Sicise International Centre for Interdisciplinary Science and Education

Introduction

Method

Result

Conclusion

Bonus

MPPC Characterization Experiments

Study the Speed of Light in Cable & Muon Rate at Distinct Angles

Group Members

 $N.T.M.Hien^{\star} \quad N.T.Hang^{\oplus} \quad T.T.M.Hoan^{\diamond} \quad N.P.Huy^{\star} \quad H.Q.Thang^{\star}$

Supervisor: Dr. Thanh Dong

Supporter: Ph.D. student, Ngoc Tran; Ms. Linh Pham

*CANTI - Center for Applications of Nuclear Technique in Industry [®]HCM UE - HCM University of Education [°]HCM US - HCM University of Science *USTH - University of Science and Technology of Hanoi

Presentation Overview

Introduction

- Method
- Result
- Conclusior
- Bonus

Introduction

Method

 $\begin{array}{l} \mbox{Examination of $V_{breakdown}$} \\ \mbox{Speed of Light in Optical Fibers} \\ \mbox{Cosmic Ray Detection (Muon Rate)} \end{array}$

Result

 $\begin{array}{l} \mbox{Examination of $V_{breakdown}$} \\ \mbox{Speed of Light in Optical Fiber} \\ \mbox{Cosmic Ray Detection (Muon Rate)} \end{array}$

Conclusion

ntroduction	etoolbox
Method	
Result	
Conclusion	
Bonus	

Method

Result

Conclusio

Bonus

Introduction

Method

Result

Conclusion

- Method
- Result
- Conclusion
- Bonus

Objectives

- Create a simple yet proper cosmic ray muon detector using scintillators and Multi-Pixel Photon Counter (MPPC).
- Create a simple system to study the speed of light in optical fibers using MPPC.

- Method
- Result
- Conclusion
- Bonus

Definition

- MPPC stands for Multi-Pixel Photon Counter, also known as Silicon Photomultiplier (SiPM), is designed to detect low-intensity light signals, particularly single photons
- One of the essential properties of MPPC is dark noise, which is the output signal generated by MPPC when no photons are incident on the detector.

Method

Examination of V_{breakdown} Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

ntroduction

Method

Examination of $V_{breakdown}$ Speed of Light in Optical Fibers Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Method

Examination of $V_{breakdown}$

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Introduction

Method Examination of V_{breakdown}

Speed of Light in Optical Fibers Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Method

Examination of V_{breakdown}

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Setup

Instrument

- Power Supply
- MPPC
 - Type: S13360-1325CS
 - Serial: 12482
 - V_{breakdown} from manufacturer: 51.85V
 - $V_{operator}$: 56.85V (= $V_{breakdown}$ + 5V)
- Oscilloscope

Sicise Examination of V_{breakdown}

Examination of Vbreakdown

Setup

Setup

- MPPC & a low-pass filter is placed inside a dark box, electrically connected.
- A power supply is linked to the box to generate electricity.
- The circuit will then send signal to an oscilloscope.
- We analyze the data coming on the oscilloscope in this setup.

Sicise Examination of V_{breakdown}

- Examination of Vbreakdown

Procedure

- Provide power with the source supply.
- Use the Vertical & Horizontal Scale, as well as the Trigger button to adjust and find the pulse shape.
- Measure the distance from the base to the peak.

• There are mostly pulse of 1 p.e. sometimes 2 p.es, and rarely 3 p.es.

Method

Examination of V_{breakdown}

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Purpose

- $\bullet\,$ Determining the V_{BR} of MPPC initially is practically beneficial and recommendable.
- Most MPPC characteristics are dependent on Vover.

Note

Recommended to compare or calibrate the characteristics of MPPCs at the same $V_{\text{over}}.$

Metho

Examination of V_{breakdown}

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Introduction

Method

Examination of $V_{breakdown}$ Speed of Light in Optical Fibers Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Method

- Examination of V_{breakdown}
- Speed of Light in Optical Fibers
- Cosmic Ray Detectio (Muon Rate)
- Result
- Conclusion
- Bonus

Setup

- A signal generator is connected to an LED.
- The LED then be covered and linked by a cable which will be divided into 2 paths.
- Two MPPCs are joined at the end of two cables, respectively.
- MPPCs are bonded to the amplifier to augment signals.
- Signals then be transmitted to the oscilloscope for analysis purpose.

Sicise C in Optical Fibers

Introduction

Method

Examination of V_{breakdown}

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Procedure

- Turn on the generator to provide electricity for the LED.
- Observe the received signals on the oscilloscope.
- Change the length of the fiber of one path. Then, observe the alternative signals.

