Search for nucleon decay in Super-Kamiokande 2021/04/15 M.Miura Kamioka observatory, ICRR, UTokyo

1. Introduction

The Standard Model has been successful! ... but why so many parameters?

GUTs: attempt to unify Strong and Electroweak interactions.

GUTs scale: 10¹⁴⁻¹⁶ GeV

Lepton and baryon numbers are not conserved.

Cannot be reached by Accelerators.

Proton decay is permitted !

Nucleon decay experiment is the direct probe for GUTs.

Examples of proton decay

Minimal SU(5) model

Proton lifetime predictions

Model	Mode	Prediction (years)
Minimal SU(5)	p→e⁺π ⁰	10 ^{28.5} ~ 10 ^{31.5} [1]
Minimal SO(10)	p→e ⁺ π ⁰	10 ³⁰ ~ 10 ⁴⁰ [2]
Minimal SUSY SU(5)	p → ⊽K⁺	≤ 10 ³⁰ [3]
SUGRA SU(5)	p → ν̃K⁺	10 ³² ~ 10 ³⁴ [4]
SUSY SO(10)	p→¯vK+	10 ^{32~} 10 ³⁴ [5]

SUSY SU(5) model

- [1] P. Langacker, Phys. Reports 72, 185 (1981)
- [2] D.G. Lee, M.K. Parida, and M. Rani, Phys. Rev. D51, 229 (1995)
- [3] H.Murayama and A. Pierce, Phys. Rev. D65, 55009 (2002)
- [4] T. Goto and T. Nihei, Phys. Rev. D59, 115009 (1999)
- [5] V. Lucas and S. Ruby, Phys. Rev. D55, 6986 (1997)

> 10³⁰ years ! Need huge detector .

2. How to find proton decay

- Watch a proton for very long time (> 10³⁰ years).
 - > Age of the universe: ~ 10^{10} years
 - > Obviously impossible.

OR

- Watch many protons for (relatively) short time.
 - > Lifetime τ : N(t)=N(t=0)exp(-t/ τ)
 - Need huge detector !

• In the late 1970s, several experiments were proposed for discovery of proton decay.

- minimal SU(5) prediction: 10²⁸ ~ 10³² years
- Age of universe: ~1.3x10¹⁰ years
- It is impossible to continue observation one proton for such long time, but it is equivalent to study large number of proton in short time.
- \succ 1kt detector expected 10 ~ 10³ decays/year.
- Like gold rash, many large detectors were build.
- Two types of detector came into fashion (the 1st generation).

Fine-grained iron calorimeter

- Excellent in track reconstruction.
- Cost per ton were expensive.
- KGF (India), Soudan I,II
 (Minnesota), NUSEX
 (Italy/France)

Water Cherenkov detector

- Good momentum resolution and PID.
- Cheaper and easier to build larger detectors.
- HPW (Harvard-Purdue-Wisconsin), IMB (Irvine, Michigan, Brookhaven), Kamiokande

Results of Iron calorimeter

Detector	Period	Mass (ton)	Limit (e ⁺ π ⁰ , 10 ³⁰ yr)
NUSEX	1982- 1998	110- 130	15
Frejus	1984- 1988	550	70
Soudan I	1981- 1990	16-24	1.3

Results of Water Cherenkov detector

Detector	Period	Mass (ton)	Limit (e ⁺ π ⁰ , 10 ³⁰ yr)
HPW-I	1983- 1984	680	1.0
Kamioka nde	1983- 1997	1040	260
IMB	1982- 1992	3300	540

Could not find evidence. Need more volume !

Built Super-Kamiokande ! (2nd generation) 6

2. History of Super-Kamiokande

Location: Kamioka mine, Japan. ~1000 m under ground.
Size: 39 m (diameter) x 42 m (height), 50kton water. Optically separated into inner detector (ID) and outer detector (OD, ~2.5 m layer from tank wall.)
Photo device: 20 inch PMT (ID), 8 inch PMT (OD, veto cosmic rays, ~1/3 comes from IMB).
Mom. resolution: 3.0 % for e 1 GeV/c (4.1%: SK-2).
Particle ID: Separate into EM shower type (e-like) and muon type (µ-like) by Cherenkov ring angle and ring pattern.

Amazingly, SK still runs stably more than 20 years.

3. p \rightarrow e⁺ π^0 search

What's important for $p \rightarrow e^+ \pi^0$?

In "free" proton case, e^+ and π^0 emit in back-to-back. Energy corresponding to proton mass is fully used by decayed particles.

What happens if a bound proton in nucleus decays ?

