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Upportunities and Challenges



Physics and big data
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DUNE TDR

DUNE upstream DAQ
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CMS real-time processing

1 kHz
1 MB/evt

> 997% of events are not saved for prompt offline analysis



CMS real-time processing

1 kHz
1 MB/evt
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Custom electronics Off-the-shelf computing
Latency ~ 25ns - 1 ys atency ~ O(1+ ms)

FPGAs/ASICs - high bandwidth low “standard” CPU compulting,

latency specialized compute hardware COprocessors



The computing conundrum

CMS offline computing

profile projection CMS online filter farm project

CMS detector LHC (current) | HL-LHC (upgraded)
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Year Environments getting more complex

Need more sophisticated analysis techniques



The computing conundrum
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The computing conundrum

LHC Science Facebook

data uploads SKA Phase 1 —
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

LHC — 2016
50 PB raw data

Google
Internet archive Yearly data volumes

~15 EB

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data

HL-LHC — 2026
~600 PB Raw data
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The computing conundrum

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance o
(SpecINT x 107)
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Logical Cores

S0 4 A 2NN MHNND ¢+

1970 1980 1990 2000 2010 2020

Year

Original data up 10 the year 2010 collected and plotted by M. Horownz, F. Labonte, O, Shacham, K, Olukotun, L. Hammond, and C. Batlen
New plot and data collected for 2010-2017 by K. Rupp
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Heterogeneous compute
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Heterogeneous compute
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jet

Energy A

Identification of boosted Higgs jet
decay to two bottom quarks

2X Iincrease In

. displaced
signal tracks charged
efficiency over lepton
“shallow”
learning H(bb) jet

.......................

IP2

PV

J. Duarte et al., CMS DP-2018/046
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Machine learning
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Intensity

NOVA event classification

5 Deep learning
| improvement:

Effective 40%
increase in
NOVA active
volume
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Machine

learning

o We are just scratching the surface of Al applications in physics

e Thus far most “standard”™ neural network arc
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Near sensor and on-detector ML

1 kHz
. 100 Hz ‘1 MB/evt
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Internet of things...particle physics
o
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The Things

e \Wearables e Mobile Devices

e Cars e Meters
e Motors e Robotics
e Buildings e Generafors

DATA GENERATION

QL

Operations
Technology
THE EDGE
Data
Sensors & .
Actuators Aggregation
& Gateways

a L

DATA SENSING

DATA COLLECTION
AGGREGATION

Pushing intelligence to the edge

Information
Technology
e Data Center &
ge Cloud IT
p—
EARLY DATA DEEP DATA
ANALYTICS ANALYTICS
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Internet of things...

oster v beam
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Processing hardware

FLEXIBILITY

* Power hungry
* Batching for optimal performance
* Mature software ecosystem

()

¢ Middle solution, flexible and less
power hungry than GPU

* Does not require batching

Rough guidelines:
> 100 Gbps throughput

* Most efficient Op/W
* Less flexible

ASICs

EFFICIENCY

< 1ms computational latency

< 10W power budget
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Digital circuit design

FPGA

‘programmable hardware”
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NN inference in a nutshell

| | INPUT 1
Simple 2 input example
(Fisher linear discriminant, linear support vector machine,...)

OT=’1XW11+12XWZ1+E1

“
.
“
.

INPUT 2
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NN inference in a nutshell

- - N

R
O; = ¢(I; x W, + b))

® = ACTIVATION FUNCTION O

(NON-LINEARITY)

NN inference =
a bunch of multiplications /additions O

and LUTs (look up tables) for activation
functions

iInput layer

>0

output layer

O

layer m

FULLY CONNECTED HIDDEN LAYER
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[Energy) Efficient Neural Networks

e Emergent engineering field, efficient implementation of NN architecture
o Parallelization: performing operations simultaneously (see next page)

e Compression/Pruning:

 maintain the same performance while removing low weight synapses and neurons (many
SC h eme S] before pruning after pruning

pruning
synapses

-->

e Quantization/Approximate math:

e 52-bit floating point math Is overkill
o 20-bit, 18-bit, ..? fixed point, integers? binarized NNs?