Method

Examination o V_{breakdown}

Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Purpose

- Determine the speed of light in a given optical fiber.
- From the obtained data, find the *Refractive Index* of that material.

Method

Examination of V_{breakdown} Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

ntroduction

Examination of V_{breakdown} Speed of Light in Optical Fibers Cosmic Ray Detection (Muon Rate)

Result

Method

Conclusion

Signature Cosmic Ray Detection (Muon Rate)

Introduction

Method

Examination of V_{breakdown} Speed of Light in

Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Setup

- MPPC
- Scintillators connected with optical fibers
- Power supply
- Connect the optical fibers to the MPPC

Sicise Cosmic Ray Detection (Muon Rate)

Introduction

Method

Examination of V_{breakdown} Speed of Light in Optical Eiborg

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonu

Setup

MPPC board:

Fig. 1: LED board with components

Method

Examination of Vbreakdown Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonu

Setup

MPPC board:

Fig. 2: LED circuit board's front face.

Sicise Cosmic Ray Detection (Muon Rate)

Introduction

Method

Examination of Vbreakdown Speed of Light in Ontical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonu

Setup

MPPC board

Fig. 4: Complete MPPC Circuit

Signature Cosmic Ray Detection (Muon Rate)

Introduction

Method

Examination of V_{breakdown} Speed of Light in Optical Eiborg

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonu

Setup

The scintillators & MPPC boards are coupled as the following figure:

Fig. 5: MPPC & Scintillators setup for Muon Detection

Method

Examination of V_{breakdown} Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonu

Setup

Method

Examination of V_{breakdown} Speed of Light in Optical Fibers

Cosmic Ray Detection (Muon Rate)

Result

Conclusion

Bonus

Procedure

- Provide power with the source supply.
- Use the *Vertical & Horizontal Scale*, as well as the *Trigger* button to adjust and set the threshold.
 - Cover the scintillators & MPCC boards system to ensure that no incidence external photon could disturb and cause unwanted false signal.
 - Record the muon counts for around 15 minutes on a measurement of an angle.
 - Analyze the data acquired to have the muon counts distribution.

Sicise Cosmic Ray Detection (Muon Rate)

Introduction

Method

- Examination of Vbreakdown Speed of Light in Optical Fibers
- Cosmic Ray Detection (Muon Rate)

Result

- Conclusion
- Bonus

Purpose

- Calculate muon rate in different scintillator's angle.
- Obtain the muon counts distribuiton.

Method

Result

Examination of V_{breakdown}

Speed of Light in Optical Fiber

Cosmic Ray Detectio (Muon Rate)

Conclusion

Bonus

Introduction

lethod

Result

Examination of V_{breakdown} Speed of Light in Optical Fiber Cosmic Ray Detection (Muon Rate)

Conclusion

Method

Resul

Examination of V_{breakdown}

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Introduction

lethod

Result

Examination of $V_{breakdown}$

Speed of Light in Optical Fiber Cosmic Ray Detection (Muon Rate)

Conclusion

Sicise Examination of V_{breakdown}

Examination of Vbraskdown

Fig. 6: Box 2 - The Relation between Supply Voltage and Pulse Amplitude - 1 p.e

Method

Result

Examination of V_{breakdown}

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Discussion

- Our findings indicate that the breakdown voltage of the MPPC depends on the applied voltage. The higher the applied voltage, the higher the breakdown voltage.
 - The result of the breakdown voltage that we obtained has an approximation error of about 3% and the standard deviation is not significant.
 - limitations of our study are we only examined the breakdown voltage of one type of MPPC and under a limited range of conditions.

۲

Method

Result

Examination of $V_{breakdown}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Introduction

lethod

Result

Examination of V_{breakdown} Speed of Light in Optical Fiber Cosmic Ray Detection (Muon Rate)

Conclusion

Method

Result

Examination of V_{breakdown}

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Outcome

• For 2 same length of fibers:

Single

Sicise C in Optical Fibers

Introduction

Method

Result

Examination of $V_{breakdown}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Discussion

- The time for light travel is linearly proportional to the optical fiber's length. The slope corresponds to the velocity of light in optical fiber and it is 0.1867 m/ns. From this, we can calculate the refractive index.
 - The refraction index is nearly the same in different wire lengths.

