PANDA: Neutrino Detector for Reactor Monitor

<u>Tomoyuki Konno</u>

Kitasato University 2021/06/10

Today's topics

- Basics of reactor neutrino experiments
 - Properties of neutrino
 - Reactor neutrino measurements
 - Short base line experiments
- PANDA : Plastic Anti-Neutrino Detector Array
 - Concept and History
 - Neutrino measurements in 2019
 - Future

Basics of reactor neutrino experiments

Neutrino in ß decay

Confirmed by the <u>reactor experiment</u>

Properties of neutrino

- Very light particle
 - Zero mass in Standard Model
 - --> Found nonzero mass
 - by <u>neutrino oscillation</u>
 - Still effectively zero mass
- Neutral lepton particle
 - No strong and E.M. interaction
 - --> Good for cosmology
 - by the higher transparency
 - Weekly interactive
 - --> Good for particle physics
 - --> Search for B.S.M.

Categories of interaction

Neutrino mixing

- Flavor = engine state of interaction
 - ~ Particle generation
 - Indefinite before measurement
- Particle = Superposition of wavelets
 - Superposition changes in time
 - => Flavor changes during flight
- Disappearance and appearance
 - Disappearance : to be indetectable
 - $\nu_e \rightarrow \nu_\mu$ (less interactive with e)
 - Appearance : to be detectable
 - $u_{\mu} \rightarrow \nu_{e} \ (\text{interactive with } e \) \ ^{\text{Super}}$

Neutrino oscillation

Neutrino oscillation <--
Mixing of mass eigne state Maki-Nakagawa-Sakata (MNS) matrix $s_{ij} = \sin \theta_{ij} \ c_{ij} = \cos \theta_{ij}$ $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ $\theta_{23}: P(\nu_{\mu} \rightarrow \nu_{\mu})$ by $\theta_{13}: P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e})$ by Reactor ν $\theta_{12}: P(\nu_e \rightarrow \nu_x)$ by Reactor ν & solar ν Atm. $\nu \& \nu$ beam $\theta_{13} \& \delta: P(\nu_{\mu} \to \nu_{e})$ by ν beam 2 flavor system: Survival probability of reactor v $P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$ $\sin^2(2\theta)$

Flavor can change in flight

Neutrino oscillation is the unique phenomenon beyond the standard model --> Probe toward the new physics

Origins of neutrino

Generated in Nuclear reaction

- β decay of Nuclear fission product
- Decay chain of π and μ Kinds of neutrino sources
- Autificial · Mainly for Dantiala
- Artificial : Mainly for Particle Physics
 - Reactor in power production
 - Accelerator
- Natural : Cosmology or Geo Physics
- $\frac{9}{80}$ CNO cycle in the sum
- $^{\Omega}_{S}$ Supernova v
- $_{\odot}$ Geo ν : Core of the earth
- $\overset{{}_{\scriptstyle {igodynambda{U}}}}{\scriptstyle {igodynambda{U}}}$ Atmospheric u

Neutrino is good probe toward Nuclear and Geo and cosmology

Fission in Uran-235

Decay chain of π and μ

Artificial neutrino sources

Generation processes are well known

- Reactor : β decays in Nuclear fission
- Decay at rest : π decay in proton beam target
 - Pure test of neutrino properties

Advantage

- Well known source
 Flux & distance
- Close to source
 - High statistics
- Free neutrino
 - No operation fee

Disadvantage

- Not normal laboratory
 - Portability is important
 - Bad background condition

Reactor Neutrinos

- Most commercial reactors are PWR or BWR.
 - 235 U, 239 Pu, 241 Pu beta spectra measured at ILL, 238 U theoretically.
 - In LS: Energy 1-10 MeV, Rate : ~ 1 event/day/ton/GW @ 1km
- Power fluctuation <1%, rate and shape precision 2-3%
 - Rate and spectra were verified by Bugey, Bugey3, Bugey4

Reactor Neutrino Experiments

Reactor anti-neutrino experiments have played a critical role in the 60-year-long history of neutrinos.

- The first neutrino observation in 1956 by Reines and Cowan
- Determination of the upper limit of mixing angle θ_{13} in 90's
- The first observation of reactor anti-neutrino disappearance at KamLAND in 2002.
- Measurement of the smallest mixing angle θ_{13} at Double Chooz and other experiments in 2012.

