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Hands On - Setup
● The interactive part is served with Python notebooks
● Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser
● Authenticate with your Github account (login if necessary)
● If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code
● If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at: 

https://github.com/fastmachinelearning/hls4ml-tutorial
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Introduction
● hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely 

low latency on FPGAs
○ https://github.com/hls-fpga-machine-learning/hls4ml

○ https://fastmachinelearning.org/hls4ml/

○ pip install hls4ml

● In this session you will get hands on experience with the hls4ml package
● We’ll learn how to:

○ Translate models into synthesizable FPGA code
○ Explore the different handles provided by the tool to optimize the inference

■ Latency, throughput, resource usage
● Make our inference more computationally efficient with pruning and quantization
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Why FPGAs?
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L1 trigger:
∙ 40 MHz in / 100 KHz out
∙ Process 100s TB/s
∙ Trigger decision to be made in ≈ 10 μs
∙Coarse local reconstruction
∙ FPGAs / Hardware implemented
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hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)
Most collision “events” don’t produce interesting physics

“Triggering” = filter events to reduce data rates to manageable levels
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Deploy ML algorithms very early in the game
Challenge: strict latency constraints!
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The challenge: triggering at (HL-)LHC
The trigger discards events forever, so selection must be very precise

ML can improve sensitivity to rare physics
Needs to be fast!

Enter: hls4ml (high level synthesis for machine learning)
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Muon trigger example
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hls4ml: progression
● Previous slides showed the original motivation for hls4ml

○ Extreme low latency, high throughput domain
● Since then, we have been expanding!

○ Longer latency domains, larger models, resource constrained
○ Different FPGA vendors
○ New applications, new architectures

● While maintaining core characteristics:
○ “Layer-unrolled” HLS library → not another DPU
○ Extremely configurable: precision, resource vs latency/throughput tradeoff
○ Research project, application- and user-driven
○ Accessible, easy to use
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hls4ml community is very active!

● Binary & Ternary neural networks: 
[2020 Mach. Learn.: Sci. Technol] 

○ Compressed weights for low resource inference
● Boosted Decision Trees: [JINST 15 P05026 (2020)]

○ Low latency for Decision Tree ensembles
● GarNet / GravNet: [arXiv: 2008.03601] 

○ Distance weighted graph neural networks suitable 
for sparse/irregular point-cloud data

● Quantization aware training QKeras + support in 
hls4ml: [arXiv: 2006.10159]

● Convolutional neural networks
Mach. Learn.: Sci. Technol. 2 045015 (2021)

Recent Developments
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Coming Soon
● A few exciting new things are being developed 

and should become available soon:
○ Intel Quartus HLS, Mentor Catapult HLS, 

Intel One API ‘Backends’
○ Recurrent Neural Networks
○ More integrated ‘end-to-end’ flow with bitfile 

generation and host bindings for platforms 
like Alveo, PYNQ
■ Bundled into MLCommons Tiny 

submission -- image classification and 
anomaly detection
https://mlcommons.org/en/news/mlperf-tiny-v05/
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits

Contain many different building blocks (‘resources’) which are 
connected together as you desire

Originally popular for prototyping ASICs, but now also for high 
performance computing

FPGA diagram
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits

Logic cells / Look Up Tables perform arbitrary functions on 
small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic, small 
memories

Flip-Flops register data in time with the clock pulse

FPGA diagram

Logic cell

Flip-flop
Look-up 

table
(logic) (registers)
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable integrated 
circuits

DSPs (Digital Signal Processor) are specialized units for 
multiplication and arithmetic

Faster and more efficient than using LUTs for these types of 
operations

And for Neural Nets, DSPs are often the most scarce

FPGA diagram

DSP
(multiplication)
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb 
each in Xilinx)

Memories using BRAMs more efficient than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained together as 
needed

FPGA diagram
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What are FPGAs?
In addition, there are specialised blocks for I/O, making FPGAs 
popular in embedded systems and HEP triggers

High speed transceivers with Tb/s total bandwidth
PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram
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Why are FPGAs Fast?
● Fine-grained / resource parallelism

○ Use the many resources to work on 
different parts of the problem 
simultaneously

○ Allows us to achieve low latency
● Most problems have at least some sequential 

aspect, limiting how low latency we can go
○ But we can still take advantage of it 

with…
● Pipeline parallelism

○ Use the register pipeline to work on 
different data simultaneously

○ Allows us to achieve high throughput

Like a production line for data…
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How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which describe electronic 
circuits

High Level Synthesis

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the 
design

Drastic decrease in firmware development time!

