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Outline
• Opportunities and challenges 

• Real-time and big data challenges in particle physics 
• Machine learning in physics in a nutshell 

• Near sensor and on-detector ML 
• hls4ml and the LHC trigger 

• Accelerated ML for HEP computing 
• SONIC for ProtoDUNE
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Opportunities and Challenges 
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Physics and big data
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CMS Detector

ASIC

L1 Trigger:
all-FPGA
filter stack

High level trigger: 
filter farm

Fast validation and 
processing stack

Worldwide 
computing grid

~Pb/s

~10s Tb/s ~100 Gb/s



DUNE upstream DAQ
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DUNE TDR

~Pb/s



CMS real-time processing
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> 99% of events are not saved for prompt offline analysis 



CMS real-time processing
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1 ns 1 us 1 s1 ms
Custom electronics 

Latency ~ 25ns - 1 μs
Off-the-shelf computing 

Latency ~ O(1+ ms)

FPGAs/ASICs - high bandwidth low 
latency specialized compute hardware

“standard” CPU computing, 
coprocessors



The computing conundrum
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data rates are such that not all events can be saved, and even for the data which is saved, the offline processing of the massive
datasets expected in the future (> 1 EB) present high-throughput computing challenges.

If we take the CMS experiment as an example2, the experiment has several sub-detector technologies which measure
particle properties from the collision debris. These detectors output data on hundreds of millions to billions of channels. During
the online data-taking, the event processing and filtering begins at the earliest on-detector stages in ASICs and FPGAs with
communication and readout via optical fibers. After this first stage of filtering (L1 triggering), the data is passed to a computing
farm where the events are further processed. This second stage of triggering (high level trigger, HLT) is where accelerated
computing will be extremely important in meeting strict throughput requirements in the data acquisition chain. The upgraded
HLT system for online filtering will require more than a factor of 20 increase in performance for computing power and storage
and network throughput. This is shown in Table 1 by comparing the requirements for the current and upgraded systems. Further
as the collision environments get busier with more simultaneous interactions, the processing complexity increases and the need
for more sophisticated and powerful algorithms, often machine learning, also grows. Therefore, the HLT is a system which
would be ideal for deploying new accelerated computing hardware to meet the increasing demands.

CMS detector LHC (current) HL-LHC (upgraded)
Simultaneous interactions 60 200

L1 accept rate 100 kHz 750 kHz
HLT accept rate 1 kHz 7.5 kHz

Event size 2.0 MB 7.4 MB
HLT computing power 0.5 MHS06 9.2 MHS06

Storage throughput 2.5 GB/s 61 GB/s
Event network throughput 1.6 Tb/s 44 Tb/s

Table 1. Specifications for the CMS high level trigger in the current run and estimates for the upgraded detector (4).

Furthermore, as the HLT accept rate increases and with the amount of data collected integrated over a decade of operation
both grow, the HL-LHC offline dataset will also present severe challenges for event processing. The CMS and ATLAS
computing models rely on a highly distributed international grid of computing resources spread across many countries3. Unlike
the online streaming HLT system, which is local to the experiments at the LHC, we have to consider how we could deploy
heterogeneous computing resources to accelerate our event processing chain in a truly distributed system. The datasets, as
mentioned above, will push 1 EB and the amount of compute power that is needed will be more than an order of magnitude
more than current levels. Finally, it is important to note that thus far, we are considering only event processings. Often our
measurements and searches rely on robust and precise simulation which requires additional computing resources. As the
collision environments become more complex and our datasets grow, the simulation requirements grow commensurately and
perhaps even more as the simulation uncertainties must be reduced as well.

The future computing challenges of CMS and ATLAS, both in online streaming applications and offline raw processing, are
signifcantly greater than the resources currently being deployed. This presents an opportunity for transformative changes to the
computing model and technology.

2.2 LHCb

LHCb (5) is another one of the experiments at the LHC which specializes in identifying and studying bottom quark production
and decays in order to search for and understand very rare physics events in the bottom quark sector. The overall beam intensity
is lower than CMS and ATLAS, but it has similar, if not greater, future computing challenges.

