
hls4ml tutorial Aug 18, 2021

Hands On - Setup
● The interactive part is served with Python notebooks
● Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser
● Authenticate with your Github account (login if necessary)
● If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code
● If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at:

https://github.com/fastmachinelearning/hls4ml-tutorial

1

https://cern.ch/ssummers/hls4ml-tutorial

hls4ml tutorial
FastML Workshop 2020

Sioni Summers et al. for the hls4ml team
2

hls4ml tutorial Aug 18, 2021

Introduction
● hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely

low latency on FPGAs
○ https://github.com/hls-fpga-machine-learning/hls4ml

○ https://fastmachinelearning.org/hls4ml/

○ pip install hls4ml

● In this session you will get hands on experience with the hls4ml package
● We’ll learn how to:

○ Translate models into synthesizable FPGA code
○ Explore the different handles provided by the tool to optimize the inference

■ Latency, throughput, resource usage
● Make our inference more computationally efficient with pruning and quantization

3

https://github.com/hls-fpga-machine-learning/hls4ml
https://fastmachinelearning.org/hls4ml/

hls4ml tutorial Aug 18, 2021
4

Why FPGAs?

hls4ml tutorial

DATA FLOW

40
 M

Hz

pp co
llis

ions

LHC Experiment Data Flow

L1 T
rig

ger

High-L
ev

el

Tr
igger Offl

ine

Com
putin

g

L1 trigger:
∙ 40 MHz in / 100 KHz out
∙ Process 100s TB/s
∙ Trigger decision to be made in ≈ 10 μs
∙Coarse local reconstruction
∙ FPGAs / Hardware implemented

5

hls4ml tutorial

hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)
Most collision “events” don’t produce interesting physics

“Triggering” = filter events to reduce data rates to manageable levels

6

hls4ml tutorial

DATA FLOW

40
 M

Hz

pp co
llis

ions

LHC Experiment Data Flow

L1 T
rig

ger

High-L
ev

el

Tr
igger Offl

ine

Com
putin

g

Deploy ML algorithms very early in the game
Challenge: strict latency constraints!

7

hls4ml tutorial

The challenge: triggering at (HL-)LHC
The trigger discards events forever, so selection must be very precise

ML can improve sensitivity to rare physics
Needs to be fast!

Enter: hls4ml (high level synthesis for machine learning)

8

hls4ml tutorial Aug 18, 2021
9

Muon trigger example

hls4ml tutorial Aug 18, 2021

hls4ml: progression
● Previous slides showed the original motivation for hls4ml

○ Extreme low latency, high throughput domain
● Since then, we have been expanding!

○ Longer latency domains, larger models, resource constrained
○ Different FPGA vendors
○ New applications, new architectures

● While maintaining core characteristics:
○ “Layer-unrolled” HLS library → not another DPU
○ Extremely configurable: precision, resource vs latency/throughput tradeoff
○ Research project, application- and user-driven
○ Accessible, easy to use

10

hls4ml tutorial Aug 18, 2021

hls4ml community is very active!

● Binary & Ternary neural networks:
[2020 Mach. Learn.: Sci. Technol]

○ Compressed weights for low resource inference
● Boosted Decision Trees: [JINST 15 P05026 (2020)]

○ Low latency for Decision Tree ensembles
● GarNet / GravNet: [arXiv: 2008.03601]

○ Distance weighted graph neural networks suitable
for sparse/irregular point-cloud data

● Quantization aware training QKeras + support in
hls4ml: [arXiv: 2006.10159]

● Convolutional neural networks
Mach. Learn.: Sci. Technol. 2 045015 (2021)

Recent Developments

11

https://iopscience.iop.org/article/10.1088/2632-2153/aba042/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2101.05108

hls4ml tutorial Aug 18, 2021

Coming Soon
● A few exciting new things are being developed

and should become available soon:
○ Intel Quartus HLS, Mentor Catapult HLS,

Intel One API ‘Backends’
○ Recurrent Neural Networks
○ More integrated ‘end-to-end’ flow with bitfile

generation and host bindings for platforms
like Alveo, PYNQ
■ Bundled into MLCommons Tiny

submission -- image classification and
anomaly detection
https://mlcommons.org/en/news/mlperf-tiny-v05/

