

Atmospheric neutrino oscillations with the KM3NeT/ORCA detector and synergies with reactor neutrinos

Chau Thien Nhan

ICISE webinar - October 14, 2022

Outlines

- 3-neutrino oscillations
- The KM3NeT/ORCA detector
- Neutrino mass ordering determination and combination with JUNO
- First oscillation measurement with ORCA6
- Conclusions

3-neutrino oscillations

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Neutrino in the Standard Model

- Neutrino a fundamental particle:
 - In the SM: massless and neutral
 - 3 flavours (generation)
 - Only participate to weak interactions **♦**

- Neutrino oscillation: neutrino changes their flavour while propagating
 - \rightarrow Implies non-zero mass (hint for physics beyond SM)

Neutrino mixing and oscillation

Oscillations can arise from the mismatch between flavour states and mass states

> Flavour states (Weak interaction)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

PMNS matrix (Pontecorvo - Maki - Nakagawa - Sakata)

- Neutrinos created at the initial flavour state
- In propagation, mass states evolve as: $|\nu_i(t)\rangle$
- The probability for transition into flavour ν_{β} :

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2}$$

Mass states (Propagation)

$$\begin{aligned} \nu_{\alpha} : |\nu_{\alpha}\rangle &= \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle \\ t)\rangle &= e^{-iE_{i}t} |\nu_{i}(0)\rangle \end{aligned}$$

 $\beta = \alpha$: disappearance channel, $\beta \neq \alpha$: appearance channel

Neutrino mixing and oscillation

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i < j} \operatorname{\mathsf{Re}}\left[U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j}\right] \sin^2\left(\frac{\Delta m_{jj}^2 L}{4E}\right) + 2\sum_{i < j} \operatorname{\mathsf{Im}}\left[U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j}\right] \sin\left(\frac{\Delta m_{jj}^2 L}{2E}\right)$$

- Parametrization of PMNS matrix: $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_1 \\ 0 \\ e^{-i\delta} \end{pmatrix}$
- Oscillation governed by:
 - + 3 mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$)
 - 2 independent squared-mass split
 - + 1 CP-violation phase (δ)
- *L/E* dependence
- \rightarrow different L/E ranges (experiments) give different parameter sensitivity

$$\begin{array}{cccc} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -i\delta s_{13} & 0 & c_{13} \end{array} \right) \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

itting $(\Delta m_{31}^2, \Delta m_{21}^2)$

Current status

- θ_{13} and Δm_{31}^2 are measure to a very good precision

• Three main tasks: the precise measurement of θ_{23} , the measurement of CP violation phase δ_{CP} , and the determination of neutrino mass ordering (NMO).

NMO determination Reactor neutrinos with medium baseline

- Reactor experiment ($\bar{\nu}_e \rightarrow \bar{\nu}_e$) at medium baseline (~ 53 km JUNO)
- Require very good energy resolution

• NMO determination using interplay between fast oscillation driven by Δm_{31}^2 and Δm_{32}^2

NMO determination Atmospheric neutrinos

 Atmospheric neutrinos created in cosmic-ray induced air showers

+
$$\pi^{-}/K^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$$

 $\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$
+ $\pi^{+}/K^{+} \rightarrow \mu^{+} + \nu_{\mu}$

$$\mu^+ \to e^+ + \bar{\nu}_e + \bar{\nu}_\mu$$

NMO determination Atmospheric neutrinos

- Vacuum oscillation is hard to detern
- In matter, forward elastic weak scattering modify the oscillation

mine NMO:
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) \sim \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

4	\cap
	0

NMO determination Atmospheric neutrinos

Matter effect can modify the oscillation: •

$$P^{m}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13}^{m} \sin^{2}\left(\frac{\Delta^{m}m_{31}^{2}L}{4E_{\nu}}\right)$$
$$\sin^{2}\theta_{13}^{m} = \sin^{2}2\theta_{13}\left(\frac{\Delta m_{31}^{2}}{\Delta^{m}m^{2}}\right)^{2}$$
$$\overline{n_{31}^{2}\cos 2\theta_{13} - 2E_{\nu}A} + (\Delta m_{31}^{2}\sin 2\theta_{13})^{2}, A = +(-)\sqrt{2}G_{F}N_{e} \text{ for } \nu(\overline{\nu})$$

$$\begin{split} P^m(\nu_{\mu} \rightarrow \nu_e) &\approx \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \left(\frac{\Delta^m m_{31}^2 L}{4E_{\nu}}\right) \\ &\sin^2 \theta_{13}^m = \sin^2 2\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^m m^2}\right)^2 \end{split}$$
with $\Delta^m m^2 = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - 2E_{\nu}A) + (\Delta m_{31}^2 \sin 2\theta_{13})^2}, A = +(-)\sqrt{2}G_F N_e \text{ for } \nu(\overline{\nu})$

- MSW resonance for neutrinos (antineutrinos) in case of NO (IO)
- \rightarrow NMO determination with

atmospheric neutrino traversing the Earth (PINGU, Hyper-K, KM3NeT/ORCA)

0.8-) γ ي* 0.4 0.

