

# ELECTRONICS SIMULATION

Hardware camp 2025 Thanh Sang Lab supporter, Neutrino Lab, IFIRSE, ICISE

# **LTSPICE INTRODUCTION**

I) Powerful, Fast, Free Simulator

2) Using PICE Model

3) Graphical Schematic Capture Interface

4) Supported By Analog Devices

Link Guide: <u>https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator/ltspice-recommended-reading-list.html</u>

### **Keyboard shortcuts**



#### **Common Keyboard**

W: wire

Ű.

click

close measure

dialog

Click

**click** 

drag

**R**: Resistor

C: Capacitor

V: Source

. . . .

- **P**: Pick up components from table
- T: Spice Directive

Crt+R: Rotate component

Almost of cases we use common keyboard

### READING COMPONENT DOCUMENTATION AND CHOOSE TYPES OF COMPONENT



### **NETWORK LABEL**

In **LTspice**, a **network label** (or **Net Label**) is a way to assign a custom name to a node in your circuit. This makes the schematic easier to read and allows for easy referencing of signals, especially when working with complex circuits.



# SIMULATOR DIRECTIVES — DOT COMMANDS

- Whereas the circuit topology is typically schematically drafted, the commands are usually placed on the schematic as text. All such commands start with a period and are called "dot commands".
- .tran : , and examples...
- .step :
- Syntax: .step param List <value1> <value2> <value3> ....
- Syntax: .step param <minvalue> <maxvalue> <value\_step>
- .text :
- .wave :
- .text :
- .save :

## SOURCE AND CURRENT



| Functions                                                              |                               | DC Value                                      |  |
|------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|--|
| (none)                                                                 |                               | DC value:                                     |  |
| <ul> <li>PULSE(I1 I2 Tdelay Trise Tfall Ton Period Ncycles)</li> </ul> |                               | Make this information visible on schematic:   |  |
| ◯ SINE(loffset lamp Freq Td Theta Phi Ncy                              | (cles)                        |                                               |  |
| ⊃ EXP(I1 I2 Td1 Tau1 Td2 Tau2)                                         | Small signal AC analysis(.AC) |                                               |  |
| ◯ SFFM(loff lamp Fcar MDI Fsig)                                        |                               | AC Amplitude:                                 |  |
| ) PWL(t1i1t2i2)                                                        |                               | AC Phase:                                     |  |
| PWL FILE:                                                              | Browse                        | Make this information visible on schematic: 🚽 |  |
| ) TABLE(v1 i1 v2 i2)                                                   |                               | Parasitic Properties                          |  |
| I1[A]:                                                                 | 0                             | This is an active load.                       |  |
|                                                                        | 10m                           |                                               |  |
| Tdelay[s]:                                                             | 0                             | Make this information visible on schematic:   |  |
| Trise[s]:                                                              | 1                             |                                               |  |
| Tfall[s]:                                                              | 0                             |                                               |  |
| Ton[s]:                                                                |                               |                                               |  |
| Tperiod[s]:                                                            |                               |                                               |  |
| Ncycles:                                                               |                               |                                               |  |
| Additional PWL                                                         | Points                        |                                               |  |
| Make this information with a set                                       | a a hamatia.                  |                                               |  |

#### Limit current = 10m $\Rightarrow$ Through resistor, voltage drops to 4.95V.

# **SIMULATION TRACE**





For times less than rise delay time, the output current is  $I_1$ . For times between  $T_{d1}$  and  $T_{d2}$  the current is given by:

 $I_1 + (I_2 - I_1) exp((t - T_{d1})/T_1)$ 

For times after  $T_{d2}$  the current is given by:

$$I_1 + (I_2 - I_1) (exp((T_{d2}-t)/T_2) - exp(T_{d1}/T_1 - t))$$

| Name | Description        | Units |
|------|--------------------|-------|
| l1   | Initial value      | А     |
| 12   | Pulsed value       | Α     |
| Td1  | Rise delay time    | sec   |
| Tau1 | Rise-time constant | sec   |
| Td2  | Fall delay time    | sec   |
| Tau2 | Fall-time constant | sec   |

#### SIMULATOR DIRECTIVES — DOT COMMANDS



## **PREAMPLIER – CHARGE AMPLIER**

When a photon hits the SiPM, it triggers an avalanche multiplication process in the microcells, leading to a **flow of charge**. This charge is then detected as a current or voltage signal.

### **Charge Amplifier:**

- + Energy measurement (pulse integration, spectroscopy, low noise).
- + Converts charge (Q) to voltage (V)
- + Stable gain

# PREAMPLIER – CHARGE AMPLIER



### **CHARGE AMPLIFIER SIMULATION**



Charge Amplifier  $A=C_S/C_f$   $C_s$ : capacitance of signal  $C_f$ : capacitance of feedback capacitor

### **VOLTAGE AMPLIFIER SIMULATION**



#### **Simulation result**



### **PEAK DETECTOR**



### **PEAK HOLD SIMULATION**





Holding peak

Linearity of holding peak

# BACK UP