The event sizes at LHCb are O(100kB), which is much smaller than at ATLAS/CMS, allowing for much larger trigger
accept rates. In the current run, the L1 trigger accept rate was limited to 1 MHz by the capabilities of the front-end electronics.
The HLT was run in two stages: HLT1 partially reconstructed events and selected a subset for further processing by HLT2,
which performed a more complete reconstruction then executed many selection algorithms to further reduce the rate at which
data were written to permanent storage. The HLT1 accept rate was ⇡ 120 kHz in Run 2, and the storage throughput out of
HLT2 was about 0.7 GB/s. In the most recent data-taking period, instead of immediately processing the data selected by HLT1
in HLT2, the data were cached on a 10 PB buffer while the full calibration procedure was performed, and then HLT2 was run
on the fully calibrated data. This permitted writing out some of the data in a reduced-size format, since no offline processing of
the raw detector information is required.

2The ATLAS specifications are similarly challenging
3https://wlcg.web.cern.ch/
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CMS offline computing  
profile projection

CMS online filter farm project

Compute needs growing by up to 10x 
Environments getting more complex 

Need more sophisticated analysis techniques
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Energy frontier: HL-LHC
• 10× data vs. Run 2/3 → exabytes
• 200PU (vs. ~30PU in Run 2)
• CMS upgrades: (similar for ATLAS)
o 15× increase in pixel channels
o 65× increase in calorimeter channels

HEP Computing Challenges

2Kevin PedroCHEP 2019

136PU event (2018)

Intensity frontier: DUNE

• Largest liquid argon detector 
ever designed

• ~1M channels, 1 ms integration 
time w/ MHz sampling
→ 30+ petabytes/year

CPU needs for particle physics will increase by
more than an order of magnitude in the next decade

2017 JINST 12 C01042

Figure 7. Event display of a simulated high pT jet in the HGCAL with 140 pileup overlayed. Courtesy of
Lindsey Gray [9].

Figure 8. Electron identification e�ciency and fake rate (left) and jet energy resolution (right) in the
simulation comparing current detector with upgraded one in high pileup environment.

– 6 –

Compute needs growing by more than 10x 
Environments getting more complex 

Need more sophisticated analysis techniques
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International Data Needs
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Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes
DUNE		
2026 

LSST		
2021 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Heterogeneous compute
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Machine learning
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Observed (Q, U) Reconstructed (E, κ)

Energy Intensity Cosmic

A. Himmel, E. Niner, F. Pshihas et al. 
https://arxiv.org/abs/1604.01444 

1st deployed in oscillation analysis 
https://arxiv.org/abs/1703.03328 

NOνA event classification Identification of boosted Higgs jet 
decay to two bottom quarks

Reconstruction of CMB polarization 
map from Stokes parameters

J. Duarte et al.,  CMS DP-2018/046 J. Caldeira, B. Nord, et al.,  
https://arxiv.org/abs/1810.01483

Deep learning 
improvement: 

Effective 40% 
increase in 

NOνA active 
volume

2X increase in 
signal 

efficiency over 
“shallow” 
learning

50% less noise vs. traditional methods 
across large range of scales 

https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328
https://arxiv.org/abs/1810.01483
https://arxiv.org/abs/1810.01483


Machine learning
• We are just scratching the surface of AI applications in physics 

• Thus far most “standard” neural network architectures and supervised learning 
are in operation (taggers, reconstruction, regression,…) 

• Particle physics has interesting and rich data based on the principles of physics and 
very challenging big data applications 
• Physics for AI: Learning on point clouds, physics-inspired neural networks, 

unsupervised techniques (clustering, anomaly detection) in real data, real-time 
efficient algorithms, … 

• AI for physics: Across the entire scientific process from operations to algorithms to 
detectors to computing
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Near sensor and on-detector ML
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Internet of things…particle physics

16
Pushing intelligence to the edge



Internet of things…particle physics

17
Pushing intelligence to the edge



Processing hardware
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Digital circuit design
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FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

FPGA 6



NN inference in a nutshell

20

INPUT 1

INPUT 2

OUTPUT Oj = Ii × Wij + bj

→ ↔ →→

Simple 2 input example 

(Fisher linear discriminant, linear support vector machine,…) 

O1 = I1 × W11 + I2 × W21 + b1

INPUT 2

INPUT 1

SIGNAL

BACKGROUND



NN inference in a nutshell

21FULLY CONNECTED HIDDEN LAYER

Oj = Φ(Ii × Wij + bj)
→ ↔ →→

Φ = ACTIVATION FUNCTION  
(NON-LINEARITY)

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2: A cartoon of a deep, fully connected neural network illustrating the description conventions
used in the text

2.2 Case study: jet substructure

Jets are collimated showers of particles that result from the decay of quarks q and gluons g. At the LHC,
due to the high collision energy, another kind of jet emerges resulting from overlapping quark-initiated
showers produced in decays of heavy standard model particles. For example, the W and Z bosons
decay to two quarks (qq̄) a majority of the time and the Higgs boson decays to two b-quarks (bb̄). The
top quark decays to two light quarks and a b-quark (qq̄b). It is the task of jet substructure [9, 38] to
distinguish the various radiation profiles of these jets from backgrounds consisting mainly of quark
and gluon-initiated jets. The tools of jet substructure have been used to distinguish interesting jet
signatures from backgrounds that have production rates hundreds of times larger than the signal.