11

The KM3NeT detectors

Mediterranean Sea

Two detectors with the same technology

 ORCA: Oscillation Research with Cosmic in the Abyss

> Smaller and denser array GeV-TeV

 ARCA: AstroParticle Research with Cosmic in the Abyss Larger and sparser array TeV-PeV

Next generation of large-volume water-Cherenkov neutrino telescopes in the

A KM3NeT **Digital Optical Module** (DOM)

The KM3NeT/ORCA detector

- ORCA: optimized for atmospheric neutrino detection above 1 GeV.
- Events can be reconstructed in energy, direction (zenith angle) and classified into topology classes.
- 11 lines deployed and will continue growing!
- Rich physics programs including not only Neutrino Oscillation but also other topics: Neutrino Astronomy, indirect Dark Matter Search, Sterile Neutrino, Non-Standard Interaction,...

-	
	-

tps://www.youtube.com/watch?v=AjQx8NpQJ8Y

Oscillation analysis in ORCA

 Selecting up-going events (high purity sample of atmospheric neutrinos) crossing the Earth)

• Event distribution as the histogram in energy (E_1) , cosine zenith $(\cos \theta_7 = L/R_{Earth})$ for each topology or PID (~ flavour)

+ Reminding: $P^m(\nu_\mu \to \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \left(\frac{\Delta^m m_{31}^2 L}{4E_\nu}\right)$

16

Oscillation analysis in ORCA

 $N_j^{reco} = \sum R_{ij} N_i^{true}$

17

j[$E_{reco}, \cos heta_{reco}$] Topology classes

 R_{ii}

Oscillation analysis in ORCA

- Different oscillation hypothesis leads to different expected distributions.
- - TS(data | hypo) =

 - \rightarrow sensitivity evaluation (NMO, oscillation parameters $\Delta m_{31}^2, \theta_{23}$)

Event Distributions

• A test statistic (χ^2) is constructed to tell the compatibility between data and hypothesis

$$= \sum_{bin} TS_{bin}(N_{data}^{evt}, N_{hyp}^{evt})$$

bin

 \rightarrow fit the parameters of the hypothesis to the data (find their values that minimise TS)

Neutrino mass ordering determination and combination with JUNO

NMO determination with ORCA

- Evaluation of NMO sensitivity with full ORCA (115 DUs/lines).
- Matter effect allows the determination.
- Data not available yet \rightarrow pseudo-data from an assumed true scenario.
- Asimov dataset + Wilk's theorem for extracting the median significance (in σ).

 \rightarrow How strong we can exclude a wrong ordering with an assumed true one

NMO determination with ORCA

Depend on the mixing angle θ_{23} and the true NMO

• 3 (5) σ within 1 (3) years in the most optimistic case (NO and upper octant)

yield a boost in NMO sensitivity:

from different neutrino flavours ($\bar{\nu}_e$ for JUNO, $\nu_{\mu} + \bar{\nu}_{\mu}$ for ORCA)

A combination of reactor (JUNO) and atmospheric experiments (ORCA) could

• Tension in Δm_{21}^2 best-fit arises due to each experiments observes oscillations starting

- 5σ significance within 2/6 years in case of true NO/IO respectively.

• Time required for 5σ reduced by at least one year compared to ORCA alone.

- θ_{23} dependence driven by ORCA sensitivity.

• Combination ensures 5 σ after 6 years regardless true NMO or values of θ_{23}

24

- (dotted), $3.5 \% \sqrt{E/MeV}$ (dashed).
- Energy resolution of JUNO has the small impact on the combination.
- The boost relies on the Δm_{31}^2 tension rather than NMO sensitivity of each experiment.

• 3 considered resolution for JUNO: nominal - $3.0 \% \sqrt{E/MeV}$ (solid), $2.5 \% \sqrt{E/MeV}$

First oscillation measurement with ORCA6

Data sample

- Data set of 354.6 days with 6 active DUs (ORCA6): ~2020-2021
- data sample (no PID yet).
- Good data and MC agreement.

Event selection applied to obtain high neutrino purity and good reconstructed

First oscillation measurement with ORCA6

- Exclude no oscillation with more than 5σ .
- Agree within ~1.9 σ compare to the global fit (NuFIT5.0).

• First oscillation maximum at higher value of L/E compared to NuFIT \rightarrow prefer lower Δm_{31}^2 .