Method

Result

 $\begin{array}{l} \mathsf{Examination} \ of \\ \mathsf{V}_{breakdown} \end{array}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Introduction

lethod

Result

Examination of V_{breakdown} Speed of Light in Optical Fiber Cosmic Ray Detection (Muon Rate)

Conclusion

Sicise Cosmic Ray Detection (Muon Rate)

Outcome

Introduction

Method

Result

Examination of $V_{breakdown}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Fig. 13: Relation between the angle of scintillator and counts of cosmic rays per time

Sicise Cosmic Ray Detection (Muon Rate)

Outcome

Introduction

Method

Result

Examination of $V_{breakdown}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Cos(θ)	Count/mins	Error	
1.308	2.50	0.00	
1.047	5.04	0.23	
0.785	7.67	0.00	
0.523	11.49	0.57	
0.262	15.83	0.64	
0.000	16.82	0.68	

Fig. 14: Data table

Signal Cosmic Ray Detection (Muon Rate)

Introduction

Method

Result

- $\begin{array}{l} \mathsf{Examination} \ of \\ \mathsf{V}_{\mathsf{breakdown}} \end{array}$
- Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Outcome

- From the plot, we can see that the bigger the angle between the scintillator and the horizontal axis, the larger the recorded cosmic ray count.
- From the experiment, the cosmic ray counts per time along the angle of the scintillator form a Gaussian distribution.

Signature Cosmic Ray Detection (Muon Rate)

Introduction

Method

Result

 $\begin{array}{l} \mathsf{Examination} \ \mathsf{of} \\ \mathsf{V}_{\mathsf{breakdown}} \end{array}$

Speed of Light in Optical Fiber

Cosmic Ray Detection (Muon Rate)

Conclusion

Bonus

Discussion

• The errors occur due to the fact that we take the mean of measurements over a small time interval. If we consider a longer period of time, the counts of cosmic rays maybe more stable, thus reducing the error.

Method

Result

Conclusion Bonus

Introduction

Method

Result

Conclusion

Method

Result

Conclusion

Bonus

Project Hindrance:

- Room temperature affects the natural properties of material.
- Noise from the other instruments.
- Could not create a total Faraday cage.
- Other sub-particles than Muon can be detected by scintillator, especially electron.
- Time limited to perform enough long experiments for stable measurements.
- Instrument errors.
- The Biggest hindrance is our own inexperience

What have we learnt?

- How to use oscilloscope system, MPPC and some type of experiments related to it.
- Understand the principles of scintillation detectors, trigger DAQ, cosmic ray detection, etc.
- Know how to solder MPPC circuit, arrange measurement system, and polish optical fibers

Method

Result

Conclusio

Bonus

Introduction

Method

Result

Conclusion

Method

Result

Conclusion

Bonus

As requested, this is our assignment for the homework of Prof. Suzuki.

Simple experiment (2)

Exercise

	Decay time	e Number	Decay time	Number
1. Particle decay follows the	t [u sec]	of events	t [µ sec]	of events
following formula:	0 [[0 000]	orevents	17	104
$h_{\rm e} = t/\tau$	0.3	1501	4.7	194
$N = N_0 e^{-c/r},$	0.5	1308	4.9	169
where N and N_0 are the numbers of	0.7	1082	5.3	155
events at time t and 0 respectively	1.1	1024	5.5	127
events at time t and 0, respectively,	1.3	886	5.7	134
and τ is the lifetime.	1.5	823	5.9	102
The right side table is a result of	1.7	775	6.1	90
The fight side dole is a result of	1.9	700	6.3	96
the experiment.	2.1	610	6.5	79
(a) Make a plot of the number of	2.3	544	6.7	62
	2.5	547	6.9	85
events as a function of the decay	2.7	497	7.1	65
time (use log scale as a vertical	2.9	463	7.5	52
inne (use log seule us a vertieur	3.1	422	7.5	55
axis).	3.5	340	7.9	41
(b) Get the muon lifetime.	3.7	291	8.1	28
2 Same around all and all and a	3.9	276	8.3	29
2. Some events show no 2 nd signal	4.1	283	8.5	26
which corresponds to decay	4.3	245	8.7	27
electron. What are those events ?	4.5	204		
	* ex. "0	.3" means	$0.1 \le t < 0.4$	4 [μ sec]

Method

Result

Conclusion

Bonus

• For the first question:

 $N = N_0 e^{\frac{t}{T}}$ $\Rightarrow \ln(N) = \ln(N_0) - \frac{t}{T}$ $\Rightarrow \ln(N) = (-\frac{1}{T})t + \ln(N_0)$ From the plot, we have the regression line function. We have $\Rightarrow -\frac{1}{T} = -0.47 \Rightarrow T = 2.13 = \text{Muon lifetime}$

- Method
- Result
- Conclusion
- Bonus

• For the second question:

The events that show no second signal correspond to muons that did not decay within the detector. Muons are unstable particles and will decay into an electron, a muon neutrino, and an electron antineutrino with a certain probability within their lifetime. However, some muons may travel through the detector without decaying and will not produce a second signal.