Inefficiencies and uncertainties of proton decay search come from nuclear effect !

Key 1: Proton never stops in nucleus

 Protons don't exist locally in nucleus. It is always moving in the nuclear potential (Fermi motion, p_f ~ 225 MeV/c).

Key 2: Binding energy

 Energy corresponding proton mass should be used for compensating its binding energy (sstate: ~40 MeV, pstate:15 MeV in Oxygen).

Key 3: Proton strongly binding to other nucleus

 ~ 20% protons are strongly binding to other nucleon which also bring energy when the proton decays (correlated decay)

Key 4: π interacts in nucleus

 Mesons (π,K, e.t.c.) in decay products are affected in nuclear interactions before exiting nucleus.

How much pions interact in nucleus ?

50 - 70 % of π^0 are affected by interaction before going out from Oxygen.

Why water is used for proton decay search ?

- Easy to construct larger detector.
 - Much cheaper than iron or gas.
 - You can find large water tank everywhere (common technology).
- High efficiency and low uncertainty.
 - H₂O has two hydrogens which are not affected by nuclear effect. They are regarded as "free" proton.
 - Free protons contribute high selection efficiency and low uncertainty.

How look like $p \rightarrow e^+ \pi^0$ in SK ?

Three e-like rings should be observed.

Stopped π^0 case π^0 $\gamma_1 \sim \sim \sim \gamma_2$ $E_1 = E_2$

Sometimes one γ is failed to reconstruct and observed only two rings.

If π^0 is absorbed before exiting nucleus, only e⁺ is observed (one ring).

Observed number of ring for $p \rightarrow e^+ \pi^0$

Free proton: H in H₂O No interaction in Nucleus Abs: π^0 absorption in Nucleus Scat: scattered CX: charge exchange $(\pi^0 \rightarrow \pi^{\pm}, \text{ below threshold})$

Choose 2 or 3 rings.

Selection criteria for $p \rightarrow e^+ \pi^0$

- 1. Event vertex should be located 2 m inward from the tank wall (fiducial volume cut, 22.5kton).
- 2. 2 or 3 ring event.
- 3. All ring should be e-like.
- 4. No Michel electrons.
- 5. Reconstruct π^0 mass for 3 ring events. It should be 85 < M π^0 < 185 MeV/c²
- Reconstruct total mass and momentum should be 800 < M_{tot} <1050 MeV/c², P_{tot} < 250 MeV/c.

Total mass vs Total momentum for $p \rightarrow e^+ \pi^0$

- Selection efficiency ~ 40 %
- Inefficiency is dominated by unavoidable physics processes.

2-2. What's Background events for proton decay searches ?

- Atmospheric neutrino is dominant backgrounds for proton decay searches.
 - ➢ Visible energy ~ 1 GeV.
 - Solar or SN v is too low energy.
 - Cosmic ray μ are rejected by outer detector.

Typical background for $p \rightarrow e^+ \pi^0$

Charged current π^0 production

- Exchange W boson between v and proton (charged current interaction).
- v changes to e^+ .
- π⁰ and neutron are produced.
 Because neutron doesn't emit Chrenkov light, visible particles after the reaction are same as p→e⁺π⁰

Total mass vs Total momentum for atmospheric v background MC (After all cuts except for total mass and momentum)

- Generate huge atm.v MC, 2000 year of SK!
 - Expected BG: ~1.3 ev/Mton*yr
- Neutrino events tend to have higher total momentum.
- Almost background free in lower momentum region (<100 MeV/c).
 - The region
 corresponds to free
 proton decay.

Further background reduction

- Neutron doesn't emit Chrenkov light.
 - However, neutron is thermalized in water and finally captured by hydrogen (~200 μs); n + p → d +γ (2.2 MeV)
- If we can detect delayed 2.2 MeV γ ray, we can reduce background more.
- Neutron capture is also important for SN Relic v and separate v and vbar interactions in atmospheric v oscillation analysis.

- After Time-of-Flight subtraction, search for 7 hits in 10 nsec time window. \rightarrow candidates of γ .
- Make 16 variables related to space and time information of each hits (RMS of phi, theta, hit time, e.t.c.)
- Put them into Neural Network to judge γ or not.
- Neutron tagging efficiency: 21 % (mis-tagging: 1.8 %)

How powerful to reject background

- Sample: out of signal box in M_{tot} vs P_{tot} plot.
 ➢ Dot: data,
 - Histogram: Atm.v MC (solid: reconstructed, dash: true)
- ~ 50 % background events are rejected with neutron=0.
- On the other hand, ~ 7.5 % of p→e⁺π⁰ are accompanied with neutron from deexcitation of nucleus. Neutron tagging reduces a few % in selection efficiency.