Today we’ll use Xilinx Vivado HLS [*]

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
19
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Jargon
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the 

algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high 

throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few 

elements
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input
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high level synthesis for machine learning

Catapult
Coming Soon

https://fastmachinelearning.org/hls4ml/ 
21
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Neural network inference
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Neural network inference

precomputed and 
stored in BRAMs

DSPs logic cells

L1

Ln

LN
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Neural network inference

precomputed and 
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources? DSPs, 
LUTs, FFs?

Does the model fit in the latency 
requirements?

24



hls4ml tutorial Aug 18, 2021

Neural network inference

precomputed and 
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources? DSPs, 
LUTs, FFs?

Does the model fit in the latency 
requirements?
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Today you will learn how to optimize your project through:

-compression: reduce number of synapses or neurons

-quantization: reduces the precision of the calculations (inputs, 
weights, biases)

-parallelization: tune how much to parallelize to make the inference 
faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility
Performance depends on how well you take 
advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency 

NN training

FPGA project

designing
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What we won’t cover today
● Two new tutorial notebooks are not yet ready, but will be soon!

○ Boosted decision trees: implemented in a companion package to hls4ml
■ https://github.com/thesps/conifer

○ Convolutional NNs: convolutional layers can quickly increase in number of 
operations, recently available in hls4ml at larger scales
■ https://arxiv.org/abs/2101.05108

● What comes after hls4ml… you would need to integrate the ‘IP core’ into a larger 
design
○ For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger, National 

Instruments DAQ framework)
○ For more off-the-shelf boards, integration with system-on-chip or host CPU can be 

more straightforward 
■ https://github.com/mlcommons/tiny_results_v0.5/tree/main/open/hls4ml
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Today’s hls4ml hands on
∙Part 1: 

-Get started with hls4ml: train a basic model and run the conversion, simulation & c-synthesis 
steps

∙Part 2: 

- Learn how to tune inference performance with quantization & ReuseFactor

∙Part 3:

- Perform model compression and observe its effect on the FPGA resources/latency

∙Part 4:

- Train using QKeras “quantization aware training” and study impact on FPGA metrics

28
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Physics case: jet tagging
Study a multi-classification task to be implemented on FPGA: discrimination between highly 
energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

 top other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0
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Physics case: jet tagging

 top other quarkZ W gluon

Input variables: several observables known to have high discrimination power 
from offline data analyses and published studies [*] 

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. 
Butterworth et al. PhysRevLett.100.242001, etc..
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Physics case: jet tagging

● Fully connected neural network with 16 expert-level inputs:
○ Relu activation function for intermediate layers
○ Softmax activation function for output layer

AUC = area under ROC curve
(100% is perfect, 20% is random)

● We’ll train the five class multi-classifier on a sample of ~ 1M events with two boosted 
WW/ZZ/tt/qq/gg anti-kT jets

○ Dataset DOI: 10.5281/zenodo.3602254
○ OpenML: https://www.openml.org/d/42468 

better
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Hands On - Setup
● The interactive part is served with Python notebooks
● Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser
● Authenticate with your Github account (login if necessary)
● Open and start running through “part1_getting_started” !
● If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code
● If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at: 

https://github.com/fastmachinelearning/hls4ml-tutorial
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Efficient NN design: quantization
∙ In the FPGA we use fixed point representation

− Operations are integer ops, but we can represent fractional 
values

∙ But we have to make sure we’ve used the correct data types!
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Full performance at 6 
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Efficient NN design: parallelization
∙ Trade-off between latency and FPGA resource usage determined by the parallelization of the 
calculations in each layer

∙ Configure the “reuse factor” = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial

Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latency
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Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

…

Longer latency

More resources
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Parallelization: Timing

Fully parallel
Each mult. used 1x

Each mult. used 3x 

Each mult. used 6x 

…

~ 175 ns

~ 75 ns

…La
te
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Longer latency

More resources

Latency of layer m
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Large MLP
● ‘Strategy: Resource’ for 

larger networks and higher 
reuse factor

● Uses a slightly different HLS 
implementation of the dense 
layer to compile faster and 
better for large layers

● Here, we use a different 
partitioning on the first layer 
for the best partitioning of 
arrays

IOType: io_parallel # options: io_serial/io_parallel

HLSConfig:

  Model:

    Precision: ap_fixed<16,6>

    ReuseFactor: 128

 Strategy: Resource

LayerName:

   dense1:

     ReuseFactor: 112

  