The Cowan-Reines Reaction

- The first observation of neutrinos in 1956 by Reines & Cowan.
 - Inverse beta decay in CdCl₃ water solution
 - → coincidence of prompt and <u>delayed</u> signal
 - Liquid scintillator + PMTs
 - Underground
- Modern experiments are still quite similar, except
 - Loading Gd into liquid scintillator
 - Larger detector
 - Deeper underground, shielding

Prompt signal

$$e^+ + e^- \rightarrow 2\gamma$$

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

Capture on H, or Gd, Cd, etc. Delayed signal

KamLAND

- 2002-, Kamioka, Japan
- 53 reactors, 80 GWth
- 1000-ton LS
- 2700 mwe

Double Chooz Experiment

MUBLE

DoubleChooz detector

BRAZIL CBPF UNICAMP UFABC	FRANCE APC CEA/DSM/IRFU: SPP, SPhN, SEDI, SIS, SENAC. CNRS/IN2P3: Subatech, IPHC.	GERMANY EKU Tübingen MPIK Heidelberg RWTH Aachen TU München U. Hamburg	JAPAN Tohoku U. Tokyo Inst. Tech. Tokyo Metro. U. Niigata U. Kobe U. Tohoku Gakuin U. Hiroshima Inst. Tech.	RUSSIA INR RAS IPC RAS RRC Kurchatov	SPAIN CIEMAT-Madrid	USA U. Alabama ANL U. Chicago Columbia U. UC Davis Drexel U. U. Hawaii
	spokes project	150 scientist man: Hervé de I manager: Christ		KSU LLNL MIT U. Notre Dame U. Tennessee		
	9 ⁶ 03				130	-

Outer Veto: plastic scintillator strips (400 mm-t) v-Target: 10.3 m³ scintillator doped with 0.1g/l of Gd in an acrylic vessel (8 mm-t)

 γ -Catcher: 22.3 m³ scintillator in an acrylic vessel (12 mm-t)

Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs

Inner Veto: 90m³ of scintillator in a steel vessel equipped with 78 PMTs

Veto Vessel (10mm) & Steel Shielding

Double Chooz results

Located under ground 120/300 mwe Distance in 400/1050m 30to Gd-loaded liquid scintillator

Latest results $sin^{2}2 \theta_{13} = 0.105 \pm 0.014$ *Nature Phys.* 16 (2020) 5, 558-564

Day-by-day neutrinos around reactor off period

Near detector Data (~400m)

Next road of reactor v measurments ~2020

~2000

~2010

Long baseline ~ 100km Large scale ~ 1kton

Middle baseline ~ 1km Middle scale ~ 10ton

- Detector gets close to reactor core
 - Search for more fine oscillation
- Smaller detector size
 - Enough statistics can be kept

Long baseline ~ 100km Large scale ~ 2kton

Short baseline $\sim 100m$ Small scale $\sim 1ton$

Reactor Anomaly in short baseline experiments

Reactor neutrino anomaly

- Lack of neutrino flux in 10-100 m distance from core
 - Due to calculation of nuclear fission?
 - Hits for new particle such as sterile neutrino?

Potential of short baseline experiments

- <u>Reactor activity monitor (Neutrino application)</u>
 - Security for Nuclear Non-Proliferation Treaty

 --> Possible to monitor outside
 of reactor building
- Search for next neutrino oscillation
 - Search for unknown neutrino
- More for Nuclear physics and engineering
 - Scope to inside of the reactor core for next generation reactor
 - More ??

Essentials to archive

- Measurement very close to the reactor
- High efficiency and low BG detector

International Atomic Energy Agency

Oscillation parameters

Non-proliferation Monitoring

- Non-proliferation monitoring studies supported by IAEA (France, US, Russia, Japan, Brazil, Italy)
 - Ton-level detector
 - Very close to core < 100m

Short baseline reactor experiments

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

From Neutrino2016 N.Bowden

- 1ton size with some PID capability
- 10~100m distance from the core

PANDA: Plastic Anti-Neutrino Detector Array

Portable reactor neutrino detection

Reactor = Powerful source of reactor neutrino

- Neutrinos / fission : 6x10²⁰ v /s (3GWth)
- Observable in outside of building (~45m)
- Detectable via Inverse beta decay

Technology change

Double Chooz (France)

- 2009 ~ 2017
- Liquid scintillator
- Volume ~ 10 t (7 x 7 x 7m)
- Under ground (300mwe)