pruning
neurons

For further reading, start here: https://arxiv.org/pdf/1510.00149v5.pdf
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Example: Parallelization

ReuseFactor: how much to parallelize operations a hidden layer
reuse =4
use 1 multiplier 4 times

reuse =2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

23



his4aml

Model Training

v 4 Keras

/ PYTbRCH

Model Design

Deployed for LHC trigger systems

Model Pruning

Resource Tuning

)

HLS Conversion

>

A

RTL

digital circuit abstraction

v

ASICs

Active developments in new neural architectures, different hardware, more systems
from ASICs to coprocessors, many domains, inter-FPGA networking

A Inference time: 280 ns
Throughput: 104 Gb/s

Dense Network
23 =30 = 25 = 20
-)

& classifier
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his4ml - complete results

. Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High
-nergy Phuysics, arXiv:2008.03601 [physics.comp-ph].

. Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep Quantization with
QKeras and hls4ml, arXiv:2006.10159 [physics.ins-det].

. Lompressing deep neural networks on FPGAs to binary and ternary precision with hisaml, MLST
2020]

. Fast inference of Boosted Decision Trees in FPGAs for particle physics, JINST 15. P05026 (2020]

- ESPAML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning, DATE
Lonference 2020 .

. Fast inference of deep neural networks in FPGAs for particle physics, JINST 13, P07027 (2018

25
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CMS Trigger TDR

Case study: muon trigger upgrade
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What about ASICs?

o Pulting a neural network on the detector front-ends for data compression

o ASIC required due to radiation tolerance and energy budget

e Fully reconfigurable to address f

cor

ditions (pile

Me

Tics (resolu

up, beam bkgs), detector performance (noise, dead c

ion, substructure, new physics signatures)

Uture ‘unknown unknowns' including evolvi

ng LHC

Nannels

, performance

In ECON-T ; In Backend
Encoder ' E ' Decoder
- | 3 .
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AS] C W0O rkfIOW Quantization aware training very important!

N e hls4ml simplifies the design of ML accelerators
acormiv [P acce
DEVELOPMENT K l. o | hls4ml directives | << | HLS directives |
o, ML Model o C++ library of ML functionalities optimized for HLS
&,Trairiing *
z:z:;F;ctor: é
Precision: .. ECON
Bachend: - his 4 ml AUTOENCODER
" " HLS T e
&; o . sae cton Directives TMR4sv _hlis

hls4ml ;;.lt ;o: (: i < 10; i++) {
. . A[i] = B[i] * i;
Directives Lo |
o 12: for (; i < 10; i++) { 7y § 54 5% 559 3 FEF 35938
o © * o BILL S An © BLa: T e 1 e e R 1
" . .
Q . e bar(a, B); U
O %600 \/ HLS LS oy
RTL
Performance % GDSI|

C++ Hardware
Specification ~ Technology Library Implementation(s)

Look forward to public results at IEEE NSS and IEEE real-time 2020
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Mini-summary

o Particle physics have been doing lofl for decades!

e (On-sensor or near detector Al I1s powerful Iin reducing data rates while maintaining good
physics performance

 hls4ml allows machine learning to be accessible in front-end electronics by physicists

e Broad range of applications
o At LHC, from front-end ASICs to sub-detector electronics to back-end trigger algorithms
e Many other applications in physics and beyond!
e DUNE supernovae trigger
o Accelerator real-time controls and operations
o (ther domains: nuclear physics, microscopy, signal processing,..
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Accelerated ML for HEP computin

— 1 kHz
1 MB/evt
-

o
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Why fast inference?

Training has Its own computing
challenges

o But happens ~once/year and outside of
compute Iinfrastructure

Inference happens on billions of events
many times a year

e Unique challenge across HEP

o Masslive datasets of statistically iIndependent

evenls

Opportunities for Accelerated Machine Learning
Inference in Fundamental Physics

Javier Duarte!, Philip Harris?, Alex Himmel’, Burt Holzman?, Wesley Ketchum?,
Jim Kowalkowski?, Miaoyuan Liu’, Brian Nord?, Gabriel Perdue’, Kevin Pedro?,
Nhan Tran?, and Mike Williams?