Jet substructure at the LHC has been a particularly active field for machine learning techniques as
jets contain O(100) particles whose properties and correlations may be exploited to identify physics
signals. The high dimensionality and highly correlated nature of the phase space makes this task
an interesting testbed for machine learning techniques. There are many studies that explore this
possibility, both in experiment and theory [9, 30–41]. For this reason, we choose to benchmark our
FPGA studies using the jet substructure task.

For the trigger specifically, jet substructure techniques could be used to identify and preserve events
containing interesting physics signatures that would typically be discarded. We give two examples in
Fig. 3: low mass hidden hadronic resonances [42] and boosted Higgs produced in gluon fusion [43].
Both processes are overwhelmed by backgrounds in the current trigger and the introduction of jet

– 6 –

NN inference =  
a bunch of multiplications /additions 

and LUTs (look up tables) for activation 
functions



(Energy) Efficient Neural Networks
• Emergent engineering field, efficient implementation of NN architecture 

• Parallelization: performing operations simultaneously (see next page) 

• Compression/Pruning:  
• maintain the same performance while removing low weight synapses and neurons (many 

schemes) 

• Quantization/Approximate math: 
• 32-bit floating point math is overkill 
• 20-bit, 18-bit, …? fixed point, integers?  binarized NNs?

22

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

For further reading, start here: https://arxiv.org/pdf/1510.00149v5.pdf



Example: Parallelization
ReuseFactor: how much to parallelize operations a hidden layer

23

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Figure 8: Illustration of multiplier resource usage for di�erent values of reuse factor. The left drawing
shows the case of two neuron pairs being connected by 4 connections, implying four multiplications to
be performed. The right drawing shows how to perform these multiplications, from fully serial (top)
to fully parallelized (bottom).

section: compression, quantization, and parallelization. First we discuss the classification performance
of the neural network when implemented in firmware in Sec. 3.1. Then in Sec. 3.2, we quantify the
HLS synthesis in terms of FPGA resource usage and latency. The combination of these two metrics,
classification and firmware performance, define how to optimally implement neural networks into
FPGA hardware for a given application. Finally, in Sec. 3.3, we discuss the implementation for a
specific FPGA and compare the actual resource usage to the estimates from Vivado HLS, which can
be obtained much more quickly.

3.1 Classification performance

In order to quantify the performance of our five-output classifier, we use the AUC metric, or area under
the Receiver Operating Characteristic (ROC) curve. The ROC curve is given by the background rejec-
tion versus signal e�ciency computed from sequential cuts on the classifier output, where background
rejection is (1 � background e�ciency), as illustrated in Fig. 5. We denote the AUC achieved by a
full 32-bit floating point inference of the neural network as Expected AUC. We evaluate the neural
network with fixed point precision denoted by <X,Y> where Y is the number of bits representing the
signed number above the binary point (i.e. the integer part), and X is the total number of bits. We
perform two scans – one where we fix the number of integer bits and one where we fix the number
fractional bits. The results are illustrated in Fig. 9 where the scan of the integer bits is on the left and
the scan of the fractional bits is on the right.

Optimal performance with no loss of classification power corresponds to AUC/Expected AUC = 1.
Fig. 9 shows that with fixed point calculations and a su�cient number of bits, the Expected AUCs can
be reproduced with negligible loss in performance. The number of integer bits is chosen to be just

– 14 –



hls4ml

24

�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

Deployed for LHC trigger systems  
Active developments in new neural architectures, different hardware, more systems 
from ASICs to coprocessors, many domains, inter-FPGA networking

~1cm



hls4ml - complete results
• Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High 

Energy Physics, arXiv:2008.03601 [physics.comp-ph]. 

• Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep Quantization with 
QKeras and hls4ml, arXiv:2006.10159 [physics.ins-det]. 

• Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml, MLST 
(2020). 

• Fast inference of Boosted Decision Trees in FPGAs for particle physics, JINST 15, P05026 (2020). 

• ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning, DATE 
Conference 2020 . 

• Fast inference of deep neural networks in FPGAs for particle physics, JINST 13, P07027 (2018)
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https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2006.10159
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/1748-0221/15/05/p05026
https://sld.cs.columbia.edu/pubs/giri_date20.pdf
https://sld.cs.columbia.edu/pubs/giri_date20.pdf
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2006.10159
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/1748-0221/15/05/p05026
https://sld.cs.columbia.edu/pubs/giri_date20.pdf
https://sld.cs.columbia.edu/pubs/giri_date20.pdf
https://doi.org/10.1088/1748-0221/13/07/P07027


Case study: muon trigger upgrade
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.
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with ⇠ 1 cm r � f resolution and ⇠ 2 ns timing resolution, and cathode strip chambers (CSC),
with ⇠ 75 � 150 µm r � f resolution. In the barrel region, fully covering the pseudorapidity
range |h| < 0.83, the detectors are placed parallel to the CMS axis and consist of four DT+RPC
layers arranged radially outwards in four stations MB/RB1,2,3,4 and longitudinally in five
wheels labeled with �2,�1,0,1,2, with the sign corresponding to the sign of h. The four stations
are separated by four layers of steel of the magnet yoke (see Fig. 3.19). In the region of the two
endcaps, fully covering the range 1.24 < |h| < 2.4, the detectors are placed perpendicular
to the CMS axis and comprise four CSC+RPC layers arranged longitudinally in four stations
ME/RE1,2,3,4 on each side and separated again by four layers of steel, as shown in Fig. 3.19. In
Phase-2, the endcap muon detectors will be upgraded with three GEM chambers ME0, GE1/1,
GE2/1 and two improved RPC (iRPC) chambers RE3/1 and RE4/1 on each side (see Fig. 3.19)
for improved resolution in forward directions. The ME0 chamber, combined with the silicon
tracker, will also extend the pseudorapidity range up to |h| = 2.8. The overlap region, defined
by the pseudorapidity range of 0.83 < |h| < 1.24, is covered partly by the barrel and partly by
the endcap detectors.

  

14(i)RPC Trigger Primitives brieuc.francois@cern.ch

Muon System (including upgrade)

Barrel (DT+RPC) Overlap (DT+CSC+RPC)

Endcap (G
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+C
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+R
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)

Figure 3.19: Schematic view of the Phase-2 CMS muon detector system. A quadrant cross
section with h > 0 and f = 90� is shown. The new Phase-2 detectors (in orange, red, and
purple) are installed in the most forward region of the detector.

The design of the CMS muon detector system naturally leads to consider three distinct h re-
gions, barrel, overlap, and endcap, featuring different detector technologies and geometries
and thus posing different challenges to L1 muon reconstruction. Additional challenges to the
detector design arise from the different profile of the magnetic field, turning smoothly from
nearly uniform in the barrel to highly nonuniform in the endcaps, and from the particle occu-
pancy, which increases rapidly in going from the barrel to the endcaps. Based on the experi-
ence of successful L1 muon tracking in the Phase-1 Upgrade, the same regional approach of the
muon track finding is retained in Phase-2. Three baseline muon track finders are considered in
the three h ranges of the barrel, overlap, and endcap detector regions, aiming both to improve
standalone prompt muon track finding relative to the Phase-1 track finders and to provide the
new muon types required in Phase-2. Optimal algorithms are developed in each of the three
regions. These developments do not preclude some future consolidation, and even newer al-
gorithms to be developed, but given the Phase-2 challenges the diversity of algorithms is a
strength at the present stage.

CMS Trigger TDR

EMTF = BDT (external memory)  
EMTF++ = NN 
~3x reduction in the trigger rate for neural network!



What about ASICs?
• Putting a neural network on the detector front-ends for data compression 

• ASIC required due to radiation tolerance and energy budget 
• Fully reconfigurable to address future ‘unknown unknowns’ including evolving LHC 

conditions (pileup, beam bkgs), detector performance (noise, dead channels), performance 
metrics (resolution, substructure, new physics signatures)

27

• Encoding network is implemented on ECON-T

• Values in latent space transmitted on lpGBT to backend

• Backend would work from latent space

• Conceptually simplest approach, 1st stage of backend decodes 

back to initial trigger cells

• Does not have to be the case, for resource optimization backend 

could work with latent space (processing trigger data from latent 
space)

Autoencoder in HGCAL

5

In ECON-T In Backend

Transmitted on lpGBT



ASIC workflow

28

Workflow

10Slide from F. Fahim, August 25 

Quantization aware training very important!