PANDA (Japan)

- 2006 ~ 2019
- Plastic scintillator
- volume ~ 1 t (1 x 1 x 1m)
- On ground

Upgrades for quick and portable neutrino measurement

- <u>Safety</u> : Liquid (burnable) to Solid plastic (stable)
- Portability: Less than 2 ton without shielding

\overline{v}_e detection technique

Inverse Beta Decay (IBD) creates positron and neutron

- Positron : $e^+ dE/dx + 2\gamma s$ from annihilation
- Neutron : γ s from neutron capture by nucleus - Gd: $n + Gd^{155(157)} \rightarrow Gd^{156(158)} + \gamma s$ (~8MeV)

Surrounding Gd-loaded sheet around a plastic scintillator

Delayed coincidence

- Prompt (positron) : 1~8 MeV
- Delayed (n-Gd) : ∼8 MeV
- Time difference : \sim 60 μ s
 - Reduces environment BG significantly but still too much BG remain..

Major backgrounds for IBD

- Accidental : Environment γ + n
- Correlated : Fast neutron

Plastic Anti-Neutrino Detector Array (PANDA)

- Scintillator BC-408
- Target volume : ~1 t (1 x 1 x 1m)
- No anti-background material

Combined $10 \times 10 = 100$ modules

Portable on the truck

Construction of PANDA

PANDA history

Univ. Tokyo

Kitasato

First trial for neutrino measurement

430

420 410

400

350

340 330

11/19

correlated event [count/day]

PANDA36 @Ohi plant (2012)

- By Univ. Tokyo
- Reactor 2:3.42 GWth (PWR)
- On ground 35.9m far from core
- Sep. 2012 Jun. 2013
- Reactor on (30 days) off (34 days)

Reactors after the earthquake

Operation status (No reactor operated in 2014)

https://www.nippon.com/en/features/h00238/

Experiment site: Ohi power plant

- Close to Osaka and Kyoto
- 7 hours by train from Tokyo

Ohi reactor power plant in Japan

- Operated by Kansai Electric Power Company (KEPCO)
- Locates at Fukui (Hokuriku area)
- Two reactors restarted in 2018
 - Reactor 3:1.18MW (~3GWth)
 - Reactor 4:1.18MW (~3GWth)

Neutrino observation at Ohi

Premeasurement (2018)

- Detector tests at two locations
 - Near site (Reactor 4) : 18 days 11/26 ~ 12/14
 - Far site (Reactor 3) : 12 days
 12/14 ~ 12/26
 - Tuned DAQ configuration

ON-OFF (2019, near site)

- ON OFF subtraction
 - Reactor ON : 38 days
 5/28 ~ 7/4
 - Reactor OFF: 33 days
 7/5 ~ 8/7

Measurement of reactor anti-neutrino energy spectrum by subtraction of Reactor ON - OFF

Far site (~100m)

Reactor-4

Bird eye view of

Ohi plant

Near site

(~45m)

Reactor ON : Neutrino + BG Reactor OFF : BG only

Reactor-3

Goals of the Ohi measurement

- Extraction of neutrino spectrum with amount of environmental backgrounds
 - Reactor ON: neutrino + BG
 - Reactor OFF: BG only

Neutrino spectrum can be obtained by subtraction of ON - OFF periods

- Two operation phases
- Premeasurement (2018)
 - Confirm on-site operation
 - Background measurement
- Measurement (2019)
 - ON OFF Subtraction

Members at the reactor site

Staff and Students from Kitasato, Fukui, Tokyo metro etc.

PANDA detector in truck

Near site (~45m) Reactor-4

Measurement at Ohi Reactor 4

PANDA in side the truck

Measurement at Ohi Reactor 3

Operation status (2018)

- DAQ succeeded almost non-stop operation
 - Trigger rate ~1.1kHz

Temperature changed in 1day (no cooler)
 Increased ~40 degrees due to sunshine

Detector status (2019)

- Unstable compared to 2018 =>High temperature in summary
 - External electronics noise : 2% of data is not available

- Increased temperature from late July to August
 - Varied in 30 \sim 50 degrees in each day

IBD selection results

Reactor near-far (2018)

