Quantum Field Theory as a COMMON LANGUAGE of Particle and Condensed Matter Physics

Dam Thanh Son (University of Chicago)
IFIRSE seminar
November 12, 2020

Plan

- What is quantum field theory?
- Uses of QFT in particle and condensed matter physics: commonalities and differences
- Example I: spontaneous symmetry breaking
- Example 2: Renormalization Group
- Example 3: Duality

Quantum field theory

- "We have no better way of describing elementary particles than quantum field theory" – A. Polyakov, "Gauge fields and strings"
- Quantum field theory: unifies quantum mechanics and special relativity
- Triumph of quantum field theory: the Standard Model

The Standard Model

SM in condensed matter

Pines and Laughlin "The Theory of Everything" PNAS 1999

$$i\hbar \frac{\partial}{\partial t} |\Psi> = \mathcal{H}|\Psi>$$
 [1]

where

$$\mathcal{H} = -\sum_{j}^{N_{e}} \frac{\hbar^{2}}{2m} \nabla_{j}^{2} - \sum_{\alpha}^{N_{i}} \frac{\hbar^{2}}{2M_{\alpha}} \nabla_{\alpha}^{2}$$

$$-\sum_{j}^{N_{e}} \sum_{\alpha}^{N_{i}} \frac{Z_{\alpha}e^{2}}{|\vec{r}_{j} - \vec{R}_{\alpha}|} + \sum_{j \ll k}^{N_{e}} \frac{e^{2}}{|\vec{r}_{j} - \vec{r}_{k}|} + \sum_{\alpha \ll \beta}^{N_{j}} \frac{Z_{\alpha}Z_{\beta}e^{2}}{|\vec{R}_{\alpha} - \vec{r}_{\beta}|}.$$
 [2]

does not look like quantum field theory

QFT in CMP

- There are many ways that QFT appear in CMP
- Through second quantization

•
$$L = \psi^{\dagger} \partial_t \psi - \frac{1}{2m} |\nabla \psi|^2 + \cdots$$

- As a long-distance description of e.g., lattice systems
- effective field theory of low-energy degrees of freedom
- We will look at a few common themes in HEP and CMP

Theme 1: Spontaneous symmetry breaking

Spontaneous symmetry breaking

- Spontaneous symmetry breaking plays a big role in particle physics
- In QCD, the SSB of the approximate chiral symmetry leads to the appearance of very light pseudoscalar mesons (pions and kaons)
- $\bullet\,$ proton mass $m_p \sim 900$ MeV, pion mass $m_\pi \sim 140$ MeV
 - naive quark model: $m_{\pi} \approx \frac{2}{3} m_{p} \sim 600 \text{ MeV}$

Goldstone mode: motion along the valley Higgs mode: radial oscillation

SSB in CMP

- Spontaneous symmetry breaking also occurs in CMP and underlies many physical phenomena
- Example: ferromagnetism (Heisenberg model)
- At long distances: a field theory with a real scalar
 - $L = (\nabla \phi^a)^2 + m^2 \phi^a \phi^a + \lambda (\phi^a \phi^a)^2$
- Changing T: effectively changing all parameters including m^2
 - low temperature $m^2 < 0$: ferromagnetism

$$\phi = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix} \qquad v = \sqrt{\frac{-m^2}{\lambda}}$$

How many Nambu-Goldstone bosons?

- Folk theorem in high-energy physics: the number of NGBs is the number of broken generators
- For the model at hand, the vacuum breaks rotations around $x, y \rightarrow \text{expects 2 NGBs}$

 $\phi = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix}$

- But in ferromagnet: one NGB with dispersion relation $\omega \sim q^2$
- Reason: the two broken generators form a canonically conjugate pair of operators

$$[S_x, S_y] = iS_z \neq 0$$

Theme 2: Renormalization

See also "How Mathematical Hocus-Pocus Saved Particle Physics", Quanta Magazine

Renormalization

- Late 1940s: Quantum electrodynamics
 - successful predictions: Lamb shift, anomalous magnetic moment of the electron
 - but requires subtraction of infinity (renormalization)
- The meaning of renormalization wasn't clear
- Nambu: In 1947 I joined Tomonaga's group an listened to his lectures... Tomonaga called renormalization the principle of "hohki", which means either "giving up" or "broom".

ALRIGHT RUTH, I ABOUT GOT THIS ONE RENORMALIZED.

Renormalization group

- An important step in the understanding of QFT: renormalization group
- Gell-Mann, Low, Bogoliubov, Shirkov, etc.
 - resummation of logarithmic divergences
 - coupling constants depending on renormalization scale
- The physical meaning of renormalization procedure was not clear until Wilson's work on 2nd order phase transitions

Second-order phase transition

 Prototypical model of 2nd order phase transition: the Ising model

$$H = -J \sum_{\langle ij \rangle} S_i S_j , \qquad S_i = \pm 1$$

• Gibbs ensemble: $\rho[S_i] \sim e^{-\beta H[S_i]}$

Critical exponents

Mean field theory (Landau)

 Landau's mean field theory is basically the treelevel analysis of the field theory

•
$$L(\phi) = \frac{1}{2} (\partial_{\mu} \phi)^2 + V(\phi), \quad V(\phi) = m^2 \phi^2 + \lambda \phi^4$$

$$\bullet \quad m^2 = \alpha (T - T_c)$$

•
$$T < T_c$$
: $\langle \phi \rangle = \sqrt{\frac{-m^2}{\lambda}} \sim (T_c - T)^{1/2}$ $\beta = \frac{1}{2}$