12

https://github.com/fastmachinelearning/hls4ml/pull/245
https://github.com/fastmachinelearning/hls4ml/pull/212
https://mlcommons.org/en/news/mlperf-tiny-v05/

hls4ml tutorial Aug 18, 2021

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain many different building blocks (‘resources’) which are
connected together as you desire

Originally popular for prototyping ASICs, but now also for high
performance computing

FPGA diagram

13

hls4ml tutorial Aug 18, 2021

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

Logic cells / Look Up Tables perform arbitrary functions on
small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic, small
memories

Flip-Flops register data in time with the clock pulse

FPGA diagram

Logic cell

Flip-flop
Look-up

table
(logic) (registers)

14

hls4ml tutorial Aug 18, 2021

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable integrated
circuits

DSPs (Digital Signal Processor) are specialized units for
multiplication and arithmetic

Faster and more efficient than using LUTs for these types of
operations

And for Neural Nets, DSPs are often the most scarce

FPGA diagram

DSP
(multiplication)

15

hls4ml tutorial Aug 18, 2021

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable
integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, FIFOs (18Kb
each in Xilinx)

Memories using BRAMs more efficient than using LUTs

A big FPGA has nearly 100Mb of BRAM, chained together as
needed

FPGA diagram

16

hls4ml tutorial Aug 18, 2021

What are FPGAs?
In addition, there are specialised blocks for I/O, making FPGAs
popular in embedded systems and HEP triggers

High speed transceivers with Tb/s total bandwidth
PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram

17

hls4ml tutorial Aug 18, 2021

Why are FPGAs Fast?
● Fine-grained / resource parallelism

○ Use the many resources to work on
different parts of the problem
simultaneously

○ Allows us to achieve low latency
● Most problems have at least some sequential

aspect, limiting how low latency we can go
○ But we can still take advantage of it

with…
● Pipeline parallelism

○ Use the register pipeline to work on
different data simultaneously

○ Allows us to achieve high throughput

Like a production line for data…

18

hls4ml tutorial Aug 18, 2021

How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which describe electronic
circuits

High Level Synthesis

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the
design

Drastic decrease in firmware development time!

Today we’ll use Xilinx Vivado HLS [*]

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
19

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

hls4ml tutorial Aug 18, 2021

Jargon
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the

algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high

throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few

elements
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

20

hls4ml tutorial Aug 18, 2021

high level synthesis for machine learning

Catapult
Coming Soon

https://fastmachinelearning.org/hls4ml/
21

https://fastmachinelearning.org/hls4ml/

hls4ml tutorial Aug 18, 2021

Neural network inference

22

hls4ml tutorial Aug 18, 2021

Neural network inference

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

23

hls4ml tutorial Aug 18, 2021

Neural network inference

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources? DSPs,
LUTs, FFs?

Does the model fit in the latency
requirements?

24

hls4ml tutorial Aug 18, 2021

Neural network inference

precomputed and
stored in BRAMs

DSPs logic cells

L1

Ln

LN

How many resources? DSPs,
LUTs, FFs?

Does the model fit in the latency
requirements?

25

hls4ml tutorial Aug 18, 2021

Today you will learn how to optimize your project through:

-compression: reduce number of synapses or neurons

-quantization: reduces the precision of the calculations (inputs,
weights, biases)

-parallelization: tune how much to parallelize to make the inference
faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility
Performance depends on how well you take
advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

NN training

FPGA project

designing

26

hls4ml tutorial Aug 18, 2021

What we won’t cover today
● Two new tutorial notebooks are not yet ready, but will be soon!

○ Boosted decision trees: implemented in a companion package to hls4ml
■ https://github.com/thesps/conifer

○ Convolutional NNs: convolutional layers can quickly increase in number of
operations, recently available in hls4ml at larger scales
■ https://arxiv.org/abs/2101.05108

● What comes after hls4ml… you would need to integrate the ‘IP core’ into a larger
design
○ For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger, National

Instruments DAQ framework)
○ For more off-the-shelf boards, integration with system-on-chip or host CPU can be

more straightforward
■ https://github.com/mlcommons/tiny_results_v0.5/tree/main/open/hls4ml

27

https://github.com/thesps/conifer
https://arxiv.org/abs/2101.05108
https://github.com/mlcommons/tiny_results_v0.5/tree/main/open/hls4ml

hls4ml tutorial Aug 18, 2021

Today’s hls4ml hands on
∙Part 1:

-Get started with hls4ml: train a basic model and run the conversion, simulation & c-synthesis
steps

∙Part 2:

- Learn how to tune inference performance with quantization & ReuseFactor

∙Part 3:

- Perform model compression and observe its effect on the FPGA resources/latency

∙Part 4:

- Train using QKeras “quantization aware training” and study impact on FPGA metrics

28

hls4ml tutorial
Part 1: Model Conversion

29

hls4ml tutorial Aug 18, 2021

Physics case: jet tagging
Study a multi-classification task to be implemented on FPGA: discrimination between highly
energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

 top other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0

30

hls4ml tutorial Aug 18, 2021

Physics case: jet tagging

 top other quarkZ W gluon

Input variables: several observables known to have high discrimination power
from offline data analyses and published studies [*]

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M.
Butterworth et al. PhysRevLett.100.242001, etc..

31

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

hls4ml tutorial Aug 18, 2021

Physics case: jet tagging

● Fully connected neural network with 16 expert-level inputs:
○ Relu activation function for intermediate layers
○ Softmax activation function for output layer

AUC = area under ROC curve
(100% is perfect, 20% is random)

● We’ll train the five class multi-classifier on a sample of ~ 1M events with two boosted
WW/ZZ/tt/qq/gg anti-kT jets

○ Dataset DOI: 10.5281/zenodo.3602254
○ OpenML: https://www.openml.org/d/42468

better

32

hls4ml tutorial Aug 18, 2021

Hands On - Setup
● The interactive part is served with Python notebooks
● Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser
● Authenticate with your Github account (login if necessary)
● Open and start running through “part1_getting_started” !
● If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code
● If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at:

https://github.com/fastmachinelearning/hls4ml-tutorial

33

https://cern.ch/ssummers/hls4ml-tutorial

hls4ml Tutorial
Part 2: Advanced Configuration

34

hls4ml tutorial Aug 18, 2021

Efficient NN design: quantization
∙ In the FPGA we use fixed point representation

− Operations are integer ops, but we can represent fractional
values

∙ But we have to make sure we’ve used the correct data types!

0101.1011101010

width
fractionalinteger

Full performance at 6
integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance at 8
fractional bits

FP
G

A
 A

U
C

 /
 E

xp
ec

te
d

A
U

C

FP
G

A
 A

U
C

 /
Ex

pe
ct

ed
 A

U
C

ap_fixed<width bits, integer bits>

35

hls4ml tutorial Aug 18, 2021
36

Efficient NN design: quantization

hls4ml tutorial Aug 18, 2021

Efficient NN design: parallelization
∙ Trade-off between latency and FPGA resource usage determined by the parallelization of the
calculations in each layer

∙ Configure the “reuse factor” = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial

Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latency

37

hls4ml tutorial Aug 18, 2021

Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Longer latency

More resources

38

hls4ml tutorial Aug 18, 2021

Parallelization: Timing

Fully parallel
Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…La
te

nc
y

(c
lo

ck

cy
cl

es
)

Longer latency

More resources

Latency of layer m

39

hls4ml tutorial Aug 18, 2021

Large MLP
● ‘Strategy: Resource’ for

larger networks and higher
reuse factor

● Uses a slightly different HLS
implementation of the dense
layer to compile faster and
better for large layers

● Here, we use a different
partitioning on the first layer
for the best partitioning of
arrays

IOType: io_parallel # options: io_serial/io_parallel

HLSConfig:

 Model:

 Precision: ap_fixed<16,6>

 ReuseFactor: 128

 Strategy: Resource

LayerName:

 dense1:

 ReuseFactor: 112

This config is for a model trained on the MNIST digits classification dataset
Architecture (fully connected): 784 → 128 → 128 → 128 → 10
Model accuracy: ~97%
We can work out how many DSPs this should use...

