

- Particles from the outside of the Earth (1ry cosmic rays)
- 90% of them are hydrogen nuclei (protons)
- They interact with nitrogen and oxygen nuclei in the atmosphere and generate 2 ry cosmic rays.
-Muons and neutrinos are also generated.
Typical CR muon energy is $\sim 1-100 \mathrm{GeV}$

Cosmic Ray Spectrum

Why $10^{20} \sim 10^{21} \mathrm{eV}$?

High energy protons interact with Cosmic Microwave Background (CMB):

$$
\boldsymbol{p}+\gamma_{\mathrm{CMB}} \rightarrow \Delta^{+} \rightarrow \boldsymbol{n}+\boldsymbol{\pi}^{+}
$$

What is the threshold energy E_{p} of such a proton ?

$$
\left(E_{p}+E_{\mathrm{CMB}}\right)^{2}-\left(p_{p}-E_{\mathrm{CMB}}\right)^{2}=\left(m_{n}+m_{\pi}\right)^{2}
$$

Assuming $\boldsymbol{E}_{\boldsymbol{p}}=\boldsymbol{p}_{\boldsymbol{p}}$ because of high energy, we obtain

$$
E_{p}=\frac{\left(m_{n}+m_{\pi}\right)^{2}}{4 E_{\mathrm{CMB}}}
$$

$E_{\mathrm{CMB}}=8.62 \times 10^{-5}\left[\mathrm{eV} \mathrm{K}^{-1}\right] \times 2.7[\mathrm{~K}]=2.33 \times 10^{-4}[\mathrm{eV}]$,
and $m_{n}=940[\mathrm{MeV}], m_{\pi}=140[\mathrm{MeV}] \rightarrow E_{p}=1.25 \times 10^{21} \mathrm{eV}$
(consistent with measurements)
The number of UHE CR coming to the Earth is suddenly suppressed at the energy of $\sim \mathbf{1 0}^{\mathbf{2 0}} \mathbf{e V} . \Rightarrow$
Greisen-Zatspin-Kuzmin (GZK) Cutoff

Primary cosmic-ray flux

Chemical composition

Figure 30.1: Fluxes of nuclei of the primary cosmic radiation in particles per energy-per-nucleus are plotted vs energy-per-nucleus using data from Refs. [1-15] The inset shows the H/He ratio as a function of rigidity $[1,3]$.

1ry CR proton energy distribution

7

Balloon-borne Experiment with a Superconducting Spectrometer (BESS)

- Collaboration between Japan and US(KEK, Univ.of Tokyo,Kobe Univ.,JAXA,NASA, and Univ.of Maryland)
- Purposes

1. Precision measurement of low energy 1 ry CR antiprotons
2. Search for CR antimatter (anti He nucleus)
3. Precision measurement of 1ry CR proton and helium energy spectrums etc.

- Site: Lynn Lake (Canada), Antarctica

Alpha Magnetic Spectrometer (AMS)

- Particle physics detector on the international space station for the cosmic ray measurement.
- Large area and solid angle

- Superconducting magnet + Si detector
- Good particle identification (PID)
- TRD
- RICH
- ECAL $15 \mathrm{X}_{0}$
- Total weight: 6 t

Cosmic ray flux measurements

Japanese American Cooperative Emulsion Experiment (JACEE) : Direct measurements of 1ry CR components and energy spectrum in Antarctica Balloon-borne experiment

Russia-Nippon Joint Balloon Experiment (RUNJOB)

purpose: measuring the chemical compositions and energy spectra of the primary cosmic ray, balloon, Russia

HEAT (High-Energy Antimatter Telescope)
purpose: study of CR $e^{-} e^{+}$, isotopic composition, balloon, New Mexico \& Lynn Lake (Canada)

TRACER (Transition Radiation Array for Cosmic Energetic Radiation)

purpose: direct measurements of the heavier primary cosmic-ray nuclei at high energies, balloon, Antarctica

ATIC (Advanced Thin Ionization Calorimeter)

purpose: measuring the energy and composition of cosmic rays, balloon, Antarctica
CREAM (Cosmic Ray Energetics and Mass)
purpose: determining the composition of cosmic rays up to the $10^{15} \mathrm{eV}$ (also known as the " knee prospect ") in the cosmic ray spectrum, balloon, Antarctica

Why at high latitude?

