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3-neutrino oscillations



Neutrino in the Standard Model
• Neutrino - a fundamental particle:


✦ In the SM: massless and neutral


✦ 3 flavours (generation)


✦ Only participate to weak interactions


• Neutrino oscillation: neutrino changes their flavour while propagating


 Implies non-zero mass 


(hint for physics beyond SM)

→
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Neutrino mixing and oscillation
• Oscillations can arise from the mismatch between flavour states and mass states





• Neutrinos created at the initial flavour state : 


• In propagation, mass states evolve as: 


• The probability for transition into flavour :





: disappearance channel, : appearance channel


νe
νμ
ντ

=
Ue1 Ue2 Ue3
Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

να |να⟩ = ∑
i

U*αi |νi⟩

|νi(t)⟩ = e−iEit |νi(0)⟩

νβ

P(να → νβ) = |⟨νβ |να(t)⟩ |2

β = α β ≠ α
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Flavour states 
(Weak interaction)

Mass states 
(Propagation)

PMNS matrix 
(Pontecorvo - Maki - Nakagawa - Sakata)



Neutrino mixing and oscillation

• Parametrization of PMNS matrix:





• Oscillation governed by: 

✦ 3 mixing angles ( , , )

✦ 2 independent squared-mass splitting ( )

✦ 1 CP-violation phase ( )


• L/E dependence 

 different L/E ranges (experiments) give different parameter sensitivity
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→
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P(να → νβ) = δαβ − 4∑
i<j

Re [UαiU*βiU*αjUβj] sin2 (
Δm2

jiL
4E ) + 2∑

i<j

Im [UαiU*βiU*αjUβj] sin(
Δm2

jiL
2E

)



Current status
•  and  are measure to a very good precision


• Three main tasks: the precise measurement of , the measurement of CP 
violation phase , and the determination of neutrino mass ordering (NMO).

θ13 Δm2
31

θ23
δCP
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Normal Ordering (NO)

Δm2

31 > 0
Inverted Ordering (IO)


Δm2
31 < 0



NMO determination
Reactor neutrinos with medium baseline
• Reactor experiment ( ) at medium baseline (~ 53 km - JUNO)


• NMO determination using interplay between fast oscillation driven by  and 


• Require very good energy resolution


ν̄e → ν̄e

Δm2
31 Δm2

32
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NMO determination
Atmospheric neutrinos

• Atmospheric neutrinos created in 
cosmic-ray induced air showers


✦ 





✦ 


π−/K− → μ−+ν̄μ

μ− → e−+ν̄e + νμ

π+/K+ → μ++νμ

μ+ → e++ν̄e + ν̄μ
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NMO determination
Atmospheric neutrinos
• Vacuum oscillation is hard to determine NMO: 


• In matter, forward elastic weak scattering modify the oscillation


P(να → νβ) ∼ sin2 ( Δm2L
4E )
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NMO determination
Atmospheric neutrinos
• Matter effect can modify the oscillation:





 


with , 


• MSW resonance for neutrinos (antineutrinos) in case of NO (IO)


  NMO determination with 

atmospheric neutrino traversing the Earth

(PINGU, Hyper-K, KM3NeT/ORCA)

Pm(νμ → νe) ≈ sin2 θ23 sin2 2θm
13 sin2 ( Δmm2

31L
4Eν )

sin2 θm
13 = sin2 2θ13 ( Δm2

31

Δmm2 )
2

Δmm2 = (Δm2
31 cos 2θ13 − 2EνA) + (Δm2

31 sin 2θ13)2 A = + ( − ) 2GFNe for ν(ν)

→
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The KM3NeT/ORCA detector



The KM3NeT detectors
Next generation of large-volume water-Cherenkov neutrino telescopes in the 
Mediterranean Sea
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Two detectors with the 
same technology
• ORCA: Oscillation Research 

with Cosmic in the Abyss

Smaller and denser array 
GeV-TeV 

• ARCA: AstroParticle Research 
with Cosmic in the Abyss


Larger and sparser array 
TeV-PeV

A KM3NeT 

Digital Optical Module

(DOM)



The KM3NeT/ORCA detector

• ORCA: optimized for atmospheric neutrino detection above 1 GeV.


• Events can be reconstructed in energy, direction (zenith angle) and classified into topology 
classes.


• 11 lines deployed and will continue growing!


• Rich physics programs including not only Neutrino Oscillation but also other topics: Neutrino 
Astronomy, indirect Dark Matter Search, Sterile Neutrino, Non-Standard Interaction,… 14



15https://www.youtube.com/watch?v=AjQx8NpQJ8Y



Oscillation analysis in ORCA

• Selecting up-going events (high purity sample of atmospheric neutrinos 
crossing the Earth)


• Event distribution as the histogram in energy ( ), cosine zenith 
( ) for each topology or PID (~ flavour)


✦ Reminding: 

Eν
cos θz = L/REarth

Pm(νμ → νe) ≈ sin2 θ23 sin2 2θm
13 sin2 ( Δmm2

31L
4Eν )
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Oscillation analysis in ORCA

Nreco
j = ∑

i

RijNtrue
i

  

Polarity:  

Flavour:  

Interaction: CC, NC

[Etrue, cos θtrue]

ν/ν̄

νe/νμ/ντ

  

Topology classes

[Ereco, cos θreco]

{

{

i

    j

Rij
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Oscillation analysis in ORCA
• Different oscillation hypothesis leads to different expected distributions.