'University of California San Diego, La Jolla, CA 92093, USA
2Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

ABSTRACT

In this brief white paper, we discuss the future computing challenges for fundamental physics experiments. The use cases for
deploying machine learning across physics for simulation, reconstruction, and analysis is rapidly growing. This will lead us to
many applications where exploring accelerated machine learning algorithm inference could bring valuable and necessary gains

in performance. Finally, we conclude by discussing the future challenges in deploying new heterogeneous computing hardware.

This community report is inspired by discussions at the Fast Machine Learning Workshop' held September 10-13, 20109.

Contents

1  Introduction 1
1.1 Computing model in particle phySIiCS . . . . . . . . e e 1
1.2 Machine Learning . . . . . . . . e e e e 2
2 Challenges and Applications for Accelerated Machine Learning Inference 2
2.1 CMS and ATLAS . . . . 2
2.2 LHCDD . . 3
2.3 LSS . o e 4
2.4 LIGO . . e 4
2.5 DUNE . . . e 5
3 Outlook and Opportunities 6
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Heterogeneous compute

COMMUNICATIONS
A CM L

A New Golden Age for &
Computer Architecture ASICs

Agriculture Technology TEEEY
Monitoring Noise Pollution
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Blockchain from a Distributed
Computing Perspective
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hardware choices

GET ALL THE
INFORMATION You CAN,
WE'LL THINK OF A
USE FOR (T LATER

| — N c——

’-d.
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Pros & Cons

On how to integrate heterogeneous compute into our computing model
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To ML or not to ML

Re-engineer physics algorithms
for new hardware

Re-cast physics problem as a
machine learning problem

Language: OpenCL, OpenMP,
HLS, Kokkos,...?

Language: C++, Python
(TensorFlow, PyTorch,...)

Hardware: CPU, FPGA, GPU Hardware: CPU, FPGA, GPU, ASIC

Is there a way to have the best of both worlds
with physics aware ML?

35



GPUaaS + SONIC

Client CPU
Client CPU h

‘ &4""'
, Al Model
Repository

SONIC: Services Optimized for Network Inference on Coprocessors

Al Inference Cluster
(CPU | GPU)

Standard HEP computing
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aaS or direct connect

~

COPROCESSOR

(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

J

SCa
scalab
Heterogeneous he

Pros:
able algorithms
e to the grid/cloud

erogeneity (mixed hardwares)

COPROCESSOR

(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

~/
Pros:

less system complexity
no network latency
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ddS or direct connect

\

@AIgo 2

J

Pros: Pros:
scalable algorithms less system complexity
scalable to the grid/cloud no network latency

Heterogeneous heterogeneity (mixed hardwares]



Towards abstraction:
on-premises, in the cloud, oh my!

UNIVERSITY OF

% TORONTO

S0

GAU. FRGA

‘ I ILLINOIS
GPU, FPGA
' GPU, FPGA

GPU, FPGA ) Google Cloud
Je
GPU, ASIC ' 3¢ Ferthilab

CE/RW
\

S GPU, FPGA

Ucsno A Azure

Building a network of heterogeneous

kubernetes resources in the cloud and on-premises

Work-in-progress: how to coordinate
and orchestrate distributed
heterogeneous resources
docker ]
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Towards abstraction:
on-premises, in the cloud, oh my!

UNIVERSITY OF

% TORONTO

S0

GPU, FPGA ) Google Cloudf’
GPU, ASIC \ [&

CE/RW
\

S GPU, FPGA

I ILLINOIS

GPU, FPGA
' GPU, FPGA

Ucsno A Azure

Building a network of heterogeneous

kubernetes resources in the cloud and on-premises

Work-in-progress: how to coordinate
and orchestrate distributed
heterogeneous resources
docker ]
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Neutrino case study

GPU-accelerated machine learning inference
as a service for computing in neutrino
experiments

Michael Wang '*, Tingjun Yang ', Maria Acosta Flechas ', Philip Harris 2,
Benjamin Hawks ', Burt Holzman !, Kyle Knoepfel !, Jeffrey Krupa *, Kevin
Pedro ', Nhan Tran !

! Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
¢ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Northwestern University, Evanston, IL 60208, USA

Wire

Reconstructed ProtoDUNE-SP Event Labelled with CNN Track Score. Run: 5387, Event: 128178, TPC: 1.

https://arxiv.org/abs/2009.04509
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P ro to D U N E reco n Stru Cti 0 n ?nggitgtffingdiiZiignd deconvolution

o Hit finder
o |argest LArTPC ever built e Pandora pattern recognition
e 72%x60x 69 ms e CNN EmTrkMichelld

e 15360 channels
e Wire spacing 5 mm 5 5
e Readout window 3 ms -

e Lots of activities in the TPC X/ il
e (0osSmIC ray muons
e Beam particles

\ FC 32 SoftMax
\ \ +RelLU

L
4
I~

Track

Shower

None

Michel
electron

-0 (O © O)+

—_
—F
—
—
— _
//
—
| —
— ]

Sigmoid

~11.9M parameters
Fach event has ~55k patches

Most time-consuming module
In the reco chain.
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P ro to D U N E reco n Stru Cti 0 n TGCSQEZL]C}E;G;Z?F;nd deconvolution

o Hit finder
o |argest LArTPC ever built e Pandora pattern recognition
e 72%x60x 69 ms e CNN EmTrkMichelld

e 15,360 channels
e Wire spacing 5 mm

e Readout window 3 ms Wall time (s)

e |ots of activities in the TPC ML module non-ML modules Total
e (0osSmIC ray muons 790 110 330
e Beam particles

CPU type fraction (%)
AMD EPYC 7502 @ 2.5 GHz 11.7
AMD Opteron 6134 @ 2.3 GHz 0.6
AMD Opteron 6376 @ 2.3 GHz 4.6
Intel Xeon E5-2650 v2 @ 2.6 GHz 30.8
Intel Xeon E5-2650 v3 @ 2.3 GHz 5.2
Intel Xeon E2680v4 @ 24 GHy 173 ~11.9M parameters
Intel Xeon Gold 6140 @ 2.3 GHz 22.6

Fach event has ~55k patches
Most time-consuming module

in the reco chain.
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Client-server configuration

Server side:
4 NVidia T4 GPUs

l-) Google Cloud Platform

Client side: run N CPU
jObS SimUHGHEOUSlq dnd Google Kubernetes Engine N
hammer the GPU server @

Server GPU
2= Fermilab Pod i nvioia
@ Local Compute Internet @ .
FermiGrid farm (gRPC) > — =
Service Pod
~ 1,200 requests per test submitted TCP Network Load <A NVIDIA
10 Mb per request Balancer @ .
Staggered start and ram
9 g us-centrali
Server

Pod



Server metrics

ok
i 40,’5
| “C’g - 100000
o
- - 80000
| - 60000
- 40000
i - 20000
i - 0
.00 .00 .00 .00 .00
5 730 O 05" 380 g7 .Q0 O 0%,‘\} O 0 b O

Time (hh:mm:ss)

Number of inferences/s

: - 1.0
s - 0.8
O:
C.
7
: 0.6
0.4
- 0.2
L/\— - 0.0
A 20 S 05.‘5‘%"00 g7 00‘-00 0%“11‘-00 09._1A‘-00

Time (hh:mm:ss)

126k inferences/s for 4 GPUs with 60% GPU usage

4-gpu Utilization
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Breakdown

Wall time (S)
ML module non-ML modules Total

226-11s 110 330

1S ~ tpreprocess *  ltransmit*  ltravel *  lGPU

/S 2S 0.4s 1.8s
On CPU, Based on Ping latency Time on the
preparing NN 2Gbps ethernet between lowa GPU
INnputs bandwidth and FNAL

** subtleties Iin the numbers: affected by dynamic batching, ethernet bandwidth, and
batch sizes, can change total time by ~bs more



Modeling

Wall time (S)
ML module non-ML modules

Total

220 ~11s

110

330

tsonic = (1 — p) X tcpu + tgpu

Ncpu

lideal

1 + max (O,
NGpu

tGPU

)

—

Saturation effect:
What if N¢py saturates the GPUs

and they can't keep up?