Look forward to public results at IEEE NSS and IEEE real-time 2020



Mini-summary
• Particle physics have been doing IoT for decades!  
• On-sensor or near detector AI is powerful in reducing data rates while maintaining good 

physics performance 

• hls4ml allows machine learning to be accessible in front-end electronics by physicists 
• Broad range of applications  

• At LHC, from front-end ASICs to sub-detector electronics to back-end trigger algorithms 
• Many other applications in physics and beyond!   

• DUNE supernovae trigger 
• Accelerator real-time controls and operations 
• Other domains: nuclear physics, microscopy, signal processing,…

29



Accelerated ML for HEP computing

30



Why fast inference?
• Training has its own computing 

challenges 
• But happens ~once/year and outside of 

compute infrastructure 

• Inference happens on billions of events 
many times a year 
• Unique challenge across HEP 
• Massive datasets of statistically independent 

events
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Opportunities for Accelerated Machine Learning
Inference in Fundamental Physics
Javier Duarte1, Philip Harris2, Alex Himmel3, Burt Holzman3, Wesley Ketchum3,
Jim Kowalkowski3, Miaoyuan Liu3, Brian Nord3, Gabriel Perdue3, Kevin Pedro3,
Nhan Tran3, and Mike Williams2

1University of California San Diego, La Jolla, CA 92093, USA
2Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

ABSTRACT

In this brief white paper, we discuss the future computing challenges for fundamental physics experiments. The use cases for
deploying machine learning across physics for simulation, reconstruction, and analysis is rapidly growing. This will lead us to
many applications where exploring accelerated machine learning algorithm inference could bring valuable and necessary gains
in performance. Finally, we conclude by discussing the future challenges in deploying new heterogeneous computing hardware.

This community report is inspired by discussions at the Fast Machine Learning Workshop1 held September 10-13, 2019.
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1 Introduction
Fundamental particle physics has pushed the bounds of computing for decades. As detectors become more sophisticated and
granular, particle beams become more intense, and the datasets collected grow, the processing needs of the biggest fundamental
physics experiments in the world are presented with massive computing challenges. In this short note, we discuss the upcoming
challenges of a selection of current and future particle physics experiments, how they are intertwined with the development
of machine learning algorithms, and where applications with heterogeneous computing for event processing (inference) can
potentially provide breakthrough gains in performance.

1.1 Computing model in particle physics
Fundamental physics experiments provide uniquely massive datasets through exquisitely precise instruments and the need for
large statistics of physical phenomena to study rare physics events. The basic unit of processing is the event, and the datasets
comprise billions or trillions of events. Often, each event can be analyzed independently ("pleasingly parallel"), a good fit for
high throughput computing. We typically process these large datasets multiple times.

Our current computing model primarily relies on on-premises computing resources, datacenters which are sited on national
laboratories and university campuses. Furthermore, in international collaborations, there are multiple datacenters sited in

1https://indico.cern.ch/event/822126
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Pros & Cons 
On how to integrate heterogeneous compute into our computing model
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To ML or not to ML
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Re-engineer physics algorithms  
for new hardware 

Language: OpenCL, OpenMP,  
HLS, Kokkos,…? 

Hardware: CPU, FPGA, GPU

Re-cast physics problem as a  
machine learning problem 

Language: C++, Python 
(TensorFlow, PyTorch,…) 

Hardware: CPU, FPGA, GPU, ASIC

Is there a way to have the best of both worlds 
with physics aware ML?
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Figure 2. Depiction of the client-server model using Triton where multiple CPU processes on the client
side are accessing the AI model on the server side.

Figure 3. The Google Kubernetes Engine setup which demonstrates how the Local Compute FermiGrid
farm communicates with the GPU server and how the server is orchestrated through Kubernetes.