To lower the cut-off rigidity $\boldsymbol{R}_{\boldsymbol{c}}$. The rigidity $R=p / z$, where p is the momentum and z is the charge (R for a proton of $p=1[\mathrm{GeV}$] is $1[\mathrm{GV}]$, and for a helium of $p=1[\mathrm{MeV}]$ is $0.5[\mathrm{MV}])$.

Plan view from the north pole

Estimate Rc. Magnetic field B $\boldsymbol{B} \times \mathbf{1 0}^{-5}[\mathrm{~T}]$ at the altitude $\mathrm{h} \leq \sim 1,000 \mathrm{~km}$.

$$
\begin{aligned}
R c & =0.3 h B \\
& =0.3 \times 10^{6} \times 5 \times 10^{-5}=15[\mathrm{GV}]
\end{aligned}
$$

Tokyo: $\boldsymbol{R}_{\boldsymbol{c}} \approx \mathbf{1 1} \mathbf{G V}$

Why especially in Antarctica ?

One way track
~ 20 ~ 30 hour flight

Circling orbit
~1 month flight

East-West effect

Charged cosmic rays receive a Lorentz force from the geomagnetic field. Due to the direction of the field from the south to north, positively charged particles from the west receive the force to outside and those from the east receive the force to inside. Therefore we observe the particle from the west more than those from the east.

Geomagnetic field

Result of SK

- ν 's from west $>\nu$'s from east
\rightarrow more positively charged
particles than negatively charged ones
- Agreement between the data and simulation \rightarrow correctness of our understanding about atmospheric neutrinos

PhysRevD.94.052001

2ry cosmic ray generation

$1 r y$ cosmic rays interact with $\mathrm{N}, \mathrm{O}, \mathrm{C}$, etc. in the atmosphere.

Primary cosmic ray

1) $p+A \rightarrow \pi / K+X$
p-A cross-section ($10 \sim 20 \mathrm{GeV}$)
$\sim(40 \mathrm{mb}) \mathrm{A}^{2 / 3}$
mean free path

$$
\sim 40 \mathrm{~A}^{-1 / 3} \mathrm{~g} \cdot \mathrm{~cm}^{-2}
$$

\rightarrow Typical altitude of
the $1^{\text {st }}$ interaction
$\sim 15 \mathrm{~km}$

* $1 \mathrm{~b}($ barn $)=10^{-28} \mathrm{~m}^{\mathbf{2}}$

2ry cosmic ray generation

1ry cosmic rays interact with $\mathrm{N}, \mathrm{O}, \mathrm{C}$, etc. in the atmosphere. Primary cosmic ray

2) Decay of π

How far can 5 GeV charged pions travel ?

$$
\gamma c \tau_{\pi}=\frac{E_{\pi}}{m_{\pi}} c \tau_{\pi}=278 \mathrm{~m} \sim 300 \mathrm{~m}
$$

($3.6 \mathrm{~g} / \mathrm{cm}^{2}$)
*note: interaction length of
$\pi \sim 160 \mathrm{~g} / \mathrm{cm}^{2}$
Most pions decay

$$
\boldsymbol{\pi} \rightarrow \boldsymbol{\mu}+\boldsymbol{\nu}_{\boldsymbol{\mu}}
$$

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, m_{\pi}=140 \mathrm{MeV}, \tau_{\pi}=2.6 \times 10^{-8} \mathrm{sec}
$$

SK

2ry cosmic ray generation

1ry cosmic rays interact with N, O, C, etc. in the atmosphere. Primary cosmic ray

3) fate of μ
2.5 GeV muons
from life $\sim 15 \mathrm{~km}$
energy loss $\sim 2 \mathrm{GeV}$
$\rightarrow\left\{\begin{array}{l}\text { decay } \mu \rightarrow \mathrm{e}+v_{\mu}+v_{e} \\ \text { hit the ground } \\ \text { absorption }\left(\mu^{-}\right) \\ \text {decay }\end{array}\right.$
Lower energy μ
Decay
Higher energy μ
Can not decay