First oscillation measurement with ORCA6

 $\Delta m_{31}^2 = 1.94^{+0.30}_{-0.28} [10^{-3} \text{eV}^2]$ $\sin^2 \theta_{23} = 0.51^{+0.10}_{-0.10}$

Conclusions

- KM3NeT/ORCA is expected to unravel the NMO.
- ORCA and JUNO combination can enhance the NMO sensitivity.
- Very first oscillation measurement with only 6 DUs in ~1 years give comparable results to current experiments.
- since the detector is growing and more data is taking!

Will soon contribute more to the global picture of neutrino oscillations

Thank you for your attention!

4 .e.

Back up

Atmospheric fluxes

Neutrino interactions in ORCA

Shower-like

Track-like

Mainly shower-like 17% produced muon→ track-like

34

Background in the deep-sea

Radio activity

$${}^{40}\mathrm{K} \rightarrow {}^{40}\mathrm{Ca} + \bar{\nu}_e + e^-$$
$${}^{40}\mathrm{K} + e^- \rightarrow {}^{40}\mathrm{Ar}^* + \bar{\nu}_e \rightarrow {}^{40}\mathrm{Ar} +$$

Bioluminescence

classifier

Uncorrelated in time and space Rejected thanks to trigger with suitable causality condition

Atmospheric muons: directional cuts (up-going) + reco quality + ML based

Detector Response

$$y) = \frac{\sum_{E',\theta',y'} N_{sel}^{[\nu_x \to i]}(E,\theta,y;E',\theta',y')}{\sum_{i,E',\theta',y'} N_{sel}^{[\nu_x \to i]}(E,\theta,y;E',\theta',y')}$$

NMO sensitivity in ORCA

NMO sensitivity preserved thanks to the different in cross-section between neutrinos and antineutrinos

Parameter treatment

Parameter	True value	Treatment	Prior
$\theta_{23}(\text{deg})$	48.6 (NO)	Fitted	×
	48.8 (IO)		
$\theta_{10}(de\sigma)$	8.60 (NO)	Fitted	$\mu = 8.60 \ \sigma = 0.13$
V13(408)	8.64 (IO)		$\mu = 0.00, v = 0.10$
$\theta_{12}(\text{deg})$	33.82	Fixed	×
$\Delta m^2 (10^{-3} eV^2)$	2.528 (NO)	Fitted	×
$\Delta m_{31}(10 \text{ ev})$	-2.510 (IO)	Гинса	
$\Delta m_{21}^2 (10^{-5} \mathrm{eV}^2)$	7.39	Fixed	×
See (dog)	221 (NO)	Fitted	~
$0_{CP}(\text{deg})$	282 (IO)		^
Flux $ u_e/ar{ u}_e$ skew	0	Fitted	$\mu = 0, \sigma = 0.07$
Flux $\nu_{\mu}/\bar{\nu}_{\mu}$ skew	0	Fitted	$\mu=0,\sigma=0.05$
Flux $\nu_e/\bar{\nu}_\mu$ skew	0	Fitted	$\mu = 0, \sigma = 0.02$
Flux spectral index	0	Fitted	×
Flux zenith slope	0	Fitted	$\mu = 0, \sigma = 0.05$
NC normalization	1	Fitted	$\mu = 1, \sigma = 0.1$
Energy scale	1	Fitted	$\mu = 1, \sigma = 0.05$
PID class norm.	1	Fitted	×

NMO sensitivity - The Asimov approach $S_{NO(IO)} = \sqrt{2} \text{erfc}^{-1} \left[\text{erfc} \left(\frac{\overline{\Delta \chi^2}_{IO} + \overline{\Delta \chi^2}_{NO}}{\sqrt{8} \overline{\Delta \chi^2}_{IO(NO)}} \right) \right]$ When: $\Delta \chi^2_{NO} \approx \Delta \chi^2_{IO}$

~1.5 sigma underestimation

Simple squared root for median significance only a good approximation

Oscillation parameter measurement

40

 $\chi^2(\Delta m_{31}^2, \theta_{13}) =$

$NO(\Delta m_{31}^2, \theta_{13})$	(Δn) + $\chi^2_{ORCA}(\Delta n)$	$(si_{31}^2, \theta_{13}) + $	$\frac{1}{\sigma_{\sin^2\theta_{13}}^2 - \sin^2\theta}$
Osc. parameter	JUNO	ORCA	
θ13	grid scan		
Δm^2 ₃₁	grid scan		
θ23	X	fitted	
Δm^2_{21}	fitted	fixed	
θ12	fixed	fixed	
δCP	X	fitted	

_

41

JUNO detector

43.5 m

Top Tracker -62 Plastic scintillator walls

Water Cherenkov -35 kt high-purify water -2.4k 20" PMTs

Early phase of ORCA + JUNO