To scale the NVidia T4 GPU throughput flexibly, we deployed a Google Kubernetes Engine (GKE)
cluster for server-side workloads. The cluster is deployed in the US-Central data center, which is located in
Iowa; this impacts the data travel latency. The cluster was configured using a Deployment and ReplicaSet.
These are Kubernetes artifacts for application deployment, management and control. They hold resource
requests, container definitions, persistent volumes, and other information describing the desired state of the
containerized infrastructure. Additionally, a load-balancing service to distribute incoming network traffic
among the Pods was deployed. We implemented Prometheus-based monitoring, which provided insight
into three aspects: system metrics for the underlying virtual machine, Kubernetes metrics on the overall
health and state of the cluster, and inference-specific metrics gathered from the Triton Inference Server via
a built-in Prometheus publisher. All metrics were visualized through a Grafana instance, also deployed
within the same cluster. The setup is depicted in Fig. 3.
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ProtoDUNE reconstruction
• Largest LArTPC ever built 

• 7.2 x 6.0 x 6.9 m3 
• 15,360 channels 
• Wire spacing 5 mm 
• Readout window 3 ms 

• Lots of activities in the TPC 
• Cosmic ray muons 
• Beam particles 
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~11.9M parameters 
Each event has ~55k patches 
Most time-consuming module  
in the reco chain. 

Reconstruction chain 
• Noise mitigation and deconvolution 
• Hit finder 
• Pandora pattern recognition 
• CNN EmTrkMichelId
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CPU type fraction (%)
AMD EPYC 7502 @ 2.5 GHz 11.7
AMD Opteron 6134 @ 2.3 GHz 0.6
AMD Opteron 6376 @ 2.3 GHz 4.6
Intel Xeon E5-2650 v2 @ 2.6 GHz 30.8
Intel Xeon E5-2650 v3 @ 2.3 GHz 5.2
Intel Xeon E5-2670 v3 @ 2.3 GHz 7.3
Intel Xeon E5-2680 v4 @ 2.4 GHz 17.3
Intel Xeon Gold 6140 @ 2.3 GHz 22.6

Table 1. CPU types and distribution for the grid worker nodes used for the “big-batch” clients (see text for
more details).

Wall time (s)
ML module non-ML modules Total

220 110 330

Table 2. The average CPU-only wall time per job for the different module categories.

3.2 Server-side performance

To get a standardized measure of the performance, we first use standard tools for benchmarking the
GPU performance. Then we perform a stress test on our GPUaaS instance to understand the server-side
performance under high load.

Server standalone performance

The baseline performance of the GPU server running the EmTrackMichelId model is measured using the
perf client tool included in the Nvidia Triton inference server package. The tool emulates a simple client by
generating requests over a defined time period. It then returns the latency and throughput, repeating the test
until the results are stable. We define the baseline performance as the throughput obtained the saturation
point of the model on the GPU. We attain this by increasing the client-side request concurrency—the
maximum number of unanswered requests by the client—until the throughput saturates. We find that the
model reaches this limit quickly at a client-side concurrency of only 2 requests. At this point, the throughput
is determined to be 20, 000± 2, 000 inferences per second. This corresponds to an event processing time
of 2.7± 0.3 s. This is the baseline expectation of the performance of the GPU server.

Saturated server stress test

To understand the behavior of the GPU server performance in a more realistic setup, we set up many
simultaneous CPU processes to make inference requests to the GPU. This saturates the GPUs, keeping the
pipeline of inference requests as full as possible. We measure several quantities from the GPU server in
this scenario. To maximize throughput, we activate the dynamic batching feature of Triton, which allows
the server to combine multiple requests together in order to take advantage of the efficient batch processing
of the GPU. This requires only one line in the server configuration file.

In this setup, we run 400 simultaneous CPU processes that send requests to the GPU inference server.
This is the same compute farm described in Sec. 3.1. The jobs are held in an idle state until all jobs are

Frontiers 9
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Figure 2. Depiction of the client-server model using Triton where multiple CPU processes on the client
side are accessing the AI model on the server side.

Figure 3. The Google Kubernetes Engine setup which demonstrates how the Local Compute FermiGrid
farm communicates with the GPU server and how the server is orchestrated through Kubernetes.

To scale the NVidia T4 GPU throughput flexibly, we deployed a Google Kubernetes Engine (GKE)
cluster for server-side workloads. The cluster is deployed in the US-Central data center, which is located in
Iowa; this impacts the data travel latency. The cluster was configured using a Deployment and ReplicaSet.
These are Kubernetes artifacts for application deployment, management and control. They hold resource
requests, container definitions, persistent volumes, and other information describing the desired state of the
containerized infrastructure. Additionally, a load-balancing service to distribute incoming network traffic
among the Pods was deployed. We implemented Prometheus-based monitoring, which provided insight
into three aspects: system metrics for the underlying virtual machine, Kubernetes metrics on the overall
health and state of the cluster, and inference-specific metrics gathered from the Triton Inference Server via
a built-in Prometheus publisher. All metrics were visualized through a Grafana instance, also deployed
within the same cluster. The setup is depicted in Fig. 3.
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Figure 4. Top left: The number of inferences per second processed by the 4-GPU server, which saturates
at approximately 126,000. Top right: The GPU usage, which peaks around 60%. Bottom: The number of
total batches processed by the 4-GPU server. The incoming batches are sent to the server with size 1693,
but are combined up to size 5358 for optimal performance.