Enlarging Fiducial Mass

Super-K is huge detector but its physics sensitivity is still limited by statistics…

\rightarrow Enlarging the fiducial mass.

Remarkable merits

- Enables the use of past data that has never been analyzed.
- Improves p-decay search sensitivity for every mode.

Considerations to achieve it

- 1. Reconstruction performance.
- 2. External background contamination.
- 3. Data and MC agreement.

1. Reconstruction Performance - PID Improvement

Main issue in enlarged region: Worse **particle identification performance** due to lower number of PMT hits (unavoidable).

$$\chi^2(e \text{ or } \mu) \propto -\sum_{i \text{ (Hit PMT)}} \log_{10}(\operatorname{Prob}(q_i^{obs}, q_i^{exp}(e \text{ or } \mu)))$$

 In this situation, accurate expected PMT charge (q_i^{exp}) becomes more important. → Revised expected charge table to reproduce real Cherenkov ring image more accurately, reducing biases and increasing p-decay signal efficiency by ~20% in enlarged region.

Data and MC Quality

2. External Background Contamination

- Conducted event scanning up to 50 cm to wall to estimate external background contamination.
- Concluded to enlarge fiducial mass region up to 100 cm to wall to keep background contamination rate (N_{BG}/N_{total}) within 1%.
 - Most of the selected events are atmospheric neutrino events.

Data Result p \rightarrow e+ π ⁰

Data: Super-K Full Livetime, 1996~2018, 450 kton*years.

- No candidates in signal box incl. enlarged region.
- Lower lifetime limit @90%C.L.

•

- $\tau/B_{p \rightarrow e+\pi 0} > 2.4 \times 10^{34}$ years (published: 1.6×10³⁴ years, 306 kton*years)
- Most stringent constraint. ~1.5 times longer than published.

4. $p \rightarrow v K^+$ search

Difficulty of $p \rightarrow v K^+$

- K⁺ mass: 494 MeV, relatively heavy.
- Cherenkov threshold: 560 MeV/c.
- Most of K⁺ can not emit Cherenkov light.

4-1 How to find $p \rightarrow v K^+$ in Water Cherenkov detector

- K⁺ has low momentum, most of them stop in water and decay with 12 nsec lifetime.
- Major K⁺ decay mode
 - \succ K⁺ \rightarrow $\nu\mu^+$: 64 %
 - \succ K⁺ \rightarrow $\pi^{+}\pi^{0}$: 21 %
- "Stopping K⁺" means two body decay products of K⁺ should have monochromatic momentum.

 \succ K⁺ \rightarrow $\nu\mu^+$: 236 MeV/c

- \succ K⁺ $\rightarrow \pi^+\pi^0$: 206 MeV/c
- Using this property, Water Cherenkov detector can search for $p \rightarrow v K^+$.

4-2. Search for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- Visible particle is only μ^+ with Michel electron.
- Search for data excess around 236 MeV/c of μ comparing with atmospheric ν MC.
- After proton decay, 40 % of remaining nucleus emits 6 MeV γ for deexcitation. It is useful to reduce background.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$ with γ

Difficult to identify γ from hit pattern.

Time structure with nuclear γ

- 3 hit clusters in time should be observed in case of signal.
- The event is triggered by μ hits.
- γ signal is much smaller than µ and easily hidden by tail of µ hits.
- Make 12 nsec time window and slide it toward left from t₀ (end of µ tail) to search for maximum hit cluster.

Selection criteria for $p \rightarrow \nu K^+$, $K^+ \rightarrow \nu \mu^+$

- 1μ -like ring with Michel electron
- $215 < P\mu < 260 \text{ MeV/c}$
- Proton rejection cuts
- Search Max hit cluster
 Reduce background by 5x10⁻⁴ !

 by sliding time window (12ns width);
 > 4 < Nγ < 30 hits
 > T_u-T_y < 75 nsec
- No neutron
- Selection efficiency = (selected events)/(proton decay in fiducial volume):
 9 %
 - > Br(K⁺ $\rightarrow \nu \mu^+$)= 64 %, only 40 % emits nuclear $\gamma \rightarrow 26$ % even if detector is perfect.

Remark for this analysis

- This analysis is limited by time resolution of PMTs.
 - > If γ is close to μ , γ peak is hidden by μ hits.
 - Time resolution of SK PMT is 2.2 nsec at 1 photoelectron.
 - If μ peak becomes sharper, the selection efficiency will be improved.

