Data acquisition system for J-APRC neutrino beamline

March 6th, 2024, Hardware Camp 2024 Ken Sakashita(KEK/J-PARC neutrino group)

What is data acquisition system(DAQ)?

* process a **signal generated in a detector**

* and saving the interesting information on a storage

Oscilloscope

A specific example (1): J-PARC neutrino beamline

What kind of data is saving ?

save signal waveform from sensors

extracting various information from the waveform of the signal

Beam monitors

Primary proton transport line

Super-conducting combined-function magnets

Waveform digitizer (sampling ADC) (an example at J-PARC neutrino beamline) 250Msample per sec. mplitude [mV] CT3 by CAVALIER 600 100 -100 sampling time [us] Average of 50 spills -50 ADC count Bkg. w/ wide BP filter Bkg. w/ narrow BP filter BIF sig. w/ narrow BP filter CAVALIER -150 data are read out via -200L 800 1000 1200 1400 1600 network(GbE) 200 400 600 Timing bin (4ns/bin) Use 500hm in this demonstration 888 ttps://doi.org/1 JACoW-IBIC2020-W http://openit.kek.jp/pro C

What is Data acquisition system(DAQ)?

* process a **signal generated in a detector**

* and saving the **interesting** information on a storage

A specific example (2): SuperKamiokande (SK)

the T2K Exp

Mark H (Univ. of Toronto for the T2K Co

Trianar and $D\Delta Q$ Far Detector: SK-IV

Trigger

* Trigger tells us when is the "right" moment to take data

00:00:05

PMT

() 00:00:07

Trigger

 $\ensuremath{\ast}$ Trigger tells us when is the "right" moment to take data

Two cases:

"periodic"

and

"physics process"

* Periodic trigger

e.g. J-PARC Main Ring extraction beam

Beam accelerated up to 30GeV is extracted every 1.36 seconds

* Periodic trigger

e.g. J-PARC Main Ring extraction beam

Beam accelerated up to 30GeV is extracted every 1.36 seconds

* Trigger based on a "physics" process

ref. "Introduction to Trigger and DAQ", M.Wielers (RAL)

* Periodic

interval is a constant

***** "physics" process

interval is NOT a constant

Probability of time (in ms) between events for average decay rate of $\tau=1$ ms

time [ms]

Probability of time (in ms) between events for average decay rate of $\tau=1$ ms

 to avoid trigger during the processing is busy, a veto logic (busy logic) is added

* Processing time

data size :

ex.) data size for charge, time information

this example shows the processing time of 0.4+0.8ms = 1.2ms

- Let us assume : $e = \frac{1}{1+ft}$
 - f : average rate of trigger (input)
 - w : average rate of accepted (output)

1+*ft*

• T : dead-time, i.e. necessary time to process an event

-<1

- Probability : P[busy] = wT, P[free] = 1- wT
- w = f*P[free] \rightarrow w=f*(1-wT)
- DAQ efficiency is w/f = 1/(1-wT)

* De-randomization

- What if we were able to make the system less dependent on the arrival time of our signals?
- Then we could ensure that events don't arrive when the system is busy – this is called de-randomization
- Can be achieved by buffering the data

for example, oscilloscope has a memory to store some events

Inter-arrival

time distribution

Introduction of neutrino beamline DAQ

Beam trigger & GPS

Beam extraction trigger is provided by accelerator. This trigger is used to start DAQ and stored a absolute timestamp

Beam monitor

Optical Transition Radiation (OTR)

4 Ti alloy beam foils

25

Emission Monitor (SSEM)

***** Readout electronics

- COPPER-lite + FINESSE
- 65MHz sampling ADC(12bits/sample)
- Network readout

- CAVALIER
- 160MHz or 250MHz sampling ADC(12bits/sample)
- Network readout

Beam monitor readout

	# of channel (# of ch. x # of det.)	readout	frame	other necessary equipments
SSEM	(24ch+24ch) x 19 = <mark>912 ch</mark>	Finesse 65MHz ADC	COPPER (KEK-9U-VME)	Attenuator(32ch, VME-9U) HV, moving structure control
ESM	4ch x 21 = 88 ch	CAVALIER 160MHz ADC	VME-6U(normal)	Attenuator(8 ch, VME-6U)
СТ	1ch x 5 = <mark>5 ch</mark>	CAVALIER 160MHz ADC	VME-6U(normal)	Attenuator(8 ch, VME-6U)
Loss	1ch x ~50 = ~50 ch	Finesse 65MHz ADC	COPPER (KEK-9U-VME)	HV, Interlock (Integrator,Comparator etc)
OTR	lch	TRIUMF-custom (w/ FPGA)	Intel SC5295UP Chassis	
Horn-CT	1ch x 18 = <mark>18 ch</mark>	Finesse 65MHz ADC (w/ 1MHz clock)	COPPER (KEK-9U-VME)	Attenuator, Isolation
MUMON	49ch(IC)+26ch(SI) +~5ch(DIA) = <mark>~80 ch</mark>	Finesse 65MHz ADC	COPPER (KEK-9U-VME)	Attenuator(8ch, VME-6U) HV
FxKm	~5ch	CAVALIER 160MHz ADC	VME-6U(normal)	Attenuator(8 ch, VME-6U)

Total # of ch =~1200 ch, Total expected data size = ~1.1Mbytes/spill

Beamline DAQ system

(based on MIDAS)

Data is collected over ethernet to an event builder PC

29

Online event displays

200 nath lenn V = -4.61mm

dY/dS = 0.00m

WY = 4.37m

Y = 0.09 cm

Summary

- Data acquisition system is briefly introduced
- J-PARC neutrino beamline DAQ system is shown as an specific example