- ~45m (11/26~12/14)
 - Live time : 17.0 days
 - # candidates : 7437 [/day]
 - Accidental : 2812 [/day]
 - Correlated : 4625 [/day]
- ~100m (12/14~12/26)
 - Live time : 10.6 days
 - # candidates : 7462 [/day]
 - Accidental : 3034 [/day]
 - Correlated : 4428 [/day]

Reactor ON-OFF (2019)

- Reactor-ON (6/4~6/28)
 - Live time : 19.6 days
 - # candidates : 16184 [/day]
 - Accidental : 6414 [/day]
 - Correlated : 9770 [/day]
- Reactor-OFF (7/5~8/7)
 - Live time : 29.1 days
 - # candidates : 15227 [/day]
 - Accidental : 5988 [/day]
 - Correlated : 9239 [/day]
- Obtained <u>enough data set for neutrino observation</u>
- Threshold voltages was changed from 60mV to 30mV, causing increase of the trigger rage

Analysis strategy

Tight experiment environment for portability must be treated

- Room & detector <u>temperature were instable</u>
 - Energy scale varied very much --> Requires correction
- Higher background signals on the ground
 - Correlated BG: Fast neutrons from cosmic products
 - Accidental BG: Environmental γ and neutrons --> Selection using event topology
- On BG level gets suppressed, we can compare ON / OFF!

Energy scale correction

Correction using 2 energy peaks of environmental ⁴⁰K and ²⁰²TI

Energy scale stability (in n-H)

IBD selection criteria

- **Muon veto**: $dT_{\mu} > 400 [us]$ (Muon ID : $E_{sum} > 25 [MeV]$)
- Delayed coincidence :
 - Prompt signal: 2 < E_{sum} < 24 [MeV]
 - 2 \leq N_{hits} \leq 5
 - $E_{2nd} < 0.6 \text{ [MeV]}$
 - $E_{sum} (E_{1st} + E_{2nd}) < 0.7 \text{ [MeV]}$
 - $\cos(\theta) < 0.8$
 - Delayed signal: 3 < E_{sum} < 9 [MeV]
 - Time difference : 8 < dT < 300 [us]</p>
- Further background reduction
 - Selection using likelihood ratio:

•
$$R = \frac{pdf(\text{correlated})}{pdf(\text{correlated}) + pdf(\text{accidental})} > 0.85$$

PDF for accidental/correlated events

- P.D.F obtained from fast neutron candidates
- $\int_{-\infty}^{-\infty} \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac$
 - → independent of IBD candidates by E2nd
- Accidental = off time
- Correlated = on off time

Distance between delayed most distant 2 hits

hit delayed modules

Likelihood ratio for delayed event

 Event Likelihood is defined as multiply of P.D.F.s

$$L_{\rm acc/cor} = \prod_{v} p_{\rm acc/cor} (v)$$

- v : the five parameters
- Defined Likelihood ratio as L_{cor}

$$R = \frac{1}{L_{\rm cor} + L_{\rm acc}}$$

- EEfficiency for correlated :
 - Reactor ON : 69.7 [%]
 Reactor OFF : 68.1 [%]
 ON/OFF ratio : +2.35%

Likelihood ratio (Reactor ON)

ON / OFF comparison by cosmic induced events

Independent of reactor operation

Energy spectrum for cosmic products

- ON/OFF ratio : +0.39 ± 0.72 [%]
- # neutrino signal : 0.00 ± 1.36 [day⁻¹]

=> Consistent between ON / OFF

Extraction of neutrino speactum

Comparison of ON and OFF spectra in IBD candidates

• χ^2 minimization of spectra comparison

$$\chi^{2} = \sum_{i} \frac{\left(N_{i}^{ON} - \left(\boldsymbol{P_{OFF}} \times \widetilde{N}_{i}^{OFF} + \boldsymbol{P_{MC}} \times N_{i}^{MC}\right)\right)^{2}}{\sigma_{i}^{ON2} + \sigma_{i}^{OFF2} + \boldsymbol{P_{MC}} \times N_{i}^{MC}}$$

*P*_{OFF} : Correction factor of OFF event rate (free parameter)
 *P*_{MC} : # of IBD signals in MC (free parameter)

• Updates: Fit with muon product spectrum as penalty term

$$\chi^{2} = \sum_{i} \frac{\left(N_{i}^{ON} - (P_{OFF} \times \tilde{N}_{i}^{OFF} + P_{MC} \times N_{i}^{MC})\right)^{2}}{\sigma_{i}^{ON2} + \sigma_{i}^{OFF2} + P_{MC} \times N_{i}^{MC}} + \sum_{i} \frac{\left(N_{i}^{ON} - P_{OFF} \times \tilde{N}_{i}^{OFF}\right)^{2}}{\sigma_{i}^{ON2} + \sigma_{i}^{OFF2}}$$