• A test statistic ( ) is constructed to tell the compatibility between data and hypothesis 


 


 fit the parameters of the hypothesis to the data (find their values that minimise TS)


 sensitivity evaluation (NMO, oscillation parameters - )

χ2

TS(data |hypo) = ∑
bin

TSbin(Nevt
data, Nevt

hyp)

→

→ Δm2
31, θ23

Event Distributions TS(NO|IO)

NO IO
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Neutrino mass ordering determination 
and combination with JUNO



NMO determination with ORCA

• Evaluation of NMO sensitivity with full ORCA (115 DUs/lines).


• Matter effect allows the determination.


• Data not available yet  pseudo-data from an assumed true scenario.


• Asimov dataset + Wilk’s theorem for extracting the median significance (in ).


 How strong we can exclude a wrong ordering with an assumed true one

→

σ

→
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NMO determination with ORCA

• Depend on the mixing angle  and the true NMO


• 3 (5)  within 1 (3) years in the most optimistic case (NO and upper octant)

θ23

σ
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ORCA and JUNO combination
• A combination of reactor (JUNO) and atmospheric experiments (ORCA) could 

yield a boost in NMO sensitivity:

• Tension in  best-fit arises due to each experiments observes oscillations starting 
from different neutrino flavours (  for JUNO,  for ORCA)

Δm2
31

ν̄e νμ + ν̄μ
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ORCA and JUNO combination

• Time required for 5  reduced by at least one year compared to ORCA alone.


• 5  significance within 2/6 years in case of true NO/IO respectively.

σ

σ
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ORCA and JUNO combination

•  dependence driven by ORCA sensitivity.


• Combination ensures 5  after 6 years regardless true NMO or values of 

θ23

σ θ23
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ORCA and JUNO combination

• 3 considered resolution for JUNO: nominal -  (solid),  
(dotted),  (dashed).


• Energy resolution of JUNO has the small impact on the combination.


• The boost relies on the  tension rather than NMO sensitivity of each 
experiment.

3.0 % E/MeV 2.5 % E/MeV
3.5 % E/MeV

Δm2
31
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First oscillation measurement 
with ORCA6



Data sample
• Data set of 354.6 days with 6 active DUs (ORCA6): ~2020-2021


• Event selection applied to obtain high neutrino purity and good reconstructed 
data sample (no PID yet).


• Good data and MC agreement.
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First oscillation measurement with ORCA6

• Exclude no oscillation with more than 5 .


• Agree within ~1.9  compare to the global fit (NuFIT5.0).


• First oscillation maximum at higher value of L/E compared to NuFIT prefer lower .

σ

σ

→ Δm2
31
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First oscillation measurement with ORCA6
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Contour at 90% CL
Δm2

31 = 1.94+0.30
−0.28[10−3eV2]

sin2 θ23 = 0.51+0.10
−0.10



Conclusions

• KM3NeT/ORCA is expected to unravel the NMO.


• ORCA and JUNO combination can enhance the NMO sensitivity.


• Very first oscillation measurement with only 6 DUs in ~1 years give 
comparable results to current experiments.


• Will soon contribute more to the global picture of neutrino oscillations 
since the detector is growing and more data is taking!
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Thank you for your attention!



Back up



Atmospheric fluxes
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Neutrino interactions in ORCA
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Background in the deep-sea
• Radio activity


• Bioluminescence


• Atmospheric muons: directional cuts (up-going) + reco quality + ML based 
classifier
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Uncorrelated in time and space

Rejected thanks to trigger with suitable causality condition



Detector Response
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NMO sensitivity in ORCA
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NMO sensitivity preserved thanks to the 
different in cross-section between 

neutrinos and antineutrinos



Parameter treatment

38



NMO sensitivity - The Asimov approach

• ~1.5 sigma underestimation
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Simple squared root for median significance only a good approximation

When: Δχ2

NO ≈ Δχ2
IO



Oscillation parameter measurement
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ORCA and JUNO Combination

χ2(Δm2
31, θ13) = χ2

JUNO(Δm2
31, θ13) + χ2

ORCA(Δm2
31, θ13) + (sin2 θ13 − sin2 θGF

13 )2

σ2
sin2 θGF

13
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Osc. parameter JUNO ORCA

θ13 grid scan

∆m231 grid scan

θ23
x fitted

∆m221 fitted fixed

θ12 fixed fixed

δCP x fitted



JUNO detector
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Early phase of ORCA + JUNO
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