• Analogously $\nu = 1/2$

Breakdown of mean-field theory

- We have to go beyond the tree-level analysis
- Loop correction: shifts the location of the phase transition: $m_{\rm phys}^2 = m_{\rm bare}^2 + \delta m^2$
- But when $m_{\rm phys}^2 \to 0$: infrared divergences

$$H = -J \sum_{\langle ij \rangle} S_i S_j$$

$$H' = -J' \sum_{\langle ij \rangle} S_i S_j + \cdots$$

Ken Wilson's insight

- K.Wilson: Renormalization Group is a rigorous way to perform the Kadanoff block spin transformation
- Field theory: integrate out high energy degrees of freedom, reducing the UV cutoff
 - how coupling constants change under this procedure is determined by the RG equation

$$\Lambda(s) = e^{-s} \Lambda_0 \qquad \frac{\partial g(s)}{\partial s} = -\beta(g)$$

2nd order pt as RG fixed point

SSB

2nd order pt as RG fixed point

$$S = \int d^3x \left[(\partial_{\mu}\phi)^2 + m^2\phi^2 + \lambda\phi^4 \right]$$

Critical exponents

- At the IR fixed point the theory is interacting
 - non-mean-field critical exponents
- Advanced theoretical methods allow very precise determination of the critical exponents
 - $\nu = 0.629971(4)$
 - $\beta = 0.326419(3)$

Wilsonian view on QFT

- Wilson's work completely changed our views of QFT
- The central object in QFT is the renormalization group flow. Some would say that QFT is RG flow.
- Organization by energy scales. Previously, organization in number of loops.
- Effective Field Theory (Weinberg, 1970s). Almost all field theories are EFTs, with cutoff.
- Renormalizable field theories are field theories where the cutoff can be pushed to be exponentially large without increasing the number of coupling constants.

Theme 3: Duality

Duality

Two quantum field theories that look different are in fact equivalent

$$\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$$

two phases: $\langle \phi \rangle \neq 0$ and $\langle \phi \rangle = 0$

The two are separated by a second order phase transition (in the mean field theory: $m^2 = 0$)

$$\mathcal{L}_2 = |(\partial_{\mu} - iA_{\mu})\Phi|^2 + m^2|\Phi|^2 - \lambda|\Phi|^4 - \frac{1}{4e^2}F_{\mu\nu}^2$$

two phases: $\langle \Phi \rangle = 0$: massless photon $\langle \Phi \rangle \neq 0$: massive photon

Peskin; Dasgupta, Halperin 1978-81: exact equivalence of two theories in 2+1 D

$$\mathcal{L}_{1} = |\partial_{\mu}\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_{2} = |(\partial_{\mu} - iA_{\mu})\Phi|^{2} + m^{2}|\Phi|^{2} - \lambda|\Phi|^{4} - \frac{1}{4e^{2}}F_{\mu\nu}^{2}$$

Peskin; Dasgupta, Halperin 1978-81: exact equivalence of two theories in 2+1 D

$$\mathcal{L}_{1} = |\partial_{\mu}\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_{2} = |(\partial_{\mu} - iA_{\mu})\Phi|^{2} + m^{2}|\Phi|^{2} - \lambda|\Phi|^{4} - \frac{1}{4e^{2}}F_{\mu\nu}^{2}$$

Theory 1

Theory 2

Peskin; Dasgupta, Halperin 1978-81: exact equivalence of two theories in 2+1 D

$$\mathcal{L}_{1} = |\partial_{\mu}\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_{2} = |(\partial_{\mu} - iA_{\mu})\Phi|^{2} + m^{2}|\Phi|^{2} - \lambda|\Phi|^{4} - \frac{1}{4e^{2}}F_{\mu\nu}^{2}$$

Theory 1

Theory 2

 $m^2 < 0$ Goldstone boson

photon

Peskin; Dasgupta, Halperin 1978-81: exact equivalence of two theories in 2+1 D

$$\mathcal{L}_{1} = |\partial_{\mu}\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_{2} = |(\partial_{\mu} - iA_{\mu})\Phi|^{2} + m^{2}|\Phi|^{2} - \lambda|\Phi|^{4} - \frac{1}{4e^{2}}F_{\mu\nu}^{2}$$

Theory 1

Theory 2

$$m^2 < 0$$
 Goldstone boson $m^2 > 0$ particle

photon

vortex

Peskin; Dasgupta, Halperin 1978-81: exact equivalence of two theories in 2+1 D

$$\mathcal{L}_{1} = |\partial_{\mu}\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_{2} = |(\partial_{\mu} - iA_{\mu})\Phi|^{2} + m^{2}|\Phi|^{2} - \lambda|\Phi|^{4} - \frac{1}{4e^{2}}F_{\mu\nu}^{2}$$

Theory 1

Theory 2

$$m^2 < 0$$
 Goldstone boson $m^2 > 0$ particle

photon

vortex

NUMERICAL EVIDENCE: the same critical exponent

Modern developments in duality

- A fermionic version of the duality may be underlying some phenomena in fractional quantum Hall effect arxiv:1805.04472
 - explains the emergence of a quasiparticle called "composite fermion"
- Many more example of dual pairs of QFTs have been discovered in (2+1) dimensions

Epilogue

- What is Quantum Field Theory?
- Most field theories are effective field theories
- New types of field theories needed in CMP?
 - Landau's Fermi liquid theory as an effective field theory
 - "Non-Fermi liquids", possibly underlying high-Tc superconductivity
 - "Fractons"

Thank you