allocated CPU resources and all input files are transferred to local storage on the grid worker nodes, at
which point the event processing begins simultaneously. This ensures that the GPU server is handling
inference requests from all the CPU processes at the same time. This test uses a batch size of 1693. We
monitor the following performance metrics of the GPU server in 10-minute intervals:

• GPU server throughput: for the 4-GPU server, we measure that the server is performing about 122,000
inferences per second for large batch and dynamic batching; this amounts to 31,000 inferences per
second per GPU. This is shown in Fig. 4 (top left). This is higher than the measurement from the
standalone performance client, by a factor of ⇠1.5. For large batch and no dynamic batching, we
observe similar throughput, while for small batch and no dynamic batching, we find that performance
is a bit worse, close to the standalone client performance at 22,000 inf/s/GPU.

• GPU processing usage: we monitor how occupied the GPU processing units are. We find that the GPU
is ⇠60% occupied during saturated processing. This is shown in Fig. 4 (top right).

This is a provisional file, not the final typeset article 10
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which point the event processing begins simultaneously. This ensures that the GPU server is handling
inference requests from all the CPU processes at the same time. This test uses a batch size of 1693. We
monitor the following performance metrics of the GPU server in 10-minute intervals:

• GPU server throughput: for the 4-GPU server, we measure that the server is performing about 122,000
inferences per second for large batch and dynamic batching; this amounts to 31,000 inferences per
second per GPU. This is shown in Fig. 4 (top left). This is higher than the measurement from the
standalone performance client, by a factor of ⇠1.5. For large batch and no dynamic batching, we
observe similar throughput, while for small batch and no dynamic batching, we find that performance
is a bit worse, close to the standalone client performance at 22,000 inf/s/GPU.

• GPU processing usage: we monitor how occupied the GPU processing units are. We find that the GPU
is ⇠60% occupied during saturated processing. This is shown in Fig. 4 (top right).
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which can be accelerated, such that the total time of a CPU-only job is trivially defined as:

tCPU = (1� p)⇥ tCPU + p⇥ tCPU (1)

We replace the time for the accelerated module with the GPU latency terms:

tideal = (1� p)⇥ tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available for the CPU job. We also include tlatency,
which accounts for the preprocessing, bandwidth, and travel time to the GPU. The value of tGPU is fixed,
unless the GPU is saturated with requests. We define this condition as how many GPU requests can be
made while a single CPU is processing an event. The GPU saturation condition is therefore defined as:

NCPU

NGPU
>

tideal

tGPU
. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming there is no saturated GPU. There
are two conditions, unsaturated and saturated GPU, which correspond to NCPU

NGPU
< tideal

tGPU
and NCPU

NGPU
> tideal

tGPU
,

respectively. We can compute the total latency (tSONIC) to account for both cases:

tSONIC = (1� p)⇥ tCPU + tGPU


1 + max

✓
0,

NCPU

NGPU
� tideal

tGPU

◆�
+ tlatency. (4)

Therefore, the total latency is constant when the GPUs are not saturated and increases linearly in the
saturated case proportional to tGPU. Substituting Eq. (2) for tideal, the saturated case simplifies to:

tSONIC = tGPU ⇥ NCPU

NGPU
. (5)

3.4 Measurements deploying SONIC

To test the performance of the SONIC approach, we use the setup described in the “server stress test”
in Section 3.2. We vary the number of simultaneous jobs from 1–400 CPU processes. To test different
computing model configurations, we run the inference with two different batch sizes: 235 (small batch) and
1693 (large batch). This size is specified at run time through a parameter for the EmTrackMichelId module
in the FHiCL [32] configuration file describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the batch size to 1693 reduces the number
of inference calls sent to the Triton server to 32 batches per event, which decreases the travel latency. We
also test the performance impact of enabling or disabling dynamic batching on the server.