This config is for a model trained on the MNIST digits classification dataset
Architecture (fully connected): 784 → 128 → 128 → 128 → 10
Model accuracy: ~97%
We can work out how many DSPs this should use...
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Large MLP
∙ It takes a while to synthesise, so here’s one I made earlier…

∙ The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162 🤞
============================

============================

+ Timing (ns): 

    * Summary: 

    +--------+-------+----------+------------+

    |  Clock | Target| Estimated| Uncertainty|

    +--------+-------+----------+------------+

    |ap_clk  |   5.00|     4.375|        0.62|

    +--------+-------+----------+------------+

+ Latency (clock cycles): 

    * Summary: 

    +-----+-----+-----+-----+----------+

    |  Latency  |  Interval | Pipeline |

    | min | max | min | max |   Type   |

    +-----+-----+-----+-----+----------+

    |  518|  522|  128|  128| dataflow |

    +-----+-----+-----+-----+----------+

=====================================
== Utilization Estimates
=====================================
+---------------------+---------+-------+---------+--------+
|         Name        | BRAM_18K| DSP48E|    FF   |   LUT  |
+---------------------+---------+-------+---------+--------+
...
+---------------------+---------+-------+---------+--------+
|Total                |     1962|   1162|   169979|  222623|
+---------------------+---------+-------+---------+--------+
|Available SLR        |     2160|   2760|   663360|  331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%)  |       90|     42|       25|      67|
+---------------------+---------+-------+---------+--------+
|Available            |     4320|   5520|  1326720|  663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%)      |       45|     21|       12|      33|
+---------------------+---------+-------+---------+--------+

II determined by the largest reuse factor
41
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NN compression methods
● Network compression is a widespread technique to reduce the size, energy consumption, and 

overtraining of deep neural networks 
● Several approaches have been studied:

○ parameter pruning: selective removal of weights based on a particular ranking 
[arxiv.1510.00149, arxiv.1712.01312]

○ low-rank factorization: using matrix/tensor decomposition to estimate informative parameters 
[arxiv.1405.3866]

○ transferred/compact convolutional filters: special structural convolutional filters to save 
parameters [arxiv.1602.07576]

○ knowledge distillation: training a compact network with distilled knowledge of a large network 
[doi:10.1145/1150402.1150464]

● Today we’ll use the tensorflow model sparsity toolkit
○ https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

● But you can use other methods!
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TF Sparsity
● Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly increasing 

up to the set target as training proceeds
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Efficient NN design: compression

● DSPs (used for multiplication) are often 
limiting resource

○ maximum use when fully parallelized
○ DSPs have a max size for input (e.g. 

27x18 bits), so number of DSPs per 
multiplication changes with precision

Fully parallelized 
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
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Efficient NN design: quantization
● hls4ml allows you to use different data types 

everywhere, we saw how to tune that in part 2 
● We will also try quantization-aware training with 

QKeras (part 4)
● With quantization-aware we can even go down to 

just 1 or 2 bits
○ See our recent work: 

https://arxiv.org/abs/2003.06308
● See other talks on quantization at this workshop: 

Amir, Thea, Benjamin 
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QKeras
● QKeras is a library to train models with 

quantization in the training
○ Developed & maintained by Google

● Easy to use, drop-in replacements for Keras 
layers

○ e.g. Dense → QDense
○ e.g. Conv2D → QConv2D
○ Use ‘quantizers’ to specify how many bits 

to use where
○ Same kind of granularity as hls4ml

● Can achieve good performance with very few 
bits

● We’ve recently added support for 
QKeras-trained models to hls4ml

○ The number of bits used in training is also 
used in inference

○ The intermediate model is adjusted to 
capture all optimizations possible with 
QKeras
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Summary
● After this session you’ve gained some hands on experience with hls4ml

○ Translated neural networks to FPGA firmware, run simulation and synthesis
● Tuned network inference performance with precision and ReuseFactor

○ Used profiling and trace tools to guide tuning
● Learned how to simply prune a neural network and the impact on resources
● Trained a model with small number of bits using QKeras, and use the same spec in inference easily 

with hls4ml
● The tutorial server is always available at https://cern.ch/ssummers/hls4ml-tutorial 
● You can find these tutorial notebooks to run locally at: 

https://github.com/fastmachinelearning/hls4ml-tutorial  
● You can run the tutorial Docker image yourself like:

○ docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:12.v
○ 15 GB download! Or remove ‘.v’ for a much smaller image but without Xilinx tools (so no ‘build’)

● Use hls4ml in your own environment: pip install hls4ml[profiling]
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