T tlatency -
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Resulls

250
200 A .

_ A
v - Model (small Batch) o
S Model (big Batch)
§ 150 - CPU-only (w/o Triton)
O --A-- w/ Triton on GKE-4gpu, avg batch size = 234
_g -~ w/ Triton on GKE-4gpu, avg batch size = 1692
(@) o
C R
0 100 1
8 . /// /9
O ! !
o J ’

50 1 .“0 ’ﬁll ///

0’: ””” ” ,¢/é
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Ry franigiiig o o-%
O | | | |
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Number of simultaneous jobs

Processing time [seconds]

250
200 -
150 4 === Model (big batch)
Model (dynamic batching, big batch)
CPU-only (w/o Triton)
-~ w/ Triton on GKE-4gpu, dyn bat Off, avg bat sz = 1692
100 4+ -“%- w/ Triton on GKE-4gpu, dyn bat On, avg bat sz = 1692
Qo
¥
S
50 n /,//5/
/,;26
/,,er;;:’ £
k%%m%g N U BRI e L o A
O 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Number of simultaneous jobs

~20x speedup of EMMichelTrackID module
2.7x speed up of the full ProtoDUNE-SP processing chain
1 GPU can handle 68 CPU processes simulateneously
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https://arxiv.org/pdf/1904.08986.pdf

https://arxiv.org/pdf/2007.10359.pdf
Other results

FPGA-accelerated machine learning inference as a service for Azure Data Box Edqe with Intel
FPGAs Installed at Fermilab

particle physics computing

Javier Duarte - Philip Harris - Scott Hauck :+ Burt Holzman -
Shih-Chieh Hsu + Sergo Jindariani - Suffian Khan . Benjamin Kreis -
Brian Lee « Mia Liu + Vladimir Lonéar . Jennifer Ngadiuba - Kevin
Pedro . Brandon Perez . Maurizio Pierini + Dylan Rankin - Nhan
Tran - Matthew Trahms -+ Aristeidis Tsaris - Colin Versteeg - Ted W.
Way : Dustin Werran + Zhenbin Wu

GPU coprocessors as a service for deep learning
inference in high energy physics

Jeffrey Krupa', Kelvin Lin?, Maria Acosta Flechas®, Jack
Dinsmore’, Javier Duarte®, Philip Harris', Scott Hauck?,
Burt Holzman®, Shih-Chieh Hsu”?, Thomas Klijnsma“®, Mia
Liu’, Kevin Pedro®, Natchanon Suaysom®, Matt Trahms?,
Nhan Tran®®

! Massachusetts Institute of Technology, Cambridge, MA 02139
2 University of Washington, Seattle, WA, 98195

4 Fermi National Accelerator Laboratory, Batavia, IL 60510

4 University of California San Diego, La Jolla, CA 92003
 Northwestern University, Evanston, [L 60208

Fermilab-led team tests Azure Al

Visit Microsoft story

for particle physics data challenge

e il
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https://arxiv.org/pdf/2007.10359.pdf
https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge
https://customers.microsoft.com/en-us/story/724137-fermilab-led-team-tests-azure-ai-for-particle-physics-data-challenge

Summary and_outlook



Upcoming events

» L _ » - -
e . . _ D . . L
. o
‘e

'. 3 Fast Machine Learning for Science Workshop

22nd Virtual IEEE Real Time Conference

30 November 2020 to 3 December 2020 conrch ,O
Southern Methodist University arcn...

Amenca/Chicago bmezone

12-23 October 2020

GMT timezone

..... e

https://indico.cern.ch/event/737461/

Overview

We are pleased to announce a four-day event "Fast Machine Learning for Science”, which will be
Call for Abstracts hosted virtually by Southern Methodist University from November 30 to December 3. The first three days
(Nov 30 - Dec 2) will be workshop-style with invited and contributed talks. The last day will be dedicated
to technical demonstrations and coding tutorials.