4-3. Search for p $\rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

- Both π^+ and π^0 has 205 MeV/c in momentum. This is just above Cherenkov threshold for π^+ , thus it is not identified as a ring in most of case.
- π^+ decays into μ (invisible) and ν , μ decays into $e\nu_e\nu_\mu$.
- π^0 decays into 2 γ s.
- Search for 206 MeV/c π^0 with Michel electron.

Example of $p \rightarrow \nu K^+$, $K^+ \rightarrow \pi^+ \pi^0$

Look like a ring, but fake ring cut rejects this ring ...

10

-1000

-500

0 Residual PMT Hit Times (ns)

1 mu-e decay

500

1000

Use π^+ information to select events

B) Make likelihood for hit pattern.

Selection criteria for p $\rightarrow v$ K⁺, K⁺ $\rightarrow \pi^+\pi^0$

- 1 or 2 e-like rings with decay-e.
- 85 < $M\pi^0$ < 185 MeV.
- $175 < P\pi^0 < 250 \text{ MeV/c.}$
- E_{bk} : visible energy sum in 140-180 deg. of π^0 dir, E_{res} : in 90-140 deg,
 - L_{shape}: Likelihood based on charge profile

 $10 < E_{bk} < 50 \text{ MeV}$

E_{res} < 12 MeV (20 MeV for 1ring)

L_{shape} > 2.0 (3.0 for 1ring)

- No neutrons
- Selection efficiency: 10 % (Br(K⁺ $\rightarrow \pi^+\pi^0$)=21 %)

Background for $p \rightarrow v K^+$

- Dominant background is K⁺ production by neutrino interactions.
 - $\succ vp \rightarrow v\Lambda K^+$, $\Lambda \rightarrow p\pi^-$ (BR:64 %, mostly invisible in WCD)

 \succ Emit nuclear γ as same as the signal.

- It is also rare interaction and we had poor information from very old bubble chamber. Large uncertainty.
- Recently MINERvA measures K⁺ production. It is very useful information for this analysis.

4-4. SK results (So far)

- Exposure: 365 kton year
- Expected background: 0.3 events for $K^+ \rightarrow \nu \mu$ with nuclear γ , 0.6 events for $K^+ \rightarrow \pi^+ \pi^0$.
- No candidates observed and no excess in momentum distribution.
 Black: Data
- Lower lifetime limit: > 0.8x10³⁴ year

Red: Atm.n MC

5. Summary of SK results

- Most of modes have been investigated with > 0.3 Mton • year exposure (red and green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- Many of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidence of nucleon decay has been observed.

Future prospects

- Still no evidence has been found. Major decay modes are explored up to around 10³⁴ years.
- Proton lives longer, ~10³⁵ years ?
 - ➢ Run SK 10 times more (~200 years)? → Impossible.
- Absolutely, we need larger detector !

5. Hyper-Kamiokande project

Neutrino oscillation

Proton decay ?

Kamiokande 3kton

15.5m

SN Neutrino

16m

一夕記録

Super-Kamiokande 50kton Hyper-Kamiokande 260kton

Enhance proton decay search with HK

- Fiducial volume: 22.5kton (SK) \rightarrow 190kton (HK)
- New photo sensor: Box&Line PMT
 - 2 times better photon counting performance
 - a half time resolution

Better photon counting contributes neutron tagging

- Neutron tagging efficiency study with several detector set up.
- Efficiency depends on dark rate.
- Achive ~ 70% in the current baseline design (black) with ~ 4kHz dark rate.
- p→e+p0 background reduction vs. Neutron tagging efficiency

0.25

0.5

SK

BKG fraction

0.8

0.6

0.4

0.2

0

 Background of HK becomes a half of SK !

→ e⁺π⁰

40k

5 0.75 1 Tagging efficiency

Faster PMT response improves nuclear γ tagging in p $\rightarrow v$ K⁺

- Time resolution: 2.2nsec (SK)
 →1.1 nsec (HK).
- Sharper time distribution of μ
 → γ close to μ cab be identified !

(Better photon counting also contributes improvement)

Sensitivity for $p \rightarrow e^+ \pi^0$

(SK: 0.18) (SK: 1.1)

Sensitivity for $p \rightarrow v K^+$

Expected signal after 10 years run assuming the current lifetime limit

3σ discovery potential

6. Summary

- Proton decay is a key phenomena of Grand Unified Theories beyond the Standard Model.
- Super-Kamiokande is the leading detector to hunt proton decays and have searched for it for more than 20 years.
- However, no evidence has been observed and the current proton lifetime limits are around 10³⁴ years.
- It may be around the corner ! Hope three times lucky in Hyper-Kamiokande.