Zenith angle and energy distributions of cosmic rav

Since the energy loss is $\mathbf{2} \mathbf{M e V} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$ for high energy charged particles, minimum energy $E_{\text {min }}$ of the particle which can reach the surface is

$$
E_{\min }=\frac{2[\mathrm{GeV}]}{\cos \theta}
$$

Number of incident particles:

$$
\begin{aligned}
N\left(E>E_{\min }\right) & =\int_{E_{\min }}^{\infty} n(E) d E \\
& \propto \int_{E_{\min }}^{\infty} E^{-\gamma} d E \\
& =\frac{2^{1-\gamma}}{\gamma-1} \cos ^{\gamma-1} \theta
\end{aligned}
$$

- From measurements, we can get

$$
\gamma-1 \approx 2 \rightarrow \gamma \approx 3(2.7)
$$

Simple experiment (1) (CR flux measurement)

Measurement of the zenith angle

 distribution of cosmic rays by taking a coincidence of a pair of scintillation
counters.

II
outputs a pulse signal when an input signal is higher than the threshold (See the figure at the bottom).
Scintillator + (light guide) +PMT

Scaler

counts the number of input pulses.

Simple cosmic ray experiment(1)

Measurement of the zenith angle distribution of cosmic rays by taking a coincidence of a pair of scintillation

Discriminator

outputs a pulse signal when an input signal is higher than the threshold.

Coincidence - Scaler counts the number module of input pulses.

Flux: $\Phi=\frac{N}{S \Omega T} \approx \frac{L^{2} N}{S^{2} T} \sim 100 \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ (typical sea-level value about vertical direction) $\propto \cos ^{2} \theta \rightarrow \gamma-1 \approx 2 \rightarrow \gamma \approx 3(2.7)$:consistent with the measurements

Simple experiment (2)

Exercise (homework)

1. Particle decay follows the following formula:

$$
N=N_{0} e^{-t / \tau}
$$

where N and N_{0} are the numbers of events at time t and 0 , respectively, and τ is the lifetime.
The right side table is a result of the muon decay experiment.
(a) Make a plot of the number of events as a function of the decay time. Use log scale as a vertical axis.
(b) Get the muon lifetime.
2. Some events show no $2^{\text {nd }}$ signal which corresponds to decay electron. What are those events ?

* Note that the condition in the next page.

Decay time Number Decay time Number $t[\mu \mathrm{sec}]$ of events $t[\mu \mathrm{sec}]$ of events

0.3	1501	4.7	194
0.5	1308	4.9	189
0.7	1191	5.1	155
0.9	1082	5.3	157
1.1	1024	5.5	127
1.3	886	5.7	134
1.5	823	5.9	102
1.7	775	6.1	90
1.9	700	6.3	96
2.1	610	6.5	79
2.3	544	6.7	62
2.5	547	6.9	85
2.7	497	7.1	65
2.9	463	7.3	61
3.1	422	7.5	53
3.3	380	7.7	66
3.5	340	7.9	41
3.7	291	8.1	28
3.9	276	8.3	29
4.1	283	8.5	26
4.3	245	8.7	27
4.5	204		
$*$ ex. "O.3" means $0.1 \leq t<0.4[\mu$ sec]			

Real Geometry of the Detector

Since S2 is small and the distance between S1 and S3 is long enough, particles which pass through S1, S2, and S3 always reach S4.
(There is no event which passes through S1, S2, and S3, but does not pass S4 like the following one:)

Summary

As introduction to cosmic rays :

- What are cosmic rays ?
- Cosmic ray spectrum
- Geomagnetic effect
- 2ry CR generation - including atmospheric neutrinos -
- Simple experiments - Student experiments of Kobe Univ.

In addition to above, I gave you a homework (it is not a duty but I would like you to do).

[CISE

INTERNATIONAL CENTREFOR IT THPLINARY SCIENCE AND EDUCATION TRUNG AMM QUỐC TẾ KHOA HỌC VÀ GIÁO DỤC LIÊN NGÀNH ENTRE INTERNATIONAL DE SCIENCE ET D'EDUCATION INTERDISCIPLINAIRES

