trained to a low-latency optimized FPGA firmware with hisdml, First, we will
evaluate its classification performance to make sure we haven't lost accuracy using the fixed-point data types. Then we will synthesize
the model with Vivado HLS and check the metrics of latency and FPGA resource usage.

Make an his4ml config & model

The his4ml Neural Network inference library is controlled through a configuration dictionary. In this example we'll use the most simple
variation, later exercises will look at more advanced configuration.

import hls4ml

config = hisdml.utils.config_from_keras_model(model, granularity='model’)
print(" ")
print(“Configuration™)
plotting.print_dict(config)
print("
hls_model = hls4ml.converters.convert_from_keras_model({

model, hls_config=config, output_dir='model_1/hls4ml_prj‘, part='xcu250-figd2104-2L-e'

"y

)

Let's visualise what we created. The model architecture is shown, annotated with the shape and data types

hlsdml.utils.plot_model(hls_model, show_shapes=True, show_precision=True, to_file=None)

Compile, predict

Now we need to check that this model performance is still good. We compile the hls_model, and then use hls_model.predict to
execute the FPGA firmware with bit-accurate emulation on the CPU.

hls_model.compile()
X_test = np.ascontiguousarray(X_test)
y_hls = hls_model.predict(X_test)

1b
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Why hlstml

* open-source

¢ Community-supported
* User-driven

e Accessible and usable

https://github.com/fastmachinelearning/hls4mi-t

67

Check performance

Check the accuracy and make a ROC curve

import plotting
import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score

y_keras = model.predict(X_test)

print{"Accurac
plt.figure(figsize=

9))

Use hlsdm| to convert a neural network from Keras to HLS

“hls4ml - is a package developed to convert machine learning models (like those from

Keras) into high-level synthesis (HLS) code. This allows the deployment of such models ento

FPGAs. The fellowing steps will guide you through converting a Keras neural network model

to HLS using “hlsdml":

Installation:

If you haven'tinstalled “hlsdml" y ou can do so using “pip:

pip install hls4ml

Prepare Your Keras Model:

keras.layers

model uential(}

model.add(Densa{54, input_shap
cl.add{Dense {52, acli ion=
1. add( e{1, activatian

mpile(optimizer= . metrics=[

y_NiS = NLS_MOOEL.preaicTiX_test)

“assps

va
2wy

veh

atel

lled
onfi

Ire it

5 stil
mno

y: {}".format{accuracy_score(np.argmax(y_test, axis=1), np.argmax(y_keras, axis=1))))

1
Convert with hisdml:

anfig Tram Kers

Als_model = hlséml

nlséml. uli

Inthe "hls4ml.convexrters,convert_from_keras_model” function:

‘hls_config " is the configuration for the conve

ion. We generated it using

“config_fronm_keras_model’ for simplic but you ustomize this

“output_dir":is the directory where the HLS project will be created.

GA part, Adjust this based an your target FPGA,

* “fpga_part : specifies the
Build the HLS Project:

Onece the mo onverted, you can complle it into HLS:

Run the HLS Simulation (Optional):

J can run a C-s:

0 Copycoce

After jou'll have an HLS project in the specified “output _dixr’ thatyou can use with lb

FPGA ¢

velopment toals to generate bitstreams for FRGA deploymeant.
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Siemens simplifies development of Al
accelerators for advanced system-on-
chip designs with Catapult Al NN

PR Newswire
Tae, May 21,2023, 800 AWM CDT « 5 min rasd

In This Arthela:

SIEGY -075% SMAWF +0.05%

« Catapult Al NN offers software e
solution to synthesize Al Neural'

« Enables software develog t
models designed in Python inta
facilitating faster and more pow

to standard pracessors

PLANO, Texas, May 21, 2024 /PRNew
Industries Software today announce
High-Level Synthesis (HLS) of neural
Application-Specific Integrated Circu
(SoCs). Catapult Al NN is a complete
network description from an Al frame
synthesizes it into an RTL acceleratol
implementation in silicon.

Catapult AI NN brings together hls4ml, an open-source package for
machine learning hardware acceleration, and Siemens' Catapult™ HLS
software for High-Level Synthesis. Developed in close collaboration
with Fermilab, a U.S. Department of Energy Laboratory, and other
leading contributors to his4ml, Catapult Al NN addresses the unique
requirements of machine learning accelerator design for power,
performance, and area on custom silicon.

B

2= Fermilab



Efficient codesign - emerging methods

* Emerging computing architectures
* New microelectronics technologies

* Efficient neural algorithms, e.g. spiking

69

2= Fermilab



Efficient codesignh - emerging methods

* Emerging computing architectures
* New microelectronics technologies

* Efficient neural algorithms, e.g. spiking

69

SCALAR
ENGINES

UARM
CORTEX-A72
APPLICA o

VEREAL
ADAPTABLE
HARDWARE

2= Fermilab



Efficient codesigh - emerging methods

* Emerging computing architectures
* New microelectronics technologies

* Efficient neural algorithms, e.g. spiking

69
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Efficient codesigh - emerging methods

* Emerging computing architectures
* New microelectronics technologies

* Efficient neural algorithms, e.g. spiking

69
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Fast ML for Science

Embedding ML info our experiments
with extreme requirements brings
radical new capabilities, accelerates
scientific discovery, and spurs
technological innovation

2= Fermilab
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Fast ML for Science

Embedding ML info our experiments
with extreme requirements brings
radical new capabilities, accelerates
scientific discovery, and spurs
technological innovation

Intelligent edge of
tomorrow

We are developing novel ML techniques
and accessible tools co-designed with
cutting edge hardware for science while
collaborating with researchers and
industry

2= Fermilab
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Fast ML for Science

Embedding ML info our experiments
with extreme requirements brings
radical new capabilities, accelerates
scientific discovery, and spurs
technological innovation

Intelligent edge of
tomorrow

We are developing novel ML techniques
and accessible tools co-designed with
cutting edge hardware for science while
collaborating with researchers and
industry

Outlook

Powerful intelligent sensing being demonstrated across a wide array of applications;
Continuing to advance ML methods and hardware development to enable ultra-fast
automated experimentation to enable future ground-breaking discoveries!

2= Fermilab