In Fig. 5 (left), we show the performance results for the latency of the EmTrackMichelId module for
small batch size vs. large batch size, with dynamic batching turned off. The most important performance
feature is the basic trend. The processing time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size. After that, the processing time begins to
grow, as the GPU server becomes saturated and additional latency is incurred while service requests are
being queued. For example, in the large batch case, the performance of the EmTrackMichelId module is
constant whether there are 1 or 270 simultaneous CPU processes making requests to the server. Therefore,

This is a provisional file, not the final typeset article 12

Saturation effect:  
What if NCPU saturates the GPUs 

and they can’t keep up?
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using less than 270 simultaneous CPU processes for the 4-GPU server is an inefficient use of the GPU
resources; and we find that the optimal ratio of CPU processes to a single GPU is 68:1.

As described in Section 3.3, 7 s of the module time is spent on the CPU for preprocessing to prepare
the inputs for neural network inference. The term ttravel is computed based on a measured round trip ping
time of 12ms for a single service request. Therefore, for small (large) batch size, the total ttravel per event
is 2.8 s (0.4 s). The difference between the corresponding processing times for the different batch sizes
roughly corresponds to that 2.4 s. We also see that in the small batch size configuration, the GPU server
saturates earlier, at about 190 simultaneous CPU processes. In comparison, the large batch size server
saturates at about 270 simultaneous processes. This is because the GPU is more efficient with larger batch
size: at a batch size of 235 (1693), the GPU server can process about 80,000 (125,000) images per second.
The overall performance using the SONIC approach is compared to the model from Section 3.3. We see
that performance matches fairly well with our expectations.

In Fig. 5 (right), we show the performance of the SONIC approach for large batch size with dynamic
batching enabled or disabled, considering up to 400 simultaneous CPU processes. We find that at large
batch size, for our particular model, the large batch size of 1693 is already optimal and the performance is
the same with or without dynamic batching. We also find that the model for large batch size matches the
data well.

Figure 5. Processing time for the EmTrackMichelId module as a function of simultaneous CPU processes,
using a Google Kubernetes 4-GPU cluster. Left: small batch size vs. large batch size, with dynamic
batching turned off. Right: large batch size performance with dynamic batching turned on and off. In both
plots, the dotted lines indicate the predictions of the latency model, specifically Eq. (4).

We stress that, until the GPU server is saturated, the EmTrackMichelId module now takes about 13 s per
event in the most optimal configuration. This should be compared against the CPU-based inference, which
takes 220 s on average. The EmTrackMichelId module is accelerated by a factor of 17, and the total event
processing time goes from 330 s to 123 s on average, a factor of 2.7 reduction in the overall processing
time.

Finally, it is important to note that throughout our studies using commercially available cloud computing,
we have observed that there are variations in the GPU performance. This could result from a number of
factors beyond our control, related to how CPU and GPU resources are allocated and configured in the
cloud. Often, these factors are not even exposed to the users and therefore difficult to monitor. That said,

Frontiers 13

~20x speedup of EMMichelTrackID module 
2.7x speed up of the full ProtoDUNE-SP processing chain 

1 GPU can handle 68 CPU processes simulateneously
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• Tested latency of inference requests in various configurations
o Docker container on server (PCIe connection): 14 ± 25 ms
o From Fermilab computing cluster: 20 ± 30 ms
o From local laptop: 68 ± 27 ms
¾ Network acceleration also important

(Full Brainwave service: 60 ms from Chicago to Virginia, 10 ms on-prem)
o From CERN (Geneva, CH): 168 ± 62 ms
¾ FPGAs beat CPUs even across an ocean
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Many other applications
As advances in experimental methods create growing datasets and higher resolution and more complex measurements, 
machine learning (ML) is rapidly becoming the major tool to analyze complex datasets over many different disciplines. 

 Following the rapid rise of ML through deep learning algorithms, the investigation of processing technologies and strategies 
to accelerate deep learning and inference is well underway.  We envision this will enable a revolution in experimental design 

and data processing as a part of the scientific method to greatly accelerate discovery. 
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Scientific interest and collaborations: 
Microscopy/Spectroscopy 

Accelerator controls, superconducting magnet diagnostics 
RF signal processing 

Cosmic surveys and gravitational wave astronomy 
…



Summary
• Particle physics presents unique big data and real-time processing challenges to deliver 

fundamental science 
• Technology is advanced by solving the impossible!   

• Machine learning brings significant promise to accelerate physics discoveries 
• From operations and control to experimental design and the scientific process to 

improving our data simulation and reconstruction to our understanding of underlying 
physics principles 

• The confluence of physics, detectors, and computing will play an important role in moving 
physics experimentation forward
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–Johnny Appleseed
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