Timetable

Virtual Registration

As advances in experimental methods create growing datasets and higher resolution and more complex
measurements, machine learning (ML) is rapidly becoming the major tool to analyze complex datasets
Previous workshops over many different disciplines. Following the rapid rise of ML through deep learning algorithms, the

Participant List

investigation of processing technologies and strategies to accelerate deep learning and inference is well
underway. We envision this will enable a revolution in experimental design and data processing as a

: part of the scientific method to greatly accelerate discovery. This workshop is aimed at current and
O eve n S WI d Ve emerging methods and scientific applications for deep learning and inference acceleration, including
novel methods of efficient ML algorithm design, ultrafast on-detector inference and real-time systems,
acceleration as-a-service, hardware platforms, coprocessor technologies, distributed learning, and

his4ml tutorials!
hitps://indico.cern.ch/event/924283/




Getting involved

fastmachinelearning.org

HOMEPAGE PROJECTS PEOPLE COLLABORATION CONTACT US

2 FAST MACHINE LEARNING LAB

ABOUT THE FAST ML LAB

Real-time and accelerated ML for fundamental sciences

Fast ML Lab is a research collective of physicists, engineers, and computer scientists
interested in deploying machine learning algorithms for unique and challenging scientific
applications. Our projects range from real-time, on-detector and low latency machine
learning applications to high-throughput heterogeneous computing big data challenges.
We are interested in deploying sophisticated machine learning algorithms to advance the
exploration of fundamental physics from the world's biggest colliders to the most intense

particle beams to the cosmos.

Contact me if interested!
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http://fastmachinelearning.org
http://fastmachinelearning.org

Many other applications

As advances in experimental methods create growing datasets and higher resolution and more complex measurements,
machine learning (ML) is rapidly becoming the major tool to analyze complex datasets over many different disciplines.
Following the rapid rise of ML through deep learning algorithms, the investigation of processing technologies and strategies
to accelerate deep learning and inference is well underway. We envision this will enable a revolution in experimental design
and data processing as a part of the scientific method to greatly accelerate discovery.

Scientific interest and collaborations:
Microscopuy/Spectroscopy
Accelerator conltrols, superconducting magnet diagnostics
RF signal processing
Losmic surveys and gravitational wave astronomy
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Summary

o Particle physics presents unique big data and real-time processing challenges to deliver
‘undamental science

e [echnology Is advanced by solving the impossiblel

e Machine learning brings significant promise to accelerate physics discoveries

e From operations and control to experimental design and the scientific process to
improving our data simulation and reconstruction to our understanding of underlying
physics principles

e [he confluence of physics, detectors, and computing will play an important role in moving
physics experimentation forwarc




“bonus”

—Johnny Appleseed
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h Power Dominated by Data Movement

wWivianng,Sze (w @eems_mit)

Operation: . Energy | Relative Energy Cost Area Relative Area Cost
- (pJ) (nm?)

8b Add 0.03 36
| 16b Add , 0.05 67

32b Add 0.1 137
| 16b FP Add 0.4 | 1360

32b FP Add 0.9 | 4184
'8b Mult 0.2 282

32b Mult 3.1 3495

16b FP Mult = 1640

32b FP Mulit 3.7 7700

32b SRAM Read (8KB) 5 N/A
| 32b DRAM Read 640 N/A

10 102 10° 1 10 102 10°

Memory access is orders of magnitude higher energy than compute

[Horowitz, ISSCC 2014] "ir
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Smaller,
faster access,
more expensive

CPU
Registers

~1-2 cycles

L1 Cache

~8-32 cycles

L2 Cache
~300 cycles

Memory
~50,000 cycles

Hard Disk
~50ms / ~800 mWatts

Network
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Larger,
Slower,
Cheaper

Less Energy
Efficiency