40

hls4ml tutorial Aug 18, 2021

Large MLP
∙ It takes a while to synthesise, so here’s one I made earlier…

∙ The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162 🤞
============================

============================

+ Timing (ns):

 * Summary:

 +--------+-------+----------+------------+

 | Clock | Target| Estimated| Uncertainty|

 +--------+-------+----------+------------+

 |ap_clk | 5.00| 4.375| 0.62|

 +--------+-------+----------+------------+

+ Latency (clock cycles):

 * Summary:

 +-----+-----+-----+-----+----------+

 | Latency | Interval | Pipeline |

 | min | max | min | max | Type |

 +-----+-----+-----+-----+----------+

 | 518| 522| 128| 128| dataflow |

 +-----+-----+-----+-----+----------+

=====================================
== Utilization Estimates
=====================================
+---------------------+---------+-------+---------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+---------------------+---------+-------+---------+--------+
...
+---------------------+---------+-------+---------+--------+
|Total | 1962| 1162| 169979| 222623|
+---------------------+---------+-------+---------+--------+
|Available SLR | 2160| 2760| 663360| 331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%) | 90| 42| 25| 67|
+---------------------+---------+-------+---------+--------+
|Available | 4320| 5520| 1326720| 663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%) | 45| 21| 12| 33|
+---------------------+---------+-------+---------+--------+

II determined by the largest reuse factor
41

hls4ml Tutorial
Part 3: Compression

42

hls4ml tutorial Aug 18, 2021

NN compression methods
● Network compression is a widespread technique to reduce the size, energy consumption, and

overtraining of deep neural networks
● Several approaches have been studied:

○ parameter pruning: selective removal of weights based on a particular ranking
[arxiv.1510.00149, arxiv.1712.01312]

○ low-rank factorization: using matrix/tensor decomposition to estimate informative parameters
[arxiv.1405.3866]

○ transferred/compact convolutional filters: special structural convolutional filters to save
parameters [arxiv.1602.07576]

○ knowledge distillation: training a compact network with distilled knowledge of a large network
[doi:10.1145/1150402.1150464]

● Today we’ll use the tensorflow model sparsity toolkit
○ https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

● But you can use other methods!

43

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

hls4ml tutorial Aug 18, 2021

TF Sparsity
● Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly increasing

up to the set target as training proceeds

44

hls4ml tutorial Aug 18, 2021

Efficient NN design: compression

● DSPs (used for multiplication) are often
limiting resource

○ maximum use when fully parallelized
○ DSPs have a max size for input (e.g.

27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

45

hls4ml Tutorial
Part 4: Quantization

46

hls4ml tutorial Aug 18, 2021

Efficient NN design: quantization
● hls4ml allows you to use different data types

everywhere, we saw how to tune that in part 2
● We will also try quantization-aware training with

QKeras (part 4)
● With quantization-aware we can even go down to

just 1 or 2 bits
○ See our recent work:

https://arxiv.org/abs/2003.06308
● See other talks on quantization at this workshop:

Amir, Thea, Benjamin

47

https://arxiv.org/abs/2003.06308
https://indico.cern.ch/event/924283/contributions/4105159/
https://indico.cern.ch/event/924283/contributions/4105260/
https://indico.cern.ch/event/924283/contributions/4105330/

hls4ml tutorial

QKeras
● QKeras is a library to train models with

quantization in the training
○ Developed & maintained by Google

● Easy to use, drop-in replacements for Keras
layers

○ e.g. Dense → QDense
○ e.g. Conv2D → QConv2D
○ Use ‘quantizers’ to specify how many bits

to use where
○ Same kind of granularity as hls4ml

● Can achieve good performance with very few
bits

● We’ve recently added support for
QKeras-trained models to hls4ml

○ The number of bits used in training is also
used in inference

○ The intermediate model is adjusted to
capture all optimizations possible with
QKeras

48

hls4ml tutorial Aug 18, 2021

Summary
● After this session you’ve gained some hands on experience with hls4ml

○ Translated neural networks to FPGA firmware, run simulation and synthesis
● Tuned network inference performance with precision and ReuseFactor

○ Used profiling and trace tools to guide tuning
● Learned how to simply prune a neural network and the impact on resources
● Trained a model with small number of bits using QKeras, and use the same spec in inference easily

with hls4ml
● The tutorial server is always available at https://cern.ch/ssummers/hls4ml-tutorial
● You can find these tutorial notebooks to run locally at:

https://github.com/fastmachinelearning/hls4ml-tutorial
● You can run the tutorial Docker image yourself like:

○ docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:12.v
○ 15 GB download! Or remove ‘.v’ for a much smaller image but without Xilinx tools (so no ‘build’)

● Use hls4ml in your own environment: pip install hls4ml[profiling]

49

https://cern.ch/ssummers/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial

