Particle tracking and Calorimeter in a nutshell

Son Cao, IFIRSE, ICISE

MAR. 6TH 2024

The particle detector is really complicated to be digested in a short lecture.

Target: general concepts and relevant technique used during this camp.

Start w/ questions regarding to muon decay measurement

How can be convinced that we observed is muon-to-electron decay?

- We know this process is possible (from physics laws)!
- We *know* most of radiation/signal observed (actually trigged w/ specific threshold and coincidence) are muon induced by cosmic ray
- We *assume* the late ~us signal is likely induced or related to the prompt signal
- (Measurement of the timing different btw/ signal gives similar result to what we know well (~2.2us lifetime))

Why measuring cosmic-ray muon decay is useful/interesting?

- Will allow us to examine the "time dilation" in special relativity
 - 600m before stopped
 - surface
 - 13.8 km.
- which govern the weak interaction
- Allow to test the Parity-violation (due to polarized nature of cosmic-ray) muons and parity violation in the weak interaction)
- produced along with electron in muon decay

Knowing 2.2us lifetime, if not taking relativistic effect, muon will travel ~

But we know most of muons produced in the upper atmospheric, ~ 10km (>>600m). So in classical mechanics, muons shouldn't reach the Earth

If include the relativistic effect, range of 4GeV muons before decay is about

Lifetime measurement will allow us to estimate the Fermi coupling constant

Allow to verify that there are actually two different kinds of neutrinos are

More arguments to support

- Need to identify the prompt signal as a muon
- Need to identify the late signal as a electron
- It's impossible to identify neutrinos (since they interact weakly) but we make sure all detector cover whole space and detect all particles involved
- Need to have high spatial resolution of muon and electron trajectories to tell that they seem to closely "meet" at one point
- Measure energy/momentum of muon and electron to be more convinced that muon is from atmospheric (~ 4GeV) and they follow the conservation law (energy and momentum)
- (Parity violation in produced electron, referring to nature of polarized muons, which is decay product of downward pions)

More arguments to support

- Need to identify the prompt signal as a muon
- Need to identify the late signal as a electron
- It's impossible to identify neutrinos (since they interact weakly) but we make sure all detector
 cover whole space and detect all particles involved
- Need to have high spatial resolution of muon and electron trajectories to tell that they seem to closely "meet" at one point
- Measure energy/momentum of muon and electron to be more convinced that muon is from atmospheric (~ 4GeV) and they follow the conservation law (energy and momentum)
- (Parity violation in produced electron, referring to nature of polarized muons, which is decay product of downward pions)

Particle identification

What kind of information used to identify particle?

- Mass
- Charge
- Spin
- "Flavor" (also "color")
 - Eg. Electron neutrino and electron produced in pair
- Allowed interaction processes and interaction strength
 - Eg. Leptons (muon, electron, neutrino) do not have strong interaction
- Prompt decay products (eg. in case of W, Z, Higgs)

Standard Model of Elementary Particles

Eg. Muon vs. electron

- They are basically the same except muon is ~ 200 time heavier than electron
 - on mass. Eg. curvature under strong magnetic field

Figure 1: A particle with velocity v entering a magnetic field. In unit time the particle travels a distance v around the circle and turns through an angle ω .

Find the way to measure some observables which depends

F = qvB

ma = qvB

$$m\left(\frac{v^2}{r}\right) = qvB$$
$$\frac{mv}{r} = qB$$
$$r = \frac{mv}{qB} = \frac{p}{qB}$$
$$r \propto p$$

Eg. Muon vs. electron in Cherenkov

- Electron quickly develops electromagnetic shower and give a fuzzy ring pattern than muon
- The *fuzziness* can be used as particle identity
- Also the Cherenkov threshold can be used for particle identity since it depends on particle

events 09 20 -2,000

80

Eg. Muon vs. electron in Scintillator-based detector

NOvA, scintillator technique

More dedicated information/measuring

- Relevant feature: muon deposit more energy when slowing down
- If you measure muon decay, one more "convincing" point is that the muon deposit more energy than the non-stopped muon.
- 32 28 /Cm 24 20 16 12
 - 8

Average energy loss by a charged particle per length dx

Bethe-bloch formula

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e^2 c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{2m_e c^2}{M_e^2} \right)^2$$

$$N_A = 6.022 \cdot 10^{23} \text{mol}^{-1} = \text{Avogadro number}$$

$$r_e = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_e c^2} = \text{classical electron radius}$$

$$\varepsilon_0 - \text{ permittivity of free space}$$

$$m_e^2 = \text{electron mass}$$

$$c = \text{speed of light}$$

$$z = \text{charge of the incident particle}$$

$$\frac{Z}{A} = \text{atomic number and weight of target}$$

$$I = \text{effective ionization potential}$$

$$\delta = \text{density correction}$$

Tracking detector

Tracking detector

To reveals the path, or "track", of a (charged) particle by providing

- Spatial information
- Temporal information
- While tracking, the detector also provide (partly) information of particle energy via measuring of the energy loss
- Sometimes, tracking detector can be designed to measure some particle properties, eg. charge, and/or momentum.

Eg. State-of-art of radiation tracking to the classroom

A transferred technology by CERN, being use by NASA (Sometimes in the future, we hope to have this!)

https://advacam.com/application/education/

Principle for tracking

Charged particle passing through matter

. . .

- Create <u>electron-ion pairs</u> in the gas
- Electron-hole pairs in semiconductor
- Scintillation light from excited molecules (liquid/plastic scintillators)
- Cherenkov light in the transparent materials

Understand these fundamental processes is critical for designing a tracking system.

Simple tracking detector w/ scintillator (Simulation)

Simple tracking detector w/ scintillator (Simulation)

EG. TEMPORAL INFORMATION

Eg: Tracking with MINOS experiment

- \diamond NuMI high intensity neutrino beam
- ♦ Near Detector at Fermilab, IL
- \diamond Far Detector at Soudan, MN
- ♦ Two-detector design to mitigate systematic uncertainties

Calorimeter

Calorimeter

To determine the energy of particle with some level of precision using the "energy loss phenomena"

- You can't measure directly but reconstruct from the signal induced of energy loss of particle
- Energy loss is proportional to the particle energy
- For some physics (eg. Higgs discovery, neutrino oscillation...), measuring the energy precisely is vital

Higgs particle discovery thanks to the precise measurement of photon energy

Calorimeter for neutrino oscillation measurement

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}}$

Calorimeter: design consideration

- Large enough to contain all of the energy of to-bemeasured particle
- Must record signal to refer to the energy lost
- Sufficiently granular to tell not just how much energy was deposited but where
- Other practical consideration: small enough to fit in depending on event rate...

detector, not too expensive, radiation hardness; fast read-out

Calorimeter basics

- Calorimeters: to determine the energy of particle using the "energy loss phenomena"
- Loss: electromagnetic or hadronic showers
- Common modern use:
 - Scintillator detector
 - Cherenkov detector

Electromagnetic shower development

- Electromagnetic shower: Highenergy photons produce pair of electrons and positrons
- Electrons and positrons radiate photons via Breamsstrahlung when travel through matter, interacting with fields of atoms
- One electron fall below critical energy, more energy loss via ionisation than bremsstrahlung and the shower stops growing

Hadronic shower development

- More complicated shower
- Main products are charged and neutral pion
- Neutral pion decays into pair of gammas, which initiates the EM subshower

Development of cosmic-ray air showers

Example of energy deposit by muon on plastic scintillator

- We do not measure this amount of energy deposit directly
- We in fact count No. of photoelectron trigged by the produced scintillation light (captured, reemitted, and transported by WLS) with photodetector
- Understanding the physics of energy deposit process and the response of photodetector, scintillator, WLS allows us to make a conversion from what we observed to energy deposit.

Particle detectors

State-of-art of particle detection

To put all sub-detector together for maximizing the physics potential output with other (*cost, space, radiation, power*...) consideration.

State-of-art of particle detection

Details in the textbooks

Second Edition

AND BORIS SHWARTZ

CAMBRIDGE MONOG **ON PARTICLE PHYSICS, NU** AND COSMOLO

26

Available in our bookshelf

CLAUS GRUPEN

W.R. Leo Techniques for Nuclear and **Particle Physics** Experiments

A How-to Approach

Gicise

detectors for particle radiation

Backup

Cherenkov Threshold

GeV/c

• Threshold in Cherenkov detector $p_{th.} = \frac{1}{\sqrt{1 - n^{-2}}}$

In the air, threshold for pions is 5GeV/c but for Kaon is 20

Parity violation in muon decay

Have downward spin

FIG. 1. a) A positive muon emitted in the pion boost direction in the rest frame of decaying pion. b) A positive muon emitted in the opposite direction of the pion boost in the rest frame of

Parity violation in muon decay

FIG. 2. Decay at the rest of a positive (a) and a negative (b) muon with the emission of the most energetic positron and electron, respectively.

$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$
 and $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$.

In extreme case, positron (electron) get most energy When two (anti-)neutrino produces in the same direction Net neutrino spin is zero -> positron (electron) will prefer to have same spin direction as their parent. Sin positron (left) is right (left) handed Both positron and electron will prefer to emit upward