IBD candidate spectrum muon product spectrum

• Minimized by MINUT

Neutrino extraction (Near/Far comparison, 2018)

- Near, Far: Accidental subtracted
- Error of Near Far from Near and Far stat
- MC shows 1 σ range

Compared Near – Far to MC simulation

- # IBD signal : <u>78.7 ± 36.0 [/day]</u>
 <u>Non-Zero : 2.18 σ (>95%C.L.)</u>
- Expected from 2019 <u>~ 77.8[/day]</u>
 - Far also included neutrinos
 - Higher threshold voltage
 - Narrower Prompt energy range
 - = > ~ 60 % decreased

Consistent with ON/OFF measurement in 2019

Extraction of neutrino spectrum

• Reactor OFF : 8722.4 ± 36.4 [day⁻¹]

53

Success and tasks

Success: completed neutrino observation at Ohi plant

- <u>No critical trouble</u> among 2018-2019 operations
 - No critical point in PANDA for safety
 - No troubles in high voltage supplies
- Observed reactor neutrino spectrum with 5.2σ
 - Comparison of reactor ON OFF periods
 - Correction temperature difference
- Tasks: Improvement of reactor neutrino sensitivity
- Background
- Detection efficiency
- Temperature control
- Electronics noise

Prospect for next detector

Development was started

- New detection methods
 - ⁶Li sheet for n-capture
 - More channel from PMT -> MPPCs
- Capability of event topology
 - Fine segmentation
 Less than 5 cm
- Anti-BG materials
 - Water tank : ~1.7t
 - Fast neutron detector by reuse of PANDA

New detector development continues for coming 2-3 years

Summary

 Reactor neutrino is essential tools for both particle physics and reactor safety

– Measurement on the ground is a key

- Japanese group developed PANDA (plastic anti neutrino detector array) as 1t volume detector
- Measurement at KEPCO Ohi reactor power plant during reactor ON and OFF in 2018 and 2019
 - 2018 : $45m \rightarrow 100m$ for 3 weeks
 - 2019 : ON (1month) \rightarrow OFF (1month) for 2 months
- Obtained neutrino spectrum for both 2018 and 2019
 Background level is still higher than 100 times
- New detector development is already started This work was supported by JSPS KAKENHI Grant Number JP19K03891

Live timeの計算

- DAQ live time : Run timeからDAQ busyを差し引いたもの
 BUSY時間はFPGAロジックボードが記録
- Live time : DAQ live timeからmuon veto timeを差し引いたもの
 Veto time は N_u x T_u (=400us)ではない

Off timing法(Accidentalの見積もり)

Promptからわざと時間的に離れたDelayed用のTime windowを作り、 時間相関のない事象の組み合わせ(Accidental)を作る

- **On time** : Correlated (ニュートリノ信号含む)+Accidental
 - 時間相関:8 < dT < 300 [us]
 - 連続信号の除去: -200 < dT < 300 [us]
- ・ Off time: 1つのPrompt候補に最大100個のtime window (i=1..100)
 - 時間相関:8 < dT (1s + 2000us x i) < 300 [us]
 - 連続信号の除去: -200 < dT < 300 [us]かつ Delayed window 周辺: -200 < dT - (1s + 2000us x i) < 300 [us]
 - 偽Prompt (T+ (1s + 2000us x i))がμ veto にかかる場合は ウィンドウ自体を作らない

Off timingのレート補正

Off timeのDelayed信号のinefficiencyはOn timeと異なる

- => Off timingのTime window 補正:f_{iso} x x f_{win}
- Signal Isolation : Off timeだけdelayedに二重にかかる
 - Isolation cutOefficiency: $e_{iso} = exp(-R_{iso} \times T_{iso})$
 - R_{iso}:前後-200 < dT < 300 us にイベントがないDelayed候補 (ミューオンベトー後のイベントのみ)のイベントレート
 - 補正項: $f_{iso} = 1. / e_{iso}$ (e_{iso} : isolation cut のefficiency)
- Prompt候補数(N_{pwin})とDelayed window数(N_{dwin})を